期刊论文详细信息
Plant Methods
A convenient method for simultaneous quantification of multiple phytohormones and metabolites: application in study of rice-bacterium interaction
Shiping Wang1  Jinghua Xiao1  Xianghua Li1  Hongbo Liu1 
[1] National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
关键词: salicylic acid;    phytoalexin;    jasmonic acid;    indole-3-acetic acid;    LC-ESI-MS;    defense;    Abscisic acid;   
Others  :  822708
DOI  :  10.1186/1746-4811-8-2
 received in 2011-09-28, accepted in 2012-01-15,  发布年份 2012
PDF
【 摘 要 】

Background

Simultaneous analysis of multiple functional-related phytohormones and their metabolites will improve our understanding of interactions among different hormones in the same biologic process.

Results

A method was developed for simultaneous quantification of multiple phytohormones, abscisic acid, indole-3-acetic acid (IAA), jasmonic acid (JA), and salicylic acid, hormone conjugates, IAA-aspartic acid, JA-isoleucine, and methyl JA, and phytoalexins, momilactone A, naringenin, and sakuranetin. This method combines a convenient procedure for preparing filtrated crude extracted samples and a sensitive quantification assay using ultra fast liquid chromatography-electrospray ionization tandem mass spectrometry (UFLC-ESI-MS). With this method, we determined the dynamic profiles of defense-related phytohormones, hormone metabolites, and phytoalexins in the interaction of rice with Xanthomonas oryzae pv. oryzae (Xoo), which causes bacterial blight, one of the most devastating diseases of rice worldwide.

Conclusion

This UFLC-ESI-MS method is convenient, sensitive, reliable, and inexpensive for quantification of multiple phytohormones and metabolites compared to current methods. The results obtained by application of this method in studying rice-bacterial interaction provide a basis for understanding the molecular mechanisms of rice defense responses.

【 授权许可】

   
2012 Liu et al; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140712105826723.pdf 463KB PDF download
Figure 4. 53KB Image download
Figure 3. 77KB Image download
Figure 2. 78KB Image download
Figure 1. 16KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Jun JH, Fiume E, Fletcher JC: The CLE family of plant polypeptide signaling molecules. Cell Mol Life Sci 2008, 65:743-755.
  • [2]Santner A, Estelle M: Recent advances and emerging trends in plant hormone signalling. Nature 2009, 459:1071-1078.
  • [3]Nambara E, Marion-Poll A: Abscisic acid biosynthesis and catabolism. Annu Rev Plant Biol 2005, 56:165-185.
  • [4]Ljun K, Hul AK, Kowalczyk M, Marchant A, Celenza J, Cohen JD, Sandberg G: Biosynthesis, conjugation, catabolism and homeostasis of indole-3-acetic acid in Arabidopsis thaliana. Plant Mol Biol 2002, 50:309-332.
  • [5]Miersch O, Neumerkel J, Dippe M, Stenzel I, Wasternack C: Hydroxylated jasmonates are commonly occurring metabolites of jasmonic acid and contribute to a partial switch-off in jasmonate signaling. New Phytol 2008, 177:114-127.
  • [6]Mok DW, Mok MC: Cytokinin metabolism and action. Annu. Rev. Plant Physiol. Plant Mol Biol 2001, 52:89-118.
  • [7]Woodward AW, Bartel B: Auxin: regulation, action, and interaction. Ann Bot (Lond) 2005, 95:707-735.
  • [8]Gfeller A, Dubugnon L, Llechtl R, Farmer EE: Jasmonate biochemical pathway. Sci Signal 2010, 3:cm3.
  • [9]Gfeller A, Llechtl R, Farmer EE: Arabidopsis jasmonate signaling pathway. Sci Signal 2010, 3:cm4.
  • [10]Pieterse CM, Leon-Reyes A, Van der Ent S, Van Wees SC: Networking by small-molecule hormones in plant immunity. Nat Chem Biol 2009, 5:308-316.
  • [11]Robert-Seilaniantz A, Navarro L, Bari R, Jones JD: Pathological hormone imbalances. Curr Opin Plant Biol 2007, 10:372-379.
  • [12]Kuppusamy KT, Walcher CL, Nemhauser JL: Cross-regulatory mechanisms in hormone signaling. Plant Mol Biol 2009, 69:375-381.
  • [13]Grant MR, Jones JDG: Hormone (dis)harmony moulds plant heath and disease. Science 2009, 324:750-752.
  • [14]Kazan K, Manners JM: Linking development to defense: auxin in plant-pathogen interactions. Trends Plant Sci 2009, 14:373-382.
  • [15]Navarro L, Dunoyer P, Jay F, Arnold B, Dharmasiri N, Estelle M, Voinnet O, Jones JD: A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science 2006, 312:436-439.
  • [16]Ding X, Cao Y, Huang L, Zhao J, Xu C, Li X, Wang S: Activation of the indole-3-acetic acid-amido synthetase GH3-8 suppresses expansin expression and promotes salicylate- and jasmonate-independent basal immunity in rice. Plant Cell 2008, 20:228-240.
  • [17]Fu J, Liu H, Li Y, Yu H, Li X, Xiao J, Wang S: Manipulating broad-spectrum disease resistance by suppressing pathogen-induced auxin accumulation in rice. Plant Physiol 2011, 155:589-602.
  • [18]Tiryaki I, Staswick PE: An Arabidopsis mutant defective in jasmonate response is allelic to the auxin-signaling mutant axr1. Plant Physiol 2002, 130:887-894.
  • [19]Llorente F, Muskett P, Sánchez-Vallet A, López G, Ramos B, Sánchez-Rodríguez C, Jordá L, Parker J, Molina A: Repression of the auxin response pathway increases Arabidopsis susceptibility to necrotrophic fungi. Mol Plant 2008, 1:496-509.
  • [20]Wang D, Pajerowska-Mukhtar K, Culler AH, Dong X: Salicylic acid inhibits pathogen growth in plants through repression of the auxin signaling pathway. Curr Biol 2007, 17:84-1790.
  • [21]Verslues PE, Zhu JK: Before and beyond ABA: upstream sensing and internal signals that determine ABA accumulation and response under abiotic stress. Biochem Soc Trans 2005, 33:375-379.
  • [22]Ton J, Flors V, Mauch-Mani B: The multifaceted role of ABA in disease resistance. Trends Plant Sci 2009, 14:310-317.
  • [23]Bari R, Jones JD: Role of plant hormones in plant defence responses. Plant Mol Biol 2009, 69:473-488.
  • [24]Müller A, Düchting P, Weiler EW: A multiplex GC-MS/MS technique for the sensitive and quantitative single-run analysis of acidic phytohormones and related compounds, and its application to Arabidopsis thaliana. Planta 2002, 216:44-56.
  • [25]Durgbanshi A, Arbona V, Pozo O, Miersch O, Sancho JV, Gómez-Cadenas A: Simultaneous determination of multiple phytohormones in plant extracts by liquid chromatography-electrospray tandem mass spectrometry. J Agric Food Chem 2005, 53:8437-8442.
  • [26]Forcat S, Bennett MH, Mansfield JW, Grant MR: A rapid and robust method for simultaneously measuring changes in the phytohormones ABA, JA and SA in plants following biotic and abiotic stress. Plant Methods 2008, 3:4-16.
  • [27]Pan XQ, Welti R, Wang XM: Simultaneous quantification of major phytohormones and related compounds in crude plant extracts by liquid chromatography-electrospray tandem mass spectrometry. Phytochemistry 2008, 69:1773-1781.
  • [28]Kojima M, Kamada-Nobusada T, Komatsu H, Takei K, Kuroha T, Mizutani M, Ashikari M, Ueguchi-Tanaka M, Matsuoka M, Suzuki K, Sakakibara H: Highly sensitive and high-throughput analysis of plant hormones using MS-probe modification and liquid chromatography-tandem mass spectrometry: an application for hormone profiling in Oryza sativa. Plant Cell Physiol 2009, 50:1201-1214.
  • [29]Gonzalez-Lamothe R, Mitchell G, Gattuso M, Diarra MS, Malouin F, Bouarab K: Plant antimicrobial agents and their effects on plant and human pathogens. Int J Mol Sci 2009, 10:3400-3419.
  • [30]Edlund A, Eklof S, Sundberg B, Moritz T, Sandberg G: A microscale technique for gas chromatography-mass spectrometry measurements of picogram amounts of indole-3-acetic acid in plant tissues. Plant Physiol 1995, 108:1043-1047.
  • [31]Kowalczyk M, Sandberg G: Quantitative analysis of indole-3-acetic acid metabolites in Arabidopsis. Plant Physiol 2001, 127:1845-1853.
  • [32]Qiu D, Xiao J, Ding X, Xiong M, Cai M, Cao Y, Li X, Xu C, Wang S: OsWRKY13 mediates rice disease resistance by regulating defense-related genes in salicylate- and jasmonate-dependent signaling. Mol Plant Microbe Interact 2007, 20:492-499.
  • [33]Tao Z, Liu H, Qiu D, Zhou Y, Li X, Xu C, Wang S: A pair of allelic WRKY genes play opposite role in rice-bacteria interactions. Plant Physiol 2009, 151:936-948.
  • [34]Jiang CJ, Shimono M, Sugano S, Kojima M, Yazawa K, Yoshida R, Inoue H, Hayashi N, Sakakibara H, Takatsuji H: Abscisic acid interacts antagonistically with salicylic acid signaling pathway in rice-Magnaporthe grisea interaction. Mol Plant Microbe Interact 2010, 23(7):91-798.
  • [35]Ludwig-Müller J: Auxin conjugates: their role for plant development and in the evolution of land plants. J Exp Bot 2011, 62:1757-1773.
  • [36]Nomura K, Melotto M, He SY: Suppression of host defense in compatible plant-Pseudomonas syringae interactions. Curr Opin Plant Biol 2005, 8:361-368.
  • [37]Svoboda J, Boland W: Plant defense elicitors: Analogues of jasmonoyl-isoleucine conjugate. Phytochemistry 2010, 71:1445-1449.
  • [38]Zulak KG, Bohlmann J: Terpenoid biosynthesis and specialized vascular cells of conifer defense. J Integr Plant Biol 2010, 52:86-97.
  • [39]Dillon VM, Overton J, Grayer RJ, Harborne JB: Differences in phytoalexin response among rice cultivars of different resistance to blast. Phytochemistry 1997, 44:599-603.
  • [40]Grayer RJ, Kokubun T: Plant-fungal interactions: the search for phytoalexins and other antifungal compounds from higher plants. Phytochemistry 2001, 56:253-263.
  • [41]Padmavati M, Santhivel N, Thara KV, Reddy AR: Differential sensitivity of rice pathogens to growth inhibition by flavonoids. Phytochemistry 1997, 46:449-502.
  • [42]Chen H, Wang S, Zhang Q: New gene for bacterial blight resistance in rice located on chromosome 12 identified from Minghui 63, an elite restorer line. Phytopathology 2002, 92:750-754.
  • [43]Sun X, Cao Y, Yang Z, Xu C, Li X, Wang S, Zhang Q: Xa26, a gene conferring resistance to Xanthomonas oryzae pv. oryzae in rice, encoding a LRR receptor kinase-like protein. Plant J 2004, 37:517-527.
  • [44]Xiang Y, Cao Y, Xu C, Li X, Wang S: Xa3, conferring resistance for rice bacterial blight and encoding a receptor kinase-like protein, is the same as Xa26. Theor Appl Genet 2006, 113:1347-1355.
  • [45]Liu Q, Yuan M, Zhou Y, Li X, Xiao J, Wang S: A paralog of the MtN3/saliva family recessively confers race-specific resistance to Xanthomonas oryzae in rice. Plant Cell Environ 2011, 34:1958-1569.
  • [46]Agrawal GK, Yamazaki M, Kobayashi M, Hirochika R, Miyao A, Hirochika H: Screening of the rice viviparous mutants generated by endogenous retrotransposon Tos17 insertion. Tagging of a zeaxanthin epoxidase gene and a novel ostatc gene. Plant Physiol 2001, 125:1248-1257.
  • [47]Zhu G, Ye N, Zhang J: Glucose-induced delay of seed germination in rice is mediated by the suppression of ABA catabolism rather than an enhancement of ABA biosynthesis. Plant Cell Physiol 2009, 50:644-651.
  • [48]Koga H, Dohi K, Mori M: Abscisic acid and low temperatures suppress the whole plant-specific resistance reaction of rice plants to the infection of Magnaporthe grisea. Physiol Mol Plant Pathol 2005, 65:3-9.
  • [49]Seo YS, Chern M, Bartley LE, Han M, Jung KH, Lee I, Walia H, Richter T, Xu X, Cao P, Bai W, Ramanan R, Amonpant F, Arul L, Canlas PE, Ruan R, Park CJ, Chen X, Hwang S, Jeon JS, Ronald PC: Towards establishment of a rice stress response interactome. PLoS Genet 2011, 7:41002020.
  • [50]Shen X, Yuan B, Liu H, Li X, Xu C, Wang S: Opposite functions of a rice mitogen-activated protein kinase during the process of resistance against Xanthomonas oryzae. Plant J 2010, 64:86-99.
  • [51]Shen X, Liu H, Yuan B, Li X, Xu C, Wang S: OsEDR1 negatively regulates rice bacterial resistance via activation of ethylene biosynthesis. Plant Cell Environ 2011, 34:179-191.
  • [52]Qiu D, Xiao J, Xie W, Liu H, Li X, Xiong L, Wang S: Rice gene network inferred from expression profiling of plants overexpressing OsWRKY13, a positive regulator of disease resistance. Mol Plant 2008, 1:538-551.
  • [53]Xiao W, Liu H, Li Y, Li X, Xu C, Long M, Wang S: A rice gene of de novo origin negatively regulates pathogen-induced defense response. PLoS ONE 2009, 4:e4603.
  • [54]Chen Z, Agnew JL, Cohen JD, He P, Shan L, Sheen J, Kunkel BN: Pseudomonas syringae type III effector AvrRpt2 alters Arabidopsis thaliana auxin physiology. Proc Natl Acad Sci USA 2007, 104:20131-20136.
  • [55]Hasegawa M, Mitsuhara I, Seo S, Imai T, Koga J, Okada K, Yamane H, Ohashi Y: Phytoalexin accumulation in the interaction between rice and the blast fungus. Mol Plant Microbe Interact 2010, 23:1000-1011.
  • [56]Wilderman PR, Xu M, Jin Y, Coates RM, Peters RJ: Identification of syn-pimara-7,15-diene synthase reveals functional clustering of terpene synthases involved in rice phytoalexin/allelochemical biosynthesis. Plant Physiol 2004, 135:2098-2105.
  • [57]Shimizu T, Jikumaru Y, Okada A, Okada K, Koga J, Umemura K, Minami E, Shibuya N, Hasegawa M, Kodama O, Nojiri H, Yamane H: Effects of a bile acid elicitor, cholic acid, on the biosynthesis of diterpenoid phytoalexins in suspension-cultured rice cells. Phytochemistry 2008, 69:973-981.
  • [58]Scheffler BE, Reddy A, Hoffmann I, Wienand U: Chalcone synthase cDNA from rice (Oryza sativa). Plant Physiol 1995, 109:722-722.
  • [59]Winkel-Shirley B: Biosynthesis of flavonoids and effects of stress. Curr Opin Plant Biol 2002, 5:218-223.
  文献评价指标  
  下载次数:0次 浏览次数:5次