期刊论文详细信息
Particle and Fibre Toxicology
Temperature during larval development and adult maintenance influences the survival of Anopheles gambiae s.s.
María-Gloria Basáñez4  Jacob C Koella2  Adam Saddler1  Paul E Parham3  Céline Christiansen-Jucht4 
[1]Division of Biology, Faculty of Life Sciences, Imperial College London, Silwood Park Campus, Ascot SL5 2PZ, Berkshire, UK
[2]Present address : Faculté des Sciences, Institut de Biologie, Université de Neuchâtel, Rue Emile-Argand 11, Neuchâtel, CH-2000, Switzerland
[3]Grantham Institute for Climate Change, Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine, St. Mary¿s campus, Imperial College London, London W2 1PG, UK
[4]Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine (St Mary¿s campus), Imperial College London, Norfolk Place, London W2 1PG, UK
关键词: Climate change;    Mosquito survival;    Larval survival;    Environmental temperature;    Anopheles gambiae sensu stricto;   
Others  :  1149489
DOI  :  10.1186/s13071-014-0489-3
 received in 2014-05-19, accepted in 2014-10-13,  发布年份 2014
PDF
【 摘 要 】

Background

Malaria transmission depends on vector life-history parameters and population dynamics, and particularly on the survival of adult Anopheles mosquitoes. These dynamics are sensitive to climatic and environmental factors, and temperature is a particularly important driver. Data currently exist on the influence of constant and fluctuating adult environmental temperature on adult Anopheles gambiae s.s. survival and on the effect of larval environmental temperature on larval survival, but none on how larval temperature affects adult life-history parameters.

Methods

Mosquito larvae and pupae were reared individually at different temperatures (23?±?1°C, 27?±?1°C, 31?±?1°C, and 35?±?1°C), 75?±?5% relative humidity. Upon emergence into imagoes, individual adult females were either left at their larval temperature or placed at a different temperature within the range above. Survival was monitored every 24 hours and data were analysed using non-parametric and parametric methods. The Gompertz distribution fitted the survivorship data better than the gamma, Weibull, and exponential distributions overall and was adopted to describe mosquito mortality rates.

Results

Increasing environmental temperature during the larval stages decreased larval survival (p??0.05), but an 8°C increase did (p?

Conclusions

Environmental temperature affects Anopheles survival directly during the juvenile and adult stages, and indirectly, since temperature during larval development significantly influences adult survival. These results will help to parameterise more reliable mathematical models investigating the potential impact of temperature and global warming on malaria transmission.

【 授权许可】

   
2014 Christiansen-Jucht et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150405073541646.pdf 640KB PDF download
Figure 3. 43KB Image download
Figure 2. 24KB Image download
Figure 1. 27KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Siraj AS, Santos-Vega M, Bouma MJ, Yadeta D, Carrascal DR, Pascual M: Altitudinal changes in malaria incidence in highlands of Ethiopia and Colombia. Science 2014, 343(6175):1154-1158.
  • [2]Dawes EJ, Churcher TS, Zhuang S, Sinden RE, Basáñez M-G: Anopheles mortality is both age- and Plasmodium-density dependent: implications for malaria transmission. Malar J 2009, 8(1):228-243. 12 BioMed Central Full Text
  • [3]Churcher T, Bousema T, Walker M, Drakeley C, Schneider P, Ouédraogo A, Basáñez M-G: Predicting mosquito infection from Plasmodium falciparum gametocyte density and estimating the reservoir of infection. eLife 2013, 2:e00626.
  • [4]White MT, Griffin JT, Churcher TS, Ferguson NM, Basáñez M-G, Ghani AC: Modelling the impact of vector control interventions on Anopheles gambiae population dynamics. Parasit Vectors 2011, 4:153-153. BioMed Central Full Text
  • [5]Bellan SE: The importance of age dependent mortality and the extrinsic incubation period in models of mosquito-borne disease transmission and control. PLoS One 2010, 5(4):e10165.
  • [6]Semenza JC, Menne B: Climate change and infectious diseases in Europe. Lancet Infect Dis 2009, 9(6):365-375.
  • [7]Sutherst RW: Global change and human vulnerability to vector-borne diseases. Clin Microbiol Rev 2004, 17(1):136-173.
  • [8]Craig M, Snow R, le Sueur D: A climate-based distribution model of malaria transmission in sub-Saharan Africa. Parasitol Today 1999, 15(3):105-111.
  • [9]Lafferty K: The ecology of climate change and infectious diseases. Ecology 2009, 90(4):888-900.
  • [10]Warrell D, Gilles H: Essential Malariology. 4th edition. Arnold, London; 2002.
  • [11]Gilles JRL, Lees RS, Soliban SM, Benedict MQ: Density-dependent effects in experimental larval populations of Anopheles arabiensis (Diptera: Culicidae) can be negative, neutral, or overcompensatory depending on density and diet levels. J Med Entomol 2011, 48(2):296-304.
  • [12]Muriu SM, Coulson T, Mbogo CM, Godfray HCJ: Larval density dependence in Anopheles gambiae s.s., the major African vector of malaria. J Anim Ecol 2013, 82(1):166-174.
  • [13]Tchuinkam T, Simard F, Lélé-Defo E, Téné-Fossog B, Tateng-Ngouateu A, Antonio-Nkondjio C, Mpoame M, Toto J-C, Njiné T, Fontenille D, Awono-Ambéné H-P: Bionomics of Anopheline species and malaria transmission dynamics along an altitudinal transect in Western Cameroon. BMC Infect Dis 2010, 10(1):119-130. BioMed Central Full Text
  • [14]Afrane YA, Zhou G, Lawson BW, Githeko AK, Yan G: Life-table analysis of Anopheles Arabiensis in Western Kenya Highlands: effects of land covers on larval and adult survivorship. Am J Trop Med Hyg 2007, 77(4):660-666.
  • [15]Afrane YA, Zhou G, Lawson BW, Githeko AK, Yan G: Effects of microclimatic changes caused by deforestation on the survivorship and reproductive fitness of Anopheles gambiae in western Kenya highlands. Am J Trop Med Hyg 2006, 74(5):772-778.
  • [16]Kirby MJ, Lindsay SW: Responses of adult mosquitoes of two sibling species, Anopheles arabiensis and A. gambiae s.s. (Diptera: Culicidae), to high temperatures. Bull Entomol Res 2004, 94(5):441-448.
  • [17]Midega JT, Mbogo CM, Mwnambi H, Wilson MD, Ojwang G, Mwangangi JM, Nzovu JG, Githure JI, Yan G, Beier JC: Estimating dispersal and survival of Anopheles gambiae and Anopheles funestus along the Kenyan coast by using mark-release-recapture methods. J Med Entomol 2007, 44(6):923-929.
  • [18]Olayemi IK, Ande AT: Survivorship of Anopheles gambiae in relation to malaria transmission in Ilorin, Nigeria. Online J Health Allied Sci 2008, 7(3):1-5.
  • [19]Bayoh MN, Lindsay SW: Temperature?related duration of aquatic stages of the Afrotropical malaria vector mosquito Anopheles gambiae in the laboratory. Med Vet Entomol 2004, 18(2):174-179.
  • [20]Bayoh MN, Lindsay SW: Effect of temperature on the development of the aquatic stages of Anopheles Gambiae Sensu Stricto (Diptera: Culicidae). Bull Entomol Res 2003, 93(05):375-381.
  • [21]Huang J, Walker ED, Vulule J, Miller JR: Daily temperature profiles in and around Western Kenyan larval habitats of Anopheles gambiae as related to egg mortality. Malar J 2006, 5:87-95. BioMed Central Full Text
  • [22]Impoinvil DE, Cardenas GA, Gihture JI, Mbogo CM, Beier JC: Constant temperature and time period effects on Anopheles Gambiae egg hatching. J Am Mosq Control Assoc 2007, 23(2):124-130.
  • [23]Kirby MJ, Lindsay SW: Effect of temperature and inter-specific competition on the development and survival of Anopheles gambiae sensu stricto and An. arabiensis larvae. Acta Trop 2009, 109(2):118-123.
  • [24]Beck-Johnson L, Nelson W, Paaijmans K, Read A, Thomas M, Bjørnstad O: The effect of temperature on anopheles mosquito population dynamics and the potential for malaria transmission. PLoS One 2013, 8(11):e79276.
  • [25]Vogels CBF, Bukhari T, Koenraadt CJM: Fitness consequences of larval exposure to Beauveria bassiana on adults of the malaria vector Anopheles stephensi. J Invertebr Pathol 2014, 119:19-24.
  • [26]Kaplan E, Meier P: Nonparametric estimation from incomplete observations. J Am Stat Assoc 1958, 53(282):457-481.
  • [27]Collett D: Modelling Survival Data in Medical Research. 2nd edition. Chapman and Hall/CRC, London, UK; 2003.
  • [28]Mantel N, Haenszel W: Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst 1959, 22:719-748.
  • [29]Bolker B: Chapter 6: Likelihood and all that. In Ecological Models and Data in R. 508th edition. Princeton University Press, Oxford, UK; 2008:169-221.
  • [30]Burnham K, Anderson D: Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach. 2nd edition. Springer-Verlag, London, UK; 2002.
  • [31]McCallum H: Population Parameters: Estimation for Ecological Models. 1st edition. Wiley-Blackwell, Oxford, UK; 2000.
  • [32]Depinay J-MO, Mbogo CM, Killeen G, Knols B, Beier J, Carlson J, Dushoff J, Billingsley P, Mwambi H, Githure J, Touré AM, McKenzie FE: A simulation model of African Anopheles ecology and population dynamics for the analysis of malaria transmission. Malar J 2004, 3:29-49. BioMed Central Full Text
  • [33]Armstrong JA, Bransby-Williams WR: The maintenance of a colony of Anopheles gambiae, with observations on the effects of changes in temperature. Bull World Health Organ 1961, 24:427-435.
  • [34]Lunde T, Balkew M, Korecha D, Gebre-Michael T, Massebo F, Sorteberg A, Lindtjørn B: A dynamic model of some malaria-transmitting anopheline mosquitoes of the Afrotropical region. II. validation of species distribution and seasonal variations. Malar J 2013, 12:78-91. BioMed Central Full Text
  • [35]Clements A, Paterson G: The analysis of mortality and survival rates in wild populations of mosquitoes. J Appl Ecol 1981, 18(2):373-399.
  • [36]Styer L, Minnick S, Sun A, Scott T: Mortality and reproductive dynamics of Aedes aegypti (Diptera: Culicidae) fed human blood. Vector-Borne Zoonotic Dis 2007, 7(1):86-98.
  • [37]Harrington L, Françoisevermeylen , Jones J, Kitthawee S, Sithiprasasna R, Edman J, Scott TW: Age-dependent survival of the dengue vector Aedes aegypti (Diptera: Culicidae) demonstrated by simultaneous release-recapture of different age cohorts. J Med Entomol 2008, 45(2):307-313.
  • [38]Hancock P, Thomas M, Godfray HC: An age-structured model to evaluate the potential of novel malaria-control interventions: a case study of fungal biopesticide sprays. Proc R Soc B Biol Sci 2009, 276(1654):71-80.
  • [39]Brady OJ, Johansson MA, Guerra CA, Bhatt S, Golding N, Pigott DM, Delatte H, Grech MG, Leisnham PT, Maciel-de-Freitas R, Styer LM, Smith DL, Scott TW, Gething PW, Hay SI: Modelling adult Aedes aegypti and Aedes albopictus survival at different temperatures in laboratory and field settings. Parasit Vectors 2013, 6(1):351-362. BioMed Central Full Text
  • [40]Parham P, Pople D, Christiansen-Jucht C, Lindsay S, Hinsley W, Michael E: Modeling the role of environmental variables on the population dynamics of the malaria vector Anopheles gambiae sensu stricto. Malar J 2012, 11(1):271-283. BioMed Central Full Text
  • [41]Yang HM, Macoris MLG, Galvani KC, Andrighetti MTM, Wanderley DMV: Assessing the effects of temperature on the population of Aedes aegypti, the vector of dengue. Epidemiol Infect 2009, 137(8):1188-1202.
  • [42]Ferguson H, Read A: Why is the effect of malaria parasites on mosquito survival still unresolved? Trends Parasitol 2002, 18(6):256-261.
  • [43]Wilson DL: The analysis of survival (mortality) data: fitting Gompertz, Weibull, and logistic functions. Mech Ageing Dev 1994, 74(1¿2):15-33.
  • [44]Lyimo EO, Takken W, Koella J: Effect of rearing temperature and larval density on larval survival, age at pupation and adult size of Anopheles gambiae. Entomol Exp Appl 1992, 63(3):265-271.
  • [45]Lardeux F, Tejerina R, Quispe V, Chavez T: A physiological time analysis of the duration of the gonotrophic cycle of Anopheles pseudopunctipennis and its implications for malaria transmission in Bolivia. Malar J 2008, 7(1):141-157. BioMed Central Full Text
  • [46]Boyd M: Epidemiology of malaria: factors related to the definitive host; section IV: intermediate host. Malariol 1949, 1:551-607.
  • [47]Lyimo I, Ferguson H: Ecological and evolutionary determinants of host species choice in mosquito vectors. Trends Parasitol 2009, 25(4):189-196.
  • [48]Working Group 1 Contribution to the IPCC Fifth Assessment Report Climate change 2013: the Physical Science Basis 2013.
  • [49]Garske T, Ferguson N, Ghani A: Estimating air temperature and its influence on malaria transmission across Africa. PLoS One 2013, 8(2):e56487.
  • [50]Sinka M, Bangs M, Manguin S, Rubio-Palis Y, Chareonviriyaphap T, Coetzee M, Mbogo CM, Hemingway J, Patil AP, Temperley WH, Gething PW, Kabaria CW, Burkot TR, Harbach RE, Hay SI: A global map of dominant malaria vectors. Parasit Vectors 2012, 5:69-79. 4 BioMed Central Full Text
  • [51]Lyons C, Coetzee M, Chown S: Stable and fluctuating temperature effects on the development rate and survival of two malaria vectors, Anopheles arabiensis and Anopheles funestus. Parasit Vectors 2013, 6:104-112. BioMed Central Full Text
  • [52]Sinka M, Bangs M, Manguin S, Coetzee M, Mbogo C, Hemingway J, Patil AP, Temperley WH, Gething PW, Kabaria CW, Okara RM, van Boeckel T, Godfray HCJ, Harbach RE, Hay SI: The dominant Anopheles vectors of human malaria in Africa, Europe and the Middle East: occurrence data, distribution maps and bionomic précis. Parasit Vectors 2010, 3(1):117-150. BioMed Central Full Text
  文献评价指标  
  下载次数:30次 浏览次数:31次