期刊论文详细信息
Particle and Fibre Toxicology
Incorporating the effects of humidity in a mechanistic model of Anopheles gambiae mosquito population dynamics in the Sahel region of Africa
Elfatih A B Eltahir1  Teresa K Yamana1 
[1] Massachusetts Institute of Technology, Room 48–207, 15 Vassar Street, Cambridge, MA 02139, USA
关键词: Anopheles;    Desiccation;    Longevity;    Mosquito survival;    Humidity;    Modelling;    Malaria;   
Others  :  824966
DOI  :  10.1186/1756-3305-6-235
 received in 2013-05-09, accepted in 2013-08-07,  发布年份 2013
PDF
【 摘 要 】

Background

Low levels of relative humidity are known to decrease the lifespan of mosquitoes. However, most current models of malaria transmission do not account for the effects of relative humidity on mosquito survival. In the Sahel, where relative humidity drops to levels <20% for several months of the year, we expect relative humidity to play a significant role in shaping the seasonal profile of mosquito populations. Here, we present a new formulation for Anopheles gambiae sensu lato (s.l.) mosquito survival as a function of temperature and relative humidity and investigate the effect of humidity on simulated mosquito populations.

Methods

Using existing observations on relationships between temperature, relative humidity and mosquito longevity, we developed a new equation for mosquito survival as a function of temperature and relative humidity. We collected simultaneous field observations on temperature, wind, relative humidity, and anopheline mosquito populations for two villages from the Sahel region of Africa, which are presented in this paper. We apply this equation to the environmental data and conduct numerical simulations of mosquito populations using the Hydrology, Entomology and Malaria Transmission Simulator (HYDREMATS).

Results

Relative humidity drops to levels that are uncomfortable for mosquitoes at the end of the rainy season. In one village, Banizoumbou, water pools dried up and interrupted mosquito breeding shortly after the end of the rainy season. In this case, relative humidity had little effect on the mosquito population. However, in the other village, Zindarou, the relatively shallow water table led to water pools that persisted several months beyond the end of the rainy season. In this case, the decrease in mosquito survival due to relative humidity improved the model’s ability to reproduce the seasonal pattern of observed mosquito abundance.

Conclusions

We proposed a new equation to describe Anopheles gambiae s.l. mosquito survival as a function of temperature and relative humidity. We demonstrated that relative humidity can play a significant role in mosquito population and malaria transmission dynamics. Future modeling work should account for these effects of relative humidity.

【 授权许可】

   
2013 Yamana and Eltahir; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140713052328980.pdf 1555KB PDF download
Figure 7. 99KB Image download
Figure 6. 123KB Image download
Figure 5. 78KB Image download
Figure 4. 67KB Image download
Figure 3. 80KB Image download
Figure 2. 71KB Image download
Figure 1. 99KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

【 参考文献 】
  • [1]Bomblies A, Duchemin JB, Eltahir EAB: A mechanistic approach for accurate simulation of village-scale malaria transmission. Malar J 2009, 8(1):223. BioMed Central Full Text
  • [2]Bomblies A, Duchemin JB, Eltahir EAB: Hydrology of malaria: Model development and application to a Sahelian village. Water Resour Res 2008., 44(12)
  • [3]Sultan B, Janicot S: The West African monsoon dynamics. Part II: The “preonset” and “onset” of the summer monsoon. J Clim 2003, 16(21):3407-3427.
  • [4]Wigglesworth V: The Principles of Insect Physiology. London: Methuen & Co. Ltd.; 1939.
  • [5]Gaaboub I, El-Sawaf S, El-Latif M: Effect of different relative humidities and temperatures on egg-production and longevity of adults of Anopheles (Myzomyia) pharoensis Theob. Zeitschrift Für Angewandte Entomologie 1971, 67(1–4):88-94.
  • [6]Bayoh MN: Studies on the development and survival of Anopheles gambiae sensu stricto at various temperatures and relative humidities. Durham: PhD thesis. University of Durham; 2001.
  • [7]Liu K, Tsujimoto H, Cha SJ, Agre P, Rasgon JL: Aquaporin water channel AgAQP1 in the malaria vector mosquito Anopheles gambiae during blood feeding and humidity adaptation. Proc Natl Acad Sci U S A 2011, 108(15):6062.
  • [8]Wang MH, Marinotti O, Vardo-Zalik A, Boparai R, Yan G: Genome-wide transcriptional analysis of genes associated with acute desiccation stress in Anopheles gambiae. PLoS One 2011, 6(10):e26011.
  • [9]Gray EM, Bradley TJ: Physiology of desiccation resistance in Anopheles gambiae and Anopheles arabiensis. Am J Trop Med Hyg 2005, 73(3):553.
  • [10]Fouet C, Gray E, Besansky NJ, Costantini C: Adaptation to aridity in the malaria mosquito Anopheles gambiae: Chromosomal inversion polymorphism and body size influence resistance to desiccation. PLoS One 2012, 7(4):e34841.
  • [11]Gray EM, Rocca K, Costantini C, Besansky NJ: Inversion 2La is associated with enhanced desiccation resistance in Anopheles gambiae. Malar J 2009, 8:215. BioMed Central Full Text
  • [12]Lee Y, Meneses CR, Fofana A, Lanzaro GC: Desiccation resistance among subpopulations of Anopheles gambiae ss from Selinkenyi. Mali. J Med Entomol 2009, 46(2):316-320.
  • [13]Martens W, Niessen L, Rotmans J, Jetten T, McMichael A: Potential impact of global climate change on malaria risk. Environ Health Perspect 1995, 103(5):458.
  • [14]Craig MH, Snow RW, le Sueur D: A climate-based distribution model of malaria transmission in sub-Saharan Africa. Parasitol Today 1999, 15(3):105-111.
  • [15]Parham PE, Michael E: Modelling the Effects of Weather and Climate Change on Malaria Transmission. Environ Health Perspect 2009, 118(5):620-626.
  • [16]Ermert V, Fink A, Jones A, Morse A: Development of a new version of the Liverpool Malaria Model. I. Refining the parameter settings and mathematical formulation of basic processes based on a literature review. Malar J 2011, 10(1):35. BioMed Central Full Text
  • [17]Martens W: Health impacts of climate change and ozone depletion: An eco-epidemiological modelling approach. Maastricht: PhD thesis. University of Maastricht, Dept. of Mathematics; 1997.
  • [18]Mordecai EA, Paaijmans KP, Johnson LR, Balzer C, Ben‒Horin T, Moor E, McNally A, Pawar S, Ryan SJ, Smith TC: Optimal temperature for malaria transmission is dramatically lower than previously predicted. Ecol Lett 2013, 16(1):22-30.
  • [19]Lunde TM, Bayoh MN, Lindtjørn B: How malaria models relate temperature to malaria transmission. Parasit Vectors 2013, 6(1):1-10. BioMed Central Full Text
  • [20]Parham PE, Pople D, Christiansen-Jucht C, Lindsay S, Hinsley W, Michael E: Modeling the role of environmental variables on the population dynamics of the malaria vector Anopheles gambiae sensu stricto. Malar J 2012, 11(1):1-13. BioMed Central Full Text
  • [21]Lunde TM, Korecha D, Loha E, Sorteberg A, Lindtjørn B: A dynamic model of some malaria-transmitting anopheline mosquitoes of the Afrotropical region. I. Model description and sensitivity analysis. Malar J 2013, 12(1):28. BioMed Central Full Text
  • [22]Omer SM, Cloudsley-Thompson J: Survival of female Anopheles gambiae Giles through a 9-month dry season in Sudan. Bull World Health Organ 1970, 42(2):319.
  • [23]Lehmann T, Dao A, Adamou A, Kassogue Y, Diallo M, Sékou T, Coscaron-Arias C: Aestivation of the African malaria mosquito, Anopheles gambiae in the Sahel. Am J Trop Med Hyg 2010, 83(3):601-606.
  • [24]Gianotti RL, Bomblies A, Eltahir EAB: Hydrologic modeling to screen potential environmental management methods for malaria vector control in Niger. Water Resour Res 2009., 45(8) W08438
  • [25]Yamana TK, Eltahir EA: Early warnings of the potential for malaria transmission in rural Africa using the hydrology, entomology and malaria transmission simulator (HYDREMATS). Malar J 2010, 9:323. BioMed Central Full Text
  • [26]Bomblies A, Eltahir EAB: Assessment of the impact of climate shifts on malaria transmission in the Sahel. EcoHealth 2010, 6(3):426-437.
  • [27]Yamana TK, Eltahir EAB: On the use of satellite-based estimates of rainfall temporal distribution to simulate the potential for malaria transmission in rural Africa. Water Resour Res 2011., 47(2) W02540
  • [28]Service M: Mosquito ecology: field sampling methods: 2nd ed. London, U.K.: Elsevier Applied Science; 1993.
  • [29]Mayne B: A study of the influence of relative humidity on the life and infectibility of the mosquito. Indian J Med Res 1930, 17(4):1119-1137.
  • [30]Detinova TS: Age-grouping methods in Diptera of medical importance with special reference to some vectors of malaria. Monogr Ser World Health Organ 1962, 47:13-191.
  • [31]Macdonald G: Epidemiological basis of malaria control. Bull World Health Organ 1956, 15:613-626.
  • [32]Tanser FC, Sharp B, le Sueur D: Potential effect of climate change on malaria transmission in Africa. The Lancet 2003, 362(9398):1792-1798.
  • [33]Ermert V, Fink AH, Morse AP, Paeth H: The impact of regional climate change on malaria risk due to greenhouse forcing and land-use changes in tropical Africa. Environ Health Perspect 2012, 120(1):77-84.
  • [34]Jones P, Trenberth K, Ambenje P, Bojariu R, Easterling D, Klein T, Parker D, Renwick J, Rusticucci M, Soden B: Observations: surface and atmospheric climate change. In In Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Edited by Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press; 2007:235-336.
  • [35]Willett KM, Gillett NP, Jones PD, Thorne PW: Attribution of observed surface humidity changes to human influence. Nature 2007, 449(7163):710-712.
  • [36]Dai A: Recent climatology, variability, and trends in global surface humidity. J Clim 2006, 19(15):3589-3606.
  • [37]Cook KH, Vizy EK: Coupled model simulations of the West African monsoon system: Twentieth-and twenty-first-century simulations. J Clim 2006, 19(15):3681-3703.
  文献评价指标  
  下载次数:101次 浏览次数:90次