期刊论文详细信息
Particle and Fibre Toxicology
Trypsin-like serine peptidase profiles in the egg, larval, and pupal stages of Aedes albopictus
Jose B De Jesus1  Ana Paula de Barros Silva3  Constança Britto3  Geovane Dias-Lopes3  Patricia Cuervo2  Camila Mesquita-Rodrigues3  André Borges-Veloso3  Leonardo Saboia-Vahia3 
[1] Departamento de Engenharia de Biossistemas, Universidade Federal de São João Del Rey, Minas Gerais, Brazil;Laboratório de Pesquisa em Leishmaniose, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil;Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
关键词: Zymography;    Peptidases;    Trypsin-like serine peptidases;    Preimaginal stages;    Culicidae;    Aedes albopictus;   
Others  :  1228053
DOI  :  10.1186/1756-3305-6-50
 received in 2012-10-10, accepted in 2013-02-18,  发布年份 2013
PDF
【 摘 要 】

Background

Aedes albopictus, a ubiquitous mosquito, is one of the main vectors of dengue and yellow fever, representing an important threat to public health worldwide. Peptidases play key roles in processes such as digestion, oogenesis, and metamorphosis of insects. However, most of the information on the proteolytic enzymes of mosquitoes is derived from insects in the adult stages and is often directed towards the understanding of blood digestion. The aim of this study was to investigate the expression of active peptidases from the preimaginal stages of Ae. albopictus.

Methods

Ae. albopictus eggs, larvae, and pupae were analyzed using zymography with susbtrate-SDS-PAGE. The pH, temperature and peptidase inhibitor sensitivity was evaluated. In addition, the proteolytic activities of larval instars were assayed using the fluorogenic substrate Z-Phe-Arg-AMC.

Results

The proteolytic profile of the larval stage was composed of 8 bands ranging from 17 to 130 kDa. These enzymes displayed activity in a broad range of pH values, from 5.5 to 10.0. The enzymatic profile of the eggs was similar to that of the larvae, although the proteolytic bands of the eggs showed lower intensities. The pupal stage showed a complex proteolytic pattern, with at least 6 bands with apparent molecular masses ranging from 30 to 150 kDa and optimal activity at pH 7.5. Peptidases from larval instars were active from 10°C to 60°C, with optimal activity at temperatures between 37°C and 50°C. The proteolytic profile of both the larval and pupal stages was inhibited by phenyl-methyl sulfonyl-fluoride (PMSF) and Nα-Tosyl L-lysine chloromethyl ketone hydrochloride (TLCK), indicating that the main peptidases expressed during these developmental stages are trypsin-like serine peptidases.

Conclusion

The preimaginal stages of Ae. albopictus exhibited a complex profile of trypsin-like serine peptidase activities. A comparative analysis of the active peptidase profiles revealed differential expression of trypsin-like isoforms among the preimaginal stages, suggesting that some of these enzymes are stage specific. Additionally, a comparison of the peptidase expression between larvae from eggs collected in the natural environment and larvae obtained from the eggs of female mosquitoes maintained in colonies for a long period of time demonstrated that the proteolytic profile is invariable under such conditions.

【 授权许可】

   
2013 Saboia-Vahia et al; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150930090754652.pdf 1048KB PDF download
Figure 6. 58KB Image download
Figure 5. 50KB Image download
Figure 4. 51KB Image download
Figure 3. 48KB Image download
Figure 2. 55KB Image download
Figure 1. 82KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Gilotra SK, Rozeboom LE, Bhattacharya NC: Observations on possible competitive displacement between populations of Aedes aegypti Linnaeus and Aedes albopictus Skuse in Calcutta. Bull Org Mond Santé 1967, 37:437-446.
  • [2]O'Meara GF, Evans LF Jr, Gettman AD, Cuda JP: Spread of Aedes albopictus and decline of Ae. aegypti (Diptera: Culicidae) in Florida. J Med Entomol 1995, 32:554-562.
  • [3]Schreiber ET, Cuda JP: Evaluation of public information packets for source reduction in three socioeconomic areas of Tampa, Florida. J Am Mosq Control Assoc 1994, 10:154-162.
  • [4]Forattini OP, Marques GR, Kakitani I, de Brito M, Sallum MA: Epidemiologic significance of Aedes albopictus breeding places in bromeliads. Rev Saude Publica 1998, 32:186-188.
  • [5]Gratz NG: Critical review of the vector status of Aedes albopictus. Med Vet Entomol 2004, 18:215-227.
  • [6]Dieng H, Saifur GMR, Hassan AA, Salmah MRC, Boots M, Satho T, Jaal Z, AbuBakar S: Indoor breeding of Aedes albopictus in northern peninsular Malasya and its potential epidemiological implications. PLoS One 2010, 5:e11790.
  • [7]Juliano SA: Species introduction and replacement among mosquitoes: interspecific resource competition or apparent competition. Ecology 1998, 79:255-268.
  • [8]Cancrini G, Romi R, Gabrielli S, Toma L, di Paolo M, Scaramozzino P: First finding of Dirofilaria repens in a natural population of Aedes albopictus. Med Vet Entomol 2003, 17:448-451.
  • [9]Delatte H, Desvars A, Bouétard A, Bord S, Gimonneau G, Vourc’h G, Fontenille D: Blood-feeding behavior of Aedes albopictus, a vector of Chikunguya on La Réunion. Vector Borne Zoonotic Dis 2010, 10:249-259.
  • [10]Genchi C, Rinaldi L, Mortarino M, Genchi M, Cringoli G: Climate and Dirofilaria infection in Europe. Vet Parasitol 2009, 163:286-292.
  • [11]Samuel PP, Krishnamoorthi R, Hamzakova KK, Aggarwal CS: Entomo-epidemiological investigations on chikungunya outbreak in the Lakshadweep islands, Indian Ocean. Indian J Med Res 2009, 129:442-445.
  • [12]Paupy C, Ollomo B, Kamgang B, Moutailler S, Rousset D, Demanou M, Hervé JP, Leroy E, Simard F: Comparative role of Aedes albopictus and Aedes aegypti in the emergence of dengue and chikungunya in central Africa. Vector Borne Zoonotic Dis 2010, 10:259-266.
  • [13]Yang YJ, Davies D: Trypsin and chymotrypsin during metamorphosis in Aedes aegypti and properties of the chymotrypsin. J Insect Physiol 1971, 17:117-131.
  • [14]Volz J, Osta MA, Kafatos FC, Müller HM: The roles of two clip domains serine proteases in innate immune responses of the malaria vector Anopheles gambiae. J Biol Chem 2005, 280:40161-40168.
  • [15]Xu W, Huang FS, Hao HX, Duan JH, Qiu ZW: Two serine proteases from Anopheles dirus haemocytes exhibit changes in transcript abundance after infection of an incompatible rodent malaria parasite, Plasmodium yoelli. Vet Parasitol 2006, 139:93-101.
  • [16]Rodrigues J, Agrawal N, Sharma A, Malhotra P, Adak T, Chauhan VS, Bhatnagar RK: Transcriptional analysis of an immune-responsive serine protease from Indian malarial vector, Anopheles culicifacies. BMC Mol Biol 2007, 8:33. BioMed Central Full Text
  • [17]Terra WR, Ferreira C: Insect digestive enzymes: properties, compartmentalization and function. Comp Biochem Physiol B Biochem Mol Biol 1994, 109b:1-62.
  • [18]Blow DM: The tortuous story of Asp…His…Ser: Structural analysis of α-chymotrypsin. Trends Biochem Sci 1997, 22:405-408.
  • [19]Borovsky D: Biosynthesis and control of mosquito gut proteases. IUBMB Life 2003, 55:435-441.
  • [20]Hedstrom L: Serine protease mechanism and specificity. Chem Rev 2002, 102:4501-4524.
  • [21]Ho BC, Khoo HG, Chew LM, Wong KP, Ewert A: Food ingestion and digestive enzymes in larval Aedes aegypti and Aedes albopictus (Diptera: Culicidae). J Med Entomol 1992, 29:960-964.
  • [22]Mesquita-Rodrigues C, Saboia-Vahia L, Cuervo P, D’Ávila-Levy CM, Honorio NA, Domont GB, de Jesus JB: Expression of trypsin-like serine peptidases in preimaginal stages of Aedes aegypti (Diptera: Culicidae). Arch Insect Biochem Physiol 2011, 76:223-235.
  • [23]Borges-Veloso A, Saboia-Vahia L, Cuervo P, Pires RC, Britto C, Fernandes N, D’Ávila-Levy CM, De Jesus JB: Proteolytic profiling and comparative analyses of active trypsin-like serine peptidases in preimaginal stages of Culex quinquefasciatus. Parasit Vectors 2012, 5:123. BioMed Central Full Text
  • [24]Pires FA, Moya-Borja GE, Barreira JD, Pinho RT, Alves CR: The main proteinases in Dermatobia hominis second and third instars larvae are serine-proteinases. Vet Parasitol 2007, 145:326-331.
  • [25]Fazito-do-Vale V, Pereira MH, Gontijo NF: Midgut pH profile and protein digestion in the larvae of Lutzomyia longipalpis (Diptera: Psychodidae). J Insect Physiol 2007, 53:1151-1159.
  • [26]Tamaki FK, Padilha MH, Pimentel AC, Ribeiro AF, Terra WR: Properties and secretory mechanism of Musca domestica digestive chymotrypsin and its relation with Drosophila melanogaster homologs. Insect Biochem Mol Biol 2012, 42:482-490.
  • [27]Cuervo P, Mesquita-Rodriques C, D’Ávila-Levy CM, Britto C, Pires FA, Gredilha R, Alves CR, Jesus JB: Serine protease activities in Oxysarcodexia thornax (Walker) (Diptera: Sarcophagidae) first instar larva. Mem Inst Oswaldo Cruz 2008, 103:504-506.
  • [28]Shahabuddin M, Toyoshima T, Aikawa M, Kaslow DC: Transmission-blocking activity of a chitinase inhibitor and activation of malarial parasite chitinase by mosquito protease. Proc Natl Acad Sci USA 1993, 90:4266-4270.
  • [29]Shahabuddin M, Costero A: Spatial distribution of factors that determine sporogonic development of malaria parasites in mosquitoes. Insect Biochem Mol Biol 2001, 31:231-240.
  • [30]Gill SS: Mechanism of action of Bacillus thuringiensis toxins. Mem Inst Oswaldo Cruz 1995, 90:69-74.
  • [31]Telleria EL, de Araújo AP, Secundino NF, D'Avila-Levy CM, Traub-Csekö YM: Trypsin-like serine proteases in Lutzomyia longipalpis: expression, activity and possible modulation by Leishmania infantum chagasi. PLoS One 2010, 5:e10697.
  • [32]Ghosh A, Edwards MJ, Jacobs-Lorena M: The journey of the Malaria Parasite in the Mosquito: Hopes for the New Century. Parasitol Today 2000, 16:5.
  • [33]Ludwig GV, Christensen BM, Yuill TM, Schultz KT: Enzyme processing of La Crosse virus glycoprotein G1: a bunyavirus-vector infection model. Virology 1989, 171:108-113.
  • [34]Mertens PP, Burroughs JN, Walton A, Wellby MP, Fu H, O’Hara RS, Brookes SM, Mellor PS: Enhanced infectivity of modified bluetongue virus particles for two insect cell lines and for two Culicoides vector species. Virology 1996, 217:582-593.
  • [35]Molina-Cruz A, Gupta L, Richardson J, Bennett K, Black W 4th, Barillas-Mury C: Effect of mosquito midgut trypsin activity on dengue-2 virus infection and dissemination in Aedes aegypti. Am J Trop Med Hyg 2005, 72:631-637.
  • [36]Honório NA, Silva Wda C, Leite PJ, Gonçalves JM, Lounibos LP, Lourenço-de-Oliveira R: Dispersal of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) in an urban endemic dengue area in the State of Rio de Janeiro, Brazil. Mem Inst Oswaldo Cruz 2003, 98:191-198.
  • [37]Consoli RAGB, Lourenço-de-Oliveira R: Principais mosquitos de importância sanitária no Brasil. Fiocruz: Rio de Janeiro: Brasil Press; 1994:225-250.
  • [38]Brackney DE, Isoe J, Black WC IV, Zamora J, Foy BD, Miesfeld RL, Olson KE: Expression profiling and comparative analyses of seven midgut serine proteases from the yellow fever mosquito, Aedes aegypti. J Insect Physiol 2010, 56:736-744.
  • [39]Soares TS, Watanabe RMO, Lemos FJA, Tanaka AS: Molecular characterization of genes encoding trypsin-like enzymes from Aedes aegypti larvae and identification of digestive enzymes. Gene 2011, 489:70-75.
  • [40]Isoe J, Rascón AA Jr, Kunz S, Miesfeld RL: Molecular genetic analysis of midgut serine proteases in Aedes aegypti mosquitoes. Insect Biochem Mol Biol 2009, 39:903-912.
  • [41]Holt RA, Subramanian GM, Halpern A, Sutton GG, Charlab R, Nusskern DR, Wincker P, Clark AG, Ribeiro JM, Wides R, Salzberg SL, Loftus B, Yandell M, Majoros WH, Rusch DB, Lai Z, Kraft CL, Abril JF, Anthouard V, Arensburger P, Atkinson PW, Baden H, de Berardinis V, Baldwin D, Benes V, Biedler J, Blass C, Bolanos R, Boscus D, Barnstead M: The genome sequence of the malaria mosquito Anopheles gambiae. Science 2002, 298:129-149.
  • [42]Nene V, Wortman JR, Lawson D, Haas B, Kodira C, Tu ZJ, Loftus B, Xi Z, Megy K, Grabherr M, Ren Q, Zdobnov EM, Lobo NF, Campbell KS, Brown SE, Bonaldo MF, Zhu J, Sinkins SP, Hogenkamp DG, Amedeo P, Arensburger P, Atkinson PW, Bidwell S, Biedler J, Birney E, Bruggner RV, Costas J, Coy MR, Crabtree J, Crawford M: Genome sequence of Aedes aegypti, a major arbovirus vector. Science 2007, 316:1718-1723.
  • [43]Arensburger P, Megy K, Waterhouse RM, Abrudan J, Amedeo P, Antelo B, Bartholomay L, Bidwell S, Caler E, Camara F, Campbell CL, Campbell KS, Casola C, Castro MT, Chandramouliswaran I, Chapman SB, Christley S, Costas J, Eisenstadt E, Feschotte C, Fraser-Liggett C, Guigo R, Haas B, Hammond M, Hansson BS, Hemingway J, Hill SR, Howarth C, Ignell R, Kennedy RC: Sequencing of Culex quinquefasciatus establishes a platform for mosquito comparative genomics. Science 2010, 330:86-88.
  • [44]Wu DD, Guo-Dong W, Irwin DM, Zhang YP: A profound role for the expansion of trypsin-like serine protease family in the evolution of hematophagy in mosquito. Mol Biol Evol 2009, 26:2333-2341.
  • [45]Zdobnov EM, von Mering C, Letunic I, Torrents D, Suyama M, Copley RR, Christophides GK, Thomasova D, Holt RA, Subramanian GM, Mueller HM, Dimopoulos G, Law JH, Wells MA, Birney E, Charlab R, Halpern AL, Kokoza E, Kraft CL, Lai Z, Lewis S, Louis C, Barillas-Mury C, Nusskern D, Rubin GM, Salzberg SL, Sutton GG, Topalis P, Wides R, Wincker P: Comparative genome and proteome analysis of Anopheles gambiae and Drosophila melanogaster. Science 2002, 298:149-159.
  • [46]Borovsky D, Schlein Y: Quantitative determination of trypsin-like and chymotrypsin-like enzymes in insects. Arch Insect Biochem Physiol 1988, 8:249-260.
  • [47]Gorman MJ, Paskewitz SM: Serine proteases as mediators of mosquito immune responses. Insect Biochem Mol Biol 2001, 31:257-262.
  • [48]Rawlings ND, Barrett AJ: Families of serine peptidases. Methods Enzymol 1994, 244:19-61.
  • [49]Borovsky D: Trypsin-modulating oostatic factor: a potential new larvicide for mosquito control. J Exp Biol 2003, 206:3869-3875.
  • [50]Nakajima Y, Tsuji Y, Homma K, Natori S: A novel protease in the pupal yellow body of Sarcophaga peregrina (flesh fly). Its purification and cDNA cloning. J Biol Chem 1997, 272:23805-23810.
  • [51]Neurath H: Evolution of proteolytic enzymes. Science 1984, 224:350-357.
  • [52]Hedstrom L: An overview of serine proteases. Curr Protoc Protein Sci 2002, 21:21.10.
  • [53]Felix CR, Betschart B, Billingsley PF, Freyvogel TA: Post-feeding induction of trypsin in the midgut of Aedes aegypti (Diptera: Culicidae) is separable into two cellular phases. Insect Biochem 1991, 21:197-203.
  • [54]Noriega FG, Wells MA: A molecular view of trypsin synthesis in the midgut of Aedes aegypti. J Insect Physiol 1999, 45:613-620.
  • [55]Noriega FG, Edgar KA, Bechet R, Wells MA: Midgut exopeptidase activities in Aedes aegypti are induced by blood feeding. J Insect Physiol 2002, 48:205-212.
  • [56]Borovsky D, Meola SM: Biochemical and cytoimmunological evidence for the control of Aedes aegypti larval trypsin with Aea-TMOF. Arch Insect Biochem Physiol 2004, 55:124-139.
  • [57]Tabouret G, Bret-Bennis L, Dorchies P, Jacquiet P: Serine protease activity in excretory-secretory products of Oestrus ovis (Diptera: Oestridae) larvae. Vet Parasitol 2003, 114:305-314.
  • [58]Dadd RH: Alkalinity within the midgut of mosquito larvae with alkaline-active digestive enzymes. J Insect Physiol 1975, 21:1847-1853.
  • [59]Venancio TM, Cristofoletti PT, Ferreira C, Verjovski-Almeida S, Terra WR: The Aedes aegypti larval transcriptome: a comparative perspective with emphasis on trypsins and the domain structure of peritrophins. Insect Mol Biol 2009, 18:33-44.
  • [60]Noriega FG, Wang XY, Pennington JE, Barillas-Mury CV, Wells MA: Early trypsin, a female-specific midgut protease in Aedes aegypti: isolation, amino terminal sequence determination, and cloning and sequencing of the gene. Insect Biochem Mol Biol 1996, 26:119-126.
  • [61]Yano T, Takahashi N, Kurata S, Natori S: Regulation of the expression of cathepsin B in Sarcophaga peregrina (flesh fly) at the translational level during metamorphosis. Eur J Biochem 1995, 234:39-43.
  • [62]LeMosy EK: Proteolytic regulatory mechanisms in the formation of extracellular morphogen gradients. Birth Defects Res C Embryo Today 2006, 78:243-255.
  • [63]Philip JM, Fitches E, Harrison RL, Bonning B, Gatehouse JA: Characterisation of functional and insecticidal properties of a recombinant cathepsin L-like proteinase from flesh fly (Sarcophaga peregrina), which plays a role in differentiation of imaginal discs. Insect Biochem Mol Biol 2007, 37:589-600.
  • [64]Elpidina EN, Tsybina TA, Dunaevsky YE, Belozersky MA, Zhuzhikov DP, Oppert B: A chymotrypsin-like proteinase from the midgut of Tenebrio molitor larvae. Biochimie 2005, 87:771-779.
  • [65]Tsybina TA, Dunaevsky YE, Belozersky MA, Zhuzhikov DP, Oppert B, Elpidina EN: Digestive proteinases of yellow mealworm (Tenebrio molitor) larvae: purification and characterization of a trypsin-like proteinase. Biochemistry (Mosc) 2005, 70:300-305.
  • [66]Angulo-Valadez CE, Cepeda-Palacios R, Ascencio F, Jacquiet P, Dorchies P, Romero MJ, Khelifa RM: Proteolytic activity in salivary gland products of sheep bot fly (Oestrus ovis) larvae. Vet Parasitol 2007, 149:117-125.
  • [67]Thomas T, Cavicchioli R: Archaeal cold-adapted proteins: structural and evolutionary analysis of the elongation factor 2 proteins from psychrophilic, mesophilic and thermophilic methanogens. FEBS Lett 1998, 439:281-286.
  文献评价指标  
  下载次数:23次 浏览次数:6次