期刊论文详细信息
Particle and Fibre Toxicology
Proteolytic profiling and comparative analyses of active trypsin-like serine peptidases in preimaginal stages of Culex quinquefasciatus
Jose B De Jesus3  Claudia M d’Avila-Levy2  Nilma Fernandes3  Constança Britto2  Renata C Pires4  Patricia Cuervo1  Leonardo Saboia-Vahia2  Andre Borges-Veloso2 
[1] Laboratório de Pesquisa em Leishmaniose, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, RJ, Brazil;Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, RJ, Brazil;Departamento de Engenharia de Biossistemas, Universidade Federal de São João del Rei, São João del Rei, MG, Brazil;Laboratório de Biologia de Tripanossomatíl, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, RJ, Brazil
关键词: Zymography;    Peptidases;    Trypsin-like serine peptidases;    Preimaginal stages;    Culex quinquefasciatus;   
Others  :  1231774
DOI  :  10.1186/1756-3305-5-123
 received in 2012-04-17, accepted in 2012-06-12,  发布年份 2012
PDF
【 摘 要 】

Background

The mosquito Culex quinquefasciatu s, a widespread insect in tropical and sub-tropical regions of the world, is a vector of multiple arboviruses and parasites, and is considered an important risk to human and veterinary health. Proteolytic enzymes play crucial roles in the insect physiology including the modulation of embryonic development and food digestion. Therefore, these enzymes represent important targets for the development of new control strategies. This study presents zymographic characterization and comparative analysis of the proteolytic activity found in eggs, larval instars and pupae of Culex quinquefasciatus.

Methods

The proteolytic profiles of eggs, larvae and pupa of Cx. quinquefasciatus were characterized by SDS-PAGE co-polymerized with 0.1% gelatin, according to the pH, temperature and peptidase inhibitor sensitivity. In addition, the proteolytic activities were characterized in solution using 100 μM of the fluorogenic substrate Z-Phe-Arg-AMC.

Results

Comparison of the proteolytic profiles by substrate-SDS-PAGE from all preimaginal stages of the insect revealed qualitative and quantitative differences in the peptidase expression among eggs, larvae and pupae. Use of specific inhibitors revealed that the proteolytic activity from preimaginal stages is mostly due to trypsin-like serine peptidases that display optimal activity at alkaline pH. In-solution, proteolytic assays of the four larval instars using the fluorogenic substrate Z-Phe-Arg-AMC in the presence or absence of a trypsin-like serine peptidase inhibitor confirmed the results obtained by substrate-SDS-PAGE analysis. The trypsin-like serine peptidases of the four larval instars were functional over a wide range of temperatures, showing activities at 25°C and 65°C, with an optimal activity between 37°C and 50°C.

Conclusion

The combined use of zymography and in-solution assays, as performed in this study, allowed for a more detailed analysis of the repertoire of proteolytic enzymes in preimaginal stages of the insect. Finally, differences in the trypsin-like serine peptidase profile of preimaginal stages were observed, suggesting that such enzymes exert specific functions during the different stages of the life cycle of the insect.

【 授权许可】

   
2012 Borges-Veloso et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20151110172347222.pdf 1538KB PDF download
Figure 9. 37KB Image download
Figure 8. 22KB Image download
Figure 7. 22KB Image download
Figure 6. 25KB Image download
Figure 5. 40KB Image download
Figure 4. 20KB Image download
Figure 3. 29KB Image download
Figure 2. 31KB Image download
Figure 1. 24KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

【 参考文献 】
  • [1]Arensburger P, Megy K, Waterhouse RM, Abrudan J, Amedeo P, Antelo B, Bartholomay L, Bidwell S, Caler E, Camara F, Campbell CL, Campbell KS, Casola C, Castro M, Chandramouliswaran I, Chapman SB, Christley S, Costas J, Eisenstadt E, Feschotte C, Fraser-Liggett C, Guigo R, Haas B, Hammond M, Hansson BS, Hemingway J, Hill SR, Howarth C, Ignell R, Kennedy RC, Kodira CD, Lobo NF, Mao C, Mayhew G, Michel K, Mori A, Liu N, Naveira H, Nene V, Nguyen N, Pearson MD, Pritham EJ, Puiu D, Qi Y, Ranson H, Ribeiro JMC, Roberston HM, Severson DW, Shumway M, Stanke M, Strausberg RL, Sun Cheng, Sutton G, Tu ZJ, Tubio JMC, Unger MF, Vanlandingham DL, Vilella AJ, White O, White JR, Wondji CS, Wortman J, Zdobnov EM, Birren B, Christensen BM, Collins FH, Cornel A, Dimopoulus G, Hannick LI, Higgs S, Lanzaro GC, Lawson D, Lee NH, Muskavitch MAT, Raikhel AS, Atkinson PW: Sequencing of Culex quinquefasciatus establishes a platform for mosquito comparative genomics. Science 2010, 330:86-88.
  • [2]Bartholomay LC, Waterhouse RM, Mayhew GF, Campbell CL, Michel K, Zou Z, Ramirez JL, Das S, Alvarez K, Arensburger P, Bryant B, Chapman SB, Dong Y, Erickson SM, Karunaratne SHPP, Kokoza V, Kodira CD, Pignatelli P, Shin SW, Vanlandingham DL, Atkinson PW, Birren B, Christophides GK, Clem RJ, Hemingway J, Higgs S, Megy K, Ranson H, Zdobnov EM, Raikhel AS, Christensen BM, Dimopoulos G, Muskavitch MAT: Pathogenomics of Culex quinquefasciatus and Meta-Analysis of infection responses to diverse pathogens. Science 2010, 330:88-90.
  • [3]Ruiz MO, Chaves LF, Hamer GL, Sun T, Brown WM, Walker ED, Haramis L, Goldberg TL, Kitron UD: Local impact of temperature and precipitation on West Nile virus infection in Culex species mosquitoes in northeast Illinois, USA. Parasit Vectors 2010, 3:19. BioMed Central Full Text
  • [4]Bisanzio D, Giacobini M, Bertolotti L, Mosca A, Balbo L, Kitron U, Vazquez-Prokopec GM: Spatio-temporal patterns of distribution of West Nile virus vectors in eastern Piedmont Region, Italy. Parasit Vectors 2011, 4:230. BioMed Central Full Text
  • [5]Hubalek Z, Halouzka : West Nile fever: a re-emerging mosquito borne viral disease in Europe. Emerg Infect Dis 1999, 5:643-650.
  • [6]Diaz-Badillo A, Bolling BG, Perez-Ramirez G, Moore CG, Martinez-Munoz JP, Padilla-Viveros AA, Camacho-Nuez M, Diaz-Perez A, Beaty BJ, de Lourdes Munoz M: The distribution of potential West Nile virus vectors, Culex pipiens pipiens and Culex pipiens quinquefasciatus (Diptera: Culicidae), in Mexico City. Parasit Vectors 2011, 4:70. BioMed Central Full Text
  • [7]Ahid SM, Vasconcelos OS, Lourenço-de-Oliveira R: Vector competence of Culex quinquefasciatus Say from differents regions of Brazil to Dirofilaria immitis. Mem Inst Oswaldo Cruz 2000, 95:769-775.
  • [8]Lai CH, Tung KC, Ooi HK, Wang JS: Competence of Aedes albopictus and Culex quinquefasciatus as a vector of Dirofilaria immmitis after blood meal with different microfilarial density. Vet Parasitol 2000, 90:231-237.
  • [9]Farid HA, Hammad RE, Hassan MM, Morsy ZS, Kamal IH, Weil GJ, Ramzy RMR: Detection of Wuchereria bancrofti in mosquitoes by the polymerase chain reaction: a potentially useful tool for large-scale control programs. Trans R Soc Trop Med Hyg 2001, 95:29-32.
  • [10]Atkinson CT, Dusek RJ, Woods KL, Iko WM: Pathogenicity of avian malaria in experimentally-infected Hawaii amakihi. J Wildl Dis 2000, 36:197-204.
  • [11]Mackenzie JS, Gubler DJ, Petersen LR: Emerging flaviviruses: the spread and resurgence of Japanese encephalitis, West Nile and dengue viruses. Nat Med 2004, 10:98-109.
  • [12]Polgár L: The catalytic triad of serine peptidases. Cell Mol Life Sci 2005, 62:2161-2172.
  • [13]Puente XS, Sanchez LM, Gutierrez-Fernandez A, Velasco G, Lopez-Otin C: A genomic view of the complexity of mammalian proteolytic systems. Biochem Soc Trans 2005, 33:331-334.
  • [14]Rawlings ND, Barrett AJ: Families of serine peptidases. Meth Enzymol 1994, 244:19-61.
  • [15]Borovsky D, Schlein Y: Quantitative determination of trypsin-like and chymotrypsin-like enzymes in insects. Arch Insect Biochem Physiol 1988, 8:249-260.
  • [16]Ohtsuki S, Homma K, Kurata S, Komano H, Natori S: A prolyl Endopeptidase of Sarcophaga peregrina (Flesh Fly): its purification and suggestion for its participation in the differentiation of the imaginal discs. J Biochem 1994, 115:449-453.
  • [17]Terra WR, Ferreira C: Insect digestive enzymes: properties, compartimentalization and function. Comp Biochem Physiol 1994, 47:47-61.
  • [18]Nakajima Y, Tsuji Y, Homma K, Natori S: A novel protease in the pupal yellow body of Sarcophaga peregrina (flesh fly). Its purification and cDNA cloning. J Biol Chem 1997, 272:23805-23810.
  • [19]Gorman MJ, Paskewitz SM: Serine proteases as mediators of mosquito immune responses. Insect Biochem Mol Biol 2001, 31:257-262.
  • [20]Wu DD, Guo-Dong W, Irwin DM, Zhang YP: A profound role for the expansion of trypsin-like serine protease family in the evolution of hematophagy in mosquito. Mol Biol Evol 2009, 26:2333-2341.
  • [21]Noriega FG, Wells MA: A molecular view of trypsin synthesis in the midgut of Aedes aegypti. J Insect Physiol 1999, 45:613-620.
  • [22]Shahabuddin M, Kaslow DC: Biology of the development of Plasmodium in the mosquito midgut: a molecular and cellular view. Bull Inst Pasteur 1994, 92:119-132.
  • [23]Shahabuddin M, Costero A: Spatial distribution of factors that determine sporogonic development of malaria parasites in mosquitoes. Insect Biochem Mol Biol 2001, 31:231-240.
  • [24]Telleria EL, Araújo APOd, Secundino NF, d'Avila-Levy CM, Traub-Csekö YM: Trypsin-Like Serine Proteases in Lutzomyia longipalpis – Expression, Activity and Possible Modulation by Leishmania infantum chagasi. PLoS One 2010, 5:e10697.
  • [25]Broadwell AH, Baumann P: Proteolysis in the gut of mosquito larvae results in further activation of the Bacillus sphaericus toxin. Appl Environ Microbiol 1987, 53:1333-1337.
  • [26]Nicolas L, Lecroisey A, Charles JF: Role of the gut proteinases from mosquito larvae in the machanism of action and the specificity of the Bacillus sphaericus toxin. Can J Microbiol 1990, 36:804-807.
  • [27]Borovsky D, Mahmood F: Feeding the mosquito Aedes aegypti with TMOF and its analogs; effect on trypsin biosynthesis and egg development. Regul Pept 1995, 57:273-281.
  • [28]Borovsky D, Meola SM: Biochemical and cytoimmunological evidence for the control of Aedes aegypti larval trypsin with Aea-TMOF. Arch Insect Biochem Physiol 2004, 55:124-139.
  • [29]Lau YS, Sulaiman S, Othman H: The effectiveness of Trypsin Modulating Oostatic Factor (TMOF) and combinations of TMOF with Bacillus thuringiensis against Aedes aegypti larvae in the laboratory. Iran J Arthropod-Borne Dis 2011, 5:13-19.
  • [30]Clements AN: The Biology of mosquitoes. Chapman & Hall, London; 1992.
  • [31]Galán JE, Pace J, Hayman MJ: Involvement of the epidermal growth factor receptor in the mammalian cells by Salmonella typhimurium. Nature 1992, 357:588-589.
  • [32]Cuervo P, Mesquita-Rodrigues C, D'avila Levy CM, Britto C, Pires FA, Gredilha R, Alves CR, Jesus JB: Serine protease activities in Oxysarcodexia thornax (Walker) (Diptera: Sarcophagidae) first instar larva. Mem Inst Oswaldo Cruz 2008, 103:504-506.
  • [33]Mesquita-Rodrigues C, Saboia-Vahia L, Cuervo P, Masini d’Avila Levy C, Alves-Honório N, Domont GB, De Jesus JB: Expression of Trypsin-like serine peptidases in pré-imaginal stages of Aedes aegypti (Diptera:Culicidae). Arch Insect Biochem Physiol 2011, 76:223-235.
  • [34]Terra WR, Ferreira C, Jordão BP, Dillon RJ: Digestive enzymes. In Biology of the Insect Midgut. Chapman and Hall, London; 1996.
  • [35]Reeck G, Oppert B, Denton M, Kanost M, Baker JE, Kramer KJ: Insect proteinases. In Proteases: New Perspectives. Birkhauser Verlag, Basel, Boston, Berlin; 1999:125-148.
  • [36]Venancio TM, Cristofoletti PT, Ferreira C, Verjovski-Almeida S, Terra WR: The Aedes aegypti larval transcriptome: a comparative perspective with emphasis on trypsins and the domain structure of peritrophins. Insect Mol Biol 2009, 18:33-44.
  • [37]Bozic N, Dojnov B, Milovanovic A, Nenadovic V, Ivanovic J, Vujcic Z: Characterization of endopeptidases from the midgut of Morimus funereus (Coleoptera:Cerambycidae) larvae. Arch Biol Sci Belgrade 2008, 60:403-409.
  • [38]Muharsini S, Sukarsih , Riding G, Partoutomo S, Hamilton S, Willadsen P, Wijffels G: Identification and characterisation of the excreted/secreted serine proteases of larvae of the old world screwworm fly, Chrysomya bezziana. Int J Parasitol 2000, 30:705-714.
  • [39]Budatha M, Meur G, Dutta-Gupta A: Identification and characterization of midgut proteases in Achaea janata and their implications. Biotechnol Lett 2008, 30:305-310.
  • [40]Vinokurov KS, Elpidina EN, Oppert B, Prabhakar S, Zhuzhikov DP, Dunaevsky YE, Belozersky MA: Fractionation of digestive proteinases from Tenebrio molitor (Coleoptera:Tenebrionidae) larvae and role in protein digestion. Comp Biochem Physiol B 2006, 145:138-146.
  • [41]Brito LO, Lopes AR, Parra JRP, Terra W, Silva-Filho MC: Adaptation of tobacco budworm Heliothis virescens to proteinase inhibitors may be mediated by the synthesis of new proteinases. Comp Biochem Physiol B 2001, 128:365-375.
  • [42]Oppert B, Walters P, Zuercher M: Digestive proteinases of the larger black flour beetle, Cynaeus angustus (Coleoptera: Tenebrionidae). Bull Entomol Res 2006, 96:167-172.
  • [43]Zdobnov EM, von Mering C, Letunic I, Torrents D, Suyama M, Copley RR: Comparative genome and proteome analysis of Anopheles gambiae and Drosophila melanogaster. Science 2002, 298:149-159.
  • [44]Fazito-do-Vale V, Pereira MH, Gontijo NF: Midgut pH profile and protein digestion in the larvae of Lutzomyia longipalpis (Diptera: Psychodidae). J Insect Physiol 2007, 53:1151-1159.
  • [45]Chen PS, Briegel H: Studies on the protein metabolism of Culex pipiens L. Changes in free amino acids and peptides during embryonic development. Comp Biochem Physiol 1965, 14:463-473.
  • [46]Cho WL, Deitsch KW, Raikhel AS: An extraovarian protein accumulated in mosquito oocytes is a carboxypeptidase activated in embryos. Proc Natl Acad Sci U S A 1991, 88:10821-10824.
  • [47]Izumi S, Yano K, Yamamoto Y, Takahashi SY: Yolk proteins from insect eggs: Structure, biosynthesis and programmed degradation during embryogenesis. J Insect Physiol 1994, 40:735-746.
  • [48]Gomes FM, Oliveira DM, Motta LS, Ramos IB, Miranda KM, Machado EA: Inorganic polyphosphate inhibits an aspartic protease-like activity in the eggs of Rhodnius prolixus (Stahl) and impairs yolk mobilization in vitro. J Cell Physiol 2010, 222:606-611.
  • [49]Young A, Meeusen EN, Mancuso N, Bowles VM: Proteases released by Lucilia cuprina during egg hatch. Insect Biochem Mol Biol 1997, 27:1017-1026.
  • [50]Young A, Meeusen EN, Mancuso N, Bowles VM: Characterisation of proteases involved in egg hatching of the sheep blowfly, Lucilia cuprina. Int J Parasit 2000, 30:925-932.
  • [51]Yang YJ, Davies D: Trypsin and chymotrypsin during metamorphosis in Aedes aegypti and properties of the chymotrypsin. J Insect Physiol 1971, 17:117-131.
  • [52]Ho BC, Khoo HG, Chew LM, Wong KP, Ewert A: Food ingestion and digestive enzymes in larval Aedes aegypti and Aedes albopictus (Diptera: Culicidae). J Med Entomol 1992, 29:960-964.
  • [53]Nauen R, Sorge D, Sterner A, Borovsky D: TMOF-like factor controls the biosynthesis ofserine proteases in the larval gut of Heliothis virescens. Arch Insect Biochem Physiol 2001, 47:169-180.
  • [54]Espinoza-Fuentes FP, Ribeiro AF, Terra WR: Microvillar and secreted digestive enzymes from Musca domestica larvae. Subcellular fractionation of midgut cells with electron microscopy monitoring. Insect Biochem 1987, 17:819-827.
  • [55]Lemos FJA, Terra WR: A high yield preparations of Musca domestica larval midgut microvilli and subcellular distribution of amylase and trypsin. Insect Biochem Mol Biol 1992, 22:433-438.
  • [56]Angulo-Valadez CE, Cepeda-Palacios R, Ascencio F, Jacquiet P, Dorchies P, Romero MJ, Khelifa RM: Proteolytic activity in salivary gland products of sheep bot fly (Oestrus ovis) larvae. Vet Parasitol 2007, 149:117-125.
  • [57]Elpidina EN, Tsybina TA, Dunaevsky YE, Belozersky MA, Zhuzhikov DP, Oppert B: A chymotrypsin-like proteinase from the midgut of Tenebrio molitor larvae. Biochimie 2005, 87:771-779.
  • [58]Tsybina TA, Dunaevsky YE, Belozersky MA, Zhuzhikov DP, Oppert B, Elpidina EN: Digestive proteinases of yellow mealworm (Tenebrio molitor) larvae: purification and characterization of a trypsin-like proteinase. Biochemistry (Mosc) 2005, 70:300-305.
  文献评价指标  
  下载次数:9次 浏览次数:6次