期刊论文详细信息
Reproductive Biology and Endocrinology
The impact of mitochondrial function/dysfunction on IVF and new treatment possibilities for infertility
Randall Prather2  Qing-Yuan Sun1  Heide Schatten3 
[1] State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100080, China;Division of Animal Science, University of Missouri, Columbia 65211, USA;Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, USA
关键词: Infertility treatment;    Mitochondrial supplementation;    In vitro fertilization;    Metabolism;    Embryo development;    Embryos;    Oocytes;    Mitochondria;   
Others  :  1139727
DOI  :  10.1186/1477-7827-12-111
 received in 2014-07-17, accepted in 2014-09-04,  发布年份 2014
PDF
【 摘 要 】

Mitochondria play vital roles in oocyte functions and they are critical indicators of oocyte quality which is important for fertilization and development into viable offspring. Quality-compromised oocytes are correlated with infertility, developmental disorders, reduced blastocyst cell number and embryo loss in which mitochondrial dysfunctions play a significant role. Increasingly, women affected by metabolic disorders such as diabetes or obesity and oocyte aging are seeking treatment in IVF clinics to overcome the effects of adverse metabolic conditions on mitochondrial functions and new treatments have become available to restore oocyte quality. The past decade has seen enormous advances in potential therapies to restore oocyte quality and includes dietary components and transfer of mitochondria from cells with mitochondrial integrity into mitochondria-impaired oocytes. New technologies have opened up new possibilities for therapeutic advances which will increase the success rates for IVF of oocytes from women with compromised oocyte quality.

【 授权许可】

   
2014 Schatten et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150322094840865.pdf 823KB PDF download
Figure 4. 104KB Image download
Figure 3. 39KB Image download
Figure 2. 50KB Image download
Figure 1. 47KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Krisher RL, Prather RS: A role for the Warburg effect in preimplantation embryo development: metabolic modification to support rapid cell proliferation. Mol Reprod Devel 2012, 79(5):311-320.
  • [2]Redel BK, Brown AN, Spate LD, Whitworth KM, Green JA, Prather RS: Glycolysis in preimplantation development is partially controlled by the Warburg Effect. Mol Reprod Devel 2012, 79:262-271.
  • [3]Wang Q, Ratchford AM, Chi MM, Schoeller E, Frolova A, Schedl T, Moley KH: Maternal diabetes causes mitochondrial dysfunction and meiotic defects in murine oocytes. Mol Endocrinol 2009, 23(10):1603-1612.
  • [4]Zhong Z, Hao Y, Li R, Spate L, Wax D, Sun Q-Y, Prather RS, Schatten H: Analysis of heterogeneous mitochondria distribution in somatic cell nuclear transfer porcine embryos. Microsc Microanal 2008, 14(5):418-432.
  • [5]Wakefield SL, Lane M, Mitchell M: Impaired mitochondrial function in the preimplantation embryo perturbs fetal and placental development in the mouse. Biol Reprod 2011, 84:572-580.
  • [6]Chappel S: The role of mitochondria from mature oocyte to viable blastocyst. Obstet Gynecol Internat 2013, 2013(1):1-10.
  • [7]Schatten H, Sun Q-Y, Prather RS: Mitochondrial differentiation in early embryo cells and pluripotent stem cells. In Cell and Molecular Biology and Imaging of Stem Cells. Heide Schatten. Hoboken: Wiley; 2014. in press
  • [8]Wang ZB, Schatten H, Sun QY: Why is chromosome segregation error in oocytes increased with maternal aging? Physiology 2011, 26(5):314-325.
  • [9]Qiao J, Wang ZB, Feng HL, Miao YL, Wang Q, Yu Y, Wei YC, Yan J, Wang WH, Shen W, Sun SC, Schatten H, Sun QY: The root of reduced fertility in aged women and possible therapeutic options: Current status and future perspectives. Mol Aspects Medicine 2014, 38:54-85.
  • [10]Moley KH, Chi MM, Mueckler MM: Maternal hyperglycemia alters glucose transport and utilization in mouse preimplantation embryos. Am J Physiol 1998, 275:E38-E47.
  • [11]Ou XH, Li S, Wang ZB, Li M, Quan S, Xing F, Guo L, Chao SB, Chen Z, Liang XW, Hou Y, Schatten H, Sun QY: Maternal insulin resistance causes oxidative stress and mitochondrial dysfunction in mouse oocytes. Human Reprod 2012, 27(7):2130-2145.
  • [12]Zhang CH, Qian WP, Qi ST, Ge ZJ, Min LJ, Zhu XL, Huang X, Liu JP, Ouyang YC, Hou Y, Schatten H, Sun QY: Maternal diabetes causes abnormal dynamic changes of endoplasmic reticulum during mouse oocyte maturation and early embryo development. Reprod Biol Endocrinol 2013, 11:31.
  • [13]Miao Y, Kikuchi K, Schatten H, Sun Q-Y: Oocyte aging: cellular and molecular changes, developmental potential and reversal possibility. Human Reprod Update 2009, 15(5):573-585.
  • [14]Ge H, Tollner TL, Hu Z, Dai M, Li X, Guan H, Shan D, Zhang X, Lv J, Huang C, Dong Q: The importance of mitochondrial metabolic activity and mitochondrial DNA replication during oocyte maturation in vitro on oocyte quality and subsequent embryo developmental competence. Mol Reprod Dev 2012, 79(6):392-401.
  • [15]Ge ZJ, Liang XW, Guo L, Liang QX, Luo SM, Wang YP, Wei YC, Han ZM, Schatten H, Sun QY: Maternal Diabetes Causes Alterations of DNA Methylation Statuses of Some Imprinted Genes in Murine Oocytes. Biol Reprod 2013, 88(5):117. 1-9
  • [16]Eichenlaub-Ritter U: Genetics of oocyte ageing. Maturitas 1998, 30(2):143-169.
  • [17]Eichenlaub-Ritter U, Wieczorek M, Lüke S, Seidel T: Age related changes in mitochondrial function and new approaches to study redox regulation in mammalian oocytes in response to age or maturation conditions. Mitochondrion 2011, 11:783-796.
  • [18]Schatten H, Sun QY: New insights into the role of centrosomes in mammalian fertilisation and implications for ART. Reproduction 2011, 142:793-801.
  • [19]Schatten H, Sun QY: Centrosome dynamics during meiotic spindle formation in oocyte maturation. Mol Reprod Devel 2011, 78:757-768.
  • [20]Pellestor F, Anahory T, Hamamah S: Effect of maternal age on the frequency of cytogenetic abnormalities in human oocytes. Cytogen Genome Res 2005, 111(3–4):206-212.
  • [21]Hassold T, Hunt P: To err (meiotically) is human: The genesis of human aneuploidy. Nat Rev Genet 2001, 2:280-291.
  • [22]Cohen J, Scott R, Alikani M, Schimmel T, Munné S, Levron J, Wu L, Brenner C, Warner C, Willadsen S: Ooplasmic transfer in mature human oocytes. Mol Hum Reprod 1998, 4(3):269-280.
  • [23]Yi YC, Chen MJ, Ho JY, Guu HF, Ho ES: Mitochondria transfer can enhance the murine embryo development. J Assist Reprod Genet 2007, 24(10):445-449.
  • [24]Malter HE, Cohen J: Ooplasmic transfer: animal models assist human studies. Reprod Biomed Online 2002, 5(1):26-35.
  • [25]Schon EA, DiMauro S, Hirano M, Gilkerson RW: Therapeutic prospects for mitochondrial disease. Trends Mol Med 2010, 16(6):268-276.
  • [26]Reinhardt K, Dowling DK, Morrow EH: Mitochondrial replacement, evolution, and the clinic. Science 2013, 341(6152):1345-1346.
  • [27]Smeets HJM: Preventing the transmission of mitochondrial DNA disorders: Selecting the good guys or kicking out the bad guys. Reprod BioMed Online 2013, 27:599-610.
  • [28]Amato P, Tachibana M, Sparman M, Mitalipov: Three-parent in vitro fertilization: gene replacement for the prevention of inherited mitochondrial diseases. Fertil Steril 2014, 101(1):31-35.
  • [29]Mitalipov S, Wolf DP: Clinical and ethical implications of mitochondrial gene transfer. Trends Endocrinol Metab 2014, 25(1):5-7.
  • [30]Chinnery PF, Craven L, Mitalipov S, Stewart JB, Herbert M, Turnbull DM: The challenges of mitochondrial replacement. PLoS Genet 2014, 10(4):e1004315.
  • [31]Moraes CT, Bacman SR, Williams SL: Manipulating mitochondrial genomes in the clinic: playing by different rules. Trends Cell Biol 2014, 24(4):209-211.
  • [32]Jacobson J, Duchen MR: Interplay between mitochondria and cellular calcium signaling. Mol Cell Biochem 2004, 256/257:209-218.
  • [33]Danial NN, Korsmeyer SJ: Cell death: critical control points. Cell 2004, 116:205-219.
  • [34]Dyall SD, Brown MT, Johnson PJ: Ancient invasions: from endosymbionts to organelles. Science 2004, 304:253-257.
  • [35]Detmer SA, Chan DC: Functions and dysfunctions of mitochondrial dynamics. Nat Rev Mol Cell Biol 2007, 8:870-879.
  • [36]Smith PM, Fox JL, Winge DR: Biogenesis of the cytochrome bc(1) complex and role of assembly factors. Biochim Biophys Acta 1817, 2012:276-286.
  • [37]Anderson S, Bankier AT, Barrel BG, de Bruijn MH, Coulson AR, Drouin J, Eperon IC, Nierlich DP, Roe BA, Sanger F, Schreier PH, Smith AJH, Staden R, Young IG: Sequence and organization of the human mitochondrial genome. Nature 1981, 290:457-465.
  • [38]St John JC, Facucho-Oliveira J, Jiang Y, Kelly R, Salah R: Mitochondrial DNA transmission, replication and inheritance: a journey from the gamete through the embryo and into offspring and embryonic stem cells. Human Reprod Update 2010, 16(5):488-509.
  • [39]Takasugi M, Yagi S, Hirabayashi K, Shiota K: DNA methylation status of nuclear-encoded mitochondrial genes underlies the tissue-dependent mitochondrial functions. BMC Genomics 2010, 11(1):481-489.
  • [40]Balaban RS: The mitochondrial proteome: a dynamic functional programing tissues and disease states. Environ Mol Mutagen 2010, 51(5):352-359.
  • [41]Larsson NG, Wang J, Wilhelmsson H, Oldfors A, Rustin P, Lewandoski M, Barsh GS, Clayton DA: Mitochondrial transcription factor A is necessary for mtDNA maintenance and embryogenesis in mice. Nat Genet 1998, 18:231-236.
  • [42]Antelman J, Manandhar G, Yi YJ, Li R, Whitworth KM, Sutovsky M, Agca C, Prather RS, Sutovsky P: Expression of mitochondrial transcription factor A (TFAM) during porcine gametogenesis and preimplantation embryo development. J Cellular Physiol 2008, 217(2):529-543.
  • [43]Gray H, Wong TW: Purification and identification of subunit structure of the human mitochondrial polymerase. J Biol Chem 1992, 267:5835-5841.
  • [44]Crompton M: The mitochondrial permeability transition pore and its role in cell death. Biochem J 1999, 341(2):233-249.
  • [45]Bernardi P: The mitochondrial permeability transition pore: a mystery solved? Frontiers Physiol 2013, 4, Article 95(1):1-12.
  • [46]Hom JR, Quintanilla RA, Hoffman DL, de Mesy Bentley KL, Molkentin JD, Sheu SS, Porter GA Jr: The permeability transition pore controls cardiac mitochondrial maturation and myocyte differentiation. Dev Cell 2011, 21(3):469-478.
  • [47]Wilding M, Dale B, Marino M, di Matteo L, Alviggi C, Pisaturo ML, Lombardi L, de Placido G: Mitochondrial aggregation patterns and activity in human oocytes and preimplantation embryos. Hum Reprod 2001, 16(5):909-917.
  • [48]Zhang YZ, Ouyang YC, Hou Y, Schatten H, Chen DY, Sun QY: Mitochondrial behavior during oogenesis in zebrafish: a confocal microscopy analysis. Dev Growth Differ 2008, 50(3):189-201.
  • [49]Sun Q-Y, Wu GM, Lai L, Park KW, Day B, Prather RS, Schatten H: Translocation of active mitochondria during pig oocyte maturation, fertilization and early embryo development in vitro. Reproduction 2001, 122:155-163.
  • [50]Katayama M, Zhong Z-S, Lai L, Sutovsky P, Prather RS, Schatten H: Mitochondria distribution and microtubule organization in fertilized and cloned porcine embryos: Implications for developmental potential. Dev Biol 2006, 299:206-220.
  • [51]Schatten H, Prather RS, Sun Q-Y: The significance of mitochondria for embryo development in cloned farm animals. Mitochondrion 2005, 5:303-321.
  • [52]Calarco PG: Polarization of mitochondria in the unfertilized mouse oocytes. Dev Genet 1995, 16:36-46.
  • [53]Ai J-S, Li M, Schatten H, Sun Q-Y: Regulatory mechanism of spindle movements during oocyte meiotic division. Asian Aust J Anim Sci 2009, 22:1447-1486.
  • [54]Sirard MA, Richard F, Blondin P, Robert C: Contribution of the oocyte to embryo quality. Theriogenol 2006, 65:126-136.
  • [55]Swain JE, Pool TB: ART failure: Oocyte contributions to unsuccessful fertilization. Hum Reprod Update 2008, 14:431-446.
  • [56]Fan H-Y, Liu Z, Shimada M, Sterneck E, Johnson PF, Hedrick S, Richards JS: MAPK3/1 (ERK1/2) in ovarian granulosa cells are essential for female fertility. Science 2009, 324:938-941.
  • [57]Gosden R, Lee B: Portrait of an oocyte: Our obscure origin. J Clin Invest 2010, 120:973-983.
  • [58]Fan HY, Huo LJ, Meng XQ, Zhong ZS, Hou Y, Chen DY, Sun QY: Involvement of calcium/calmodulin-dependent protein kinase II (CaMKII) in meiotic maturation and activation of pig oocytes. Biol Reprod 2003, 69:1552-1564.
  • [59]Voronina E, Wessel GM: The regulation of oocyte maturation. Curr Top Dev Biol 2003, 58:53-110.
  • [60]Brunet S, Maro B: Cytoskeleton and cell cycle control during meiotic maturation of the mouse oocyte: Integrating time and space. Reproduction 2005, 130:801-811.
  • [61]Liang C-G, Su Y-Q, Fan H-Y, Schatten H, Sun Q-Y: Mechanisms regulating oocyte meiotic resumption: Roles of mitogen-activated protein kinase. Mol Endocrinol 2007, 21:2037-2055.
  • [62]Reynier P, May-Panloup P, Chretien MF, Morgan CJ, Jean M, Savagner F, Barriere P, Malthiery Y: Mitochondrial DNA content affects the fertilizability of human oocytes. Mol Human Reprod 2001, 7:425-429.
  • [63]Mao J, Whitworth KM, Spate LD, Walters EM, Zhao J, Prather RS: Regulation of oocyte mitochondrial DNA copy number by follicular fluid, EGF, and neuregulin 1 during in vitro maturation affects embryo development in pigs. Theriogenology 2012, 78:887-897.
  • [64]El Shourbagy SH, Spikings EC, Freitas M, St John JC: Mitochondria directly influence fertilisation outcome in the pig. Reprod 2006, 131(2):233-245.
  • [65]Ola SI, Sun Q-Y: Factors influencing the biochemical markers for predicting mammalian oocyte quality. J Reprod Dev 2012, 58(4):385-392.
  • [66]Wang Q, Sun QY: Evaluation of oocyte quality: morphological, cellular and molecular predictors. Reprod Fertil Dev 2007, 19(1):1-12.
  • [67]Robertson JA: Oocyte cytoplasm transfers and the ethics of germ-line intervention. J. Law Med Ethics 1998, 26(3):211-220. 179
  • [68]Chiang T, Schultz RM, Lampson MA: Meiotic origins of maternal age-related aneuploidy. Biol Reprod 2012, 86:1-7.
  • [69]Fragouli E, Alfarawati S, Goodall NN, Sánchez-Garcıa JF, Colls P, Wells D: The cytogenetics of polar bodies: insights into female meiosis and the diagnosis of aneuploidy. Mol Human Reprod 2011, 17(5):286-295.
  • [70]Handyside AH, Montag M, Magli MC, Repping S, Harper J, Schmutzler A, Vesela K, Gianaroli L, Geraedts J: Multiple meiotic errors caused by predivision of chromatids in women of advanced maternal age undergoing in vitro fertilization. Eur J Human Genetics 2012, 20:742-747.
  • [71]Yin H, Baart E, Betzendahl I, Eichenlaub-Ritter U: Diazepam induces meiotic delay, aneuploidy and predivision of homologues and chromatids in mammalian oocytes. Mutagenesis 1998, 13(6):567-580.
  • [72]Golsteyn RM, Schultz SJ, Bartek J, Ziemiecki A, Ried T, Nigg EA: Cell cycle analysis and chromosomal localization of human Plk1, a putative homologue of the mitotic kinases Drosophila polo and Saccharomyces cerevisiae Cdc5. J Cell Sci 1994, 107(6):1509-1517.
  • [73]Pahlavan G, Polanski Z, Kalab P, Golsteyn R, Nigg EA, Maro B: Characterization of polo-like kinase 1 during meiotic maturation of the mouse oocyte. Dev Biol 2000, 220(2):392-400.
  • [74]Luo SM, Ge ZJ, Wang ZW, Jiang ZZ, Wang ZB, Ouyang YC, Hou Y, Schatten H, Sun QY: Unique insights into maternal mitochondrial inheritance in mice. Proc Natl Acad Sci 2013, 110(32):13038-43.
  • [75]Sutovsky P: Degradation of paternal mitochondria after fertilization: Implications for heteroplasmy, assisted reproductive technologies and mtDNA inheritance. Reprod Biol Med 2004, 8:24-33.
  • [76]Luo SM, Schatten H, Sun QY: Sperm mitochondria in reproduction: good or bad and where do they go? J Genet Genomics 2013, 40(11):549-56.
  • [77]Van Blerkom J, Davis P, Alexander S: Differential mitochondrial distribution in human pronuclear embryos leads to disproportionate inheritance between blastomeres: relationship to microtubular organization, ATP content and competence. Hum Reprod 2000, 15(12):2621-2633.
  • [78]Martin L, Besch-Williford C, Lai L, Cheong HT, Im GS, Park KW, Murphy C, Hao Y, Ellersieck MR, Keisler DH, Schatten H, Green JA, Prather RS: Morphologic and histologic comparisons between in vivo and nuclear transfer derived porcine embryos. Mol Reprod Dev 2007, 74(8):952-960.
  • [79]Hall VJ, Jacobsen JV, Rasmussen MA, Hyttel P: Ultrastructural and molecular distinctions between the porcine inner cell mass and epiblast reveal unique pluripotent cell states. Dev Dyn 2010, 239(11):2911-2920.
  • [80]Fowden AL, Giussani DA, Forhead AJ: Intrauterine programming of physiological systems: causes and consequences. Physiology 2006, 21:29-37.
  • [81]Sutton-McDowall ML, Gilchrist RB, Thompson JG: The pivotal role of glucose metabolism in determining oocyte developmental competence. Reproduction 2010, 139:685-695.
  • [82]Moyes CD, Battersby BJ, Leary SC: Regulation of muscle mitochondrial designs. J Exp Biol 1998, 201:299-307.
  • [83]Piko L, Taylor KD: Amounts of mtDNA and abundance of some mitochondrial gene transcripts in early mouse embryos. Dev Biol 1987, 123:364-374.
  • [84]Michaels GS, Hauswirth WW, Laipis PJ: Mitochondrial DNA copy number in bovine oocytes and somatic cells. Dev Biol 1982, 94:246-251.
  • [85]May-Panloup P, Chrétien MF, Jacques C, Vasseur C, Malthièry Y, Reynier P: Low oocyte mitochondrial DNA content in ovarian insufficiency. Human Reprod 2005, 20(3):593-597.
  • [86]Steuerwald N, Barrit JA, Adler R, Malter H, Schimmel T, Cohen J, Brenner CA: Quantification of mtDNA in single oocytes, polar bodies and subcellular components by real-time rapid cycle fluorescence monitored PCR. Zygote 2000, 9:209-215.
  • [87]Barritt JA, Kokot M, Cohen J, Steuerwald N, Brenner CA: Quantification of human ooplasmic mitochondria. Reprod Biomed Online 2002, 4:243-247.
  • [88]Wang Q, Moley KH: Maternal diabetes and oocyte quality. Mitochondrion 2010, 10(5):403-410.
  • [89]Larsson NG: Somatic mitochondrial DNA mutations in mammalian aging. Ann Rev Biochem 2010, 79:683-706.
  • [90]Taylor RW, Barron MJ, Borthwick GM, Gospel A, Chinnery PF, Samuels DC, Taylor GA, Plusa SM, Needham SJ, Greaves LC, Kirkwood TB, Turnbull DM: Mitochondrial DNA mutations in human colonic crypt stem cells. J Clin Investig 2003, 112(9):1351-1360.
  • [91]Lee HC, Wei YH: Oxidative stress, mitochondrial DNA mutation, and apoptosis in aging. Exp Biol Med 2007, 232(5):592-606.
  • [92]Shoffner JM, Lott MT, Voljavec AS, Soueidan SA, Costigan DA, Wallace DC: Spontaneous Kearns-Sayre/chronic external ophthalmoplegia plus syndrome associated with a mitochondrial DNA deletion: a slip-replication model and metabolic therapy. Proc Natl Acad Sci 1989, 86(20):7952-7956.
  • [93]Jacobs L, Gerards M, Chinnery P, Dumoulin J, de Coo I, Geraedts J, Smeets S: mtDNA point mutations are present at various levels of heteroplasmy in human oocytes. Mol Human Reprod 2007, 13(3):149-154.
  • [94]Cortopassi GA, Arnheim N: Detection of a specific mitochondrial DNA deletion in tissues of older humans. Nucleic Acids Res 1990, 18(23):6927-6933.
  • [95]Cortopassi GA, Shibata D, Soong NW, Arnheim N: A pattern of accumulation of a somatic deletion of mitochondrial DNA in aging human tissues. Proc Natl Acad Sci 1992, 89(16):7370-7374.
  • [96]Van Blerkom J: Mitochondria in human oogenesis and preimplantation embryogenesis: engines of metabolism, ionic regulation and developmental competence. Reproduction 2004, 128(3):269-280.
  • [97]Schaefer AM, McFarland R, Blakely EL, He L, Whittaker RG, Taylor RW, Chinnery PF, Turnbull DM: Prevalence of mitochondrial DNA disease in adults. Annals Neurol 2008, 63(1):35-39.
  • [98]Adastra KL, Chi MM, Riley JK, Moley KH: A differential autophagic response to hyperglycemia in the developing murine embryo. Reproduction 2011, 141(5):607-615.
  • [99]Yu L, Fink BD, Herlein JA, Sivitz WI: Mitochondrial function in diabetes: novel methodology and new insight. Diabetes 2013, 62(6):1833-1842.
  • [100]Ge ZJ, Zhang CL, Schatten H, Sun QY: Maternal diabetes mellitus and the origin of non-communicable diseases in offspring: the role of epigenetics. Biol Reprod 2014, 90(6):139. 1-6
  • [101]Igosheva N, Abramov AY, Poston L, Eckert JJ, Fleming TP, Duchen MR, McConnell J: Maternal diet-induced obesity alters mitochondrial activity and redox status in mouse oocytes and zygotes. PLoS One 2010, 5(4):e10074-e10082.
  • [102]Purcell SH, Moley KH: The impact of obesity on egg quality. J Assist Reprod Genetics 2011, 28:517-524.
  • [103]Binder NK, Hannan NJ, Gardner DK: Paternal diet-induced obesity retards early mouse embryo development, mitochondrial activity and pregnancy health. PLoS One 2012, 7(12):e52304.
  • [104]Ishii T: Potential impact of human mitochondrial replacement on global policy regarding germline gene modification. Reprod Biomed Online 2014, 29:150-155.
  • [105]HFEA: Mitochondria public consultation 2012. Mitochondria replacement consultation-advice for Governmenthttp://www.hfea.gov.uk/6896.html webcite
  • [106]FDA: Cellular Tissue, and Gene Therapies Advisory Committee. Briefing Document-Oocyte Modification in Assisted Reproduction for the Prevention of Transmission of Mitochondrial Disease or Treatment of Infertility. 2014. http://www.fda.gov webcite homepage
  • [107]Ma JY, Li M, Ge ZJ, Luo Y, Ou XH, Song S, Tian D, Yang J, Zhang B, Ou-Yang YC, Hou Y, Liu Z, Schatten H, Sun QY: Whole transcriptome analysis of the effects of type I diabetes on mouse oocytes. PLoS One 2012, 7(7):e41981.
  • [108]Rugarli EI, Langer T: Mitochondrial quality control: a matter of life and death for neurons. EMBO J 2012, 31:1336-1349.
  • [109]Cooper O, Seo H, Andrabi S, Guardia-Laguarta C, Graziotto J, Sundberg M, McLean JR, Carrillo-Reid L, Xie Z, Osborn T, Hargus G, Deleidi M, Lawson T, Bogetofte H, Perez-Torres E, Clark L, Moskowitz C, Mazzulli J, Chen L, Volpicelli-Daley L, Romero N, Jiang H, Uitti RJ, Huang Z, Opala G, Scarffe LA, Dawson VL, Klein C, Feng J, Ross OA, et al.: Pharmacological rescue of mitochondrial deficits in iPSC-derived neural cells from patients with familial Parkinson’s disease. Sci Transl Med 2012, 4:41ra90.
  • [110]Fujikura J, Nakao K, Sone M, Noguchi M, Mori E, Naito M, Taura D, Harada-Shiba M, Kishimoto I, Watanabe A, Asaka I, Hosoda K, Nakao K: Induced pluripotent stem cells generated from diabetic patients with mitochondrial DNA A3243G mutation. Diabetologia 2012, 55:1689-1698.
  • [111]Alirol E, Martinou JC: Mitochondria and cancer: is there a morphological connection? Oncogene 2006, 25:4706-4716.
  • [112]Campello S, Scorrano L: Mitochondrial shape changes: orchestrating cell pathophysiology. EMBO Rep 2010, 11(9):678-684.
  • [113]George SK, Jiao Y, Bishop CE, Lu S: Mitochondrial peptidase IMMP2L mutation causes early onset of age-associated disorders and impairs adult stem cell self-renewal. Aging Cell 2011, 10:584-594.
  • [114]Bukovsky A, Caudle MR: Mammalian neo-oogenesis from ovarian stem cells in vivo and in vitro. In Cell and Molecular Biology and Imaging of Stem Cells. Edited by Heide S. Hoboken: Wiley; 2014. in press
  • [115]Bukovsky A, Copas P, Virant-Klun I: Potential new strategies for the treatment of ovarian infertility and degenerative diseases with autologous ovarian stem cells. Expert Opin Biol Ther 2006, 6(4):341-365.
  • [116]Bukovsky A: Ovarian stem cells and mammalian neo-oogenesis. Microsc Microanal 2008, 14(Suppl 2):1474-1475.
  • [117]Bukovsky A, Caudle MR, Virant-Klun I, Gupta SK, Dominguez R, Svetlikova M, Xu F: Immune physiology and oogenesis in fetal and adult humans, ovarian infertility, and totipotency of adult ovarian stem cells. Birth Defects Res C Embryo Today 2009, 87(1):64-89.
  • [118]Bukovsky A: Ovarian stem cell niche and follicular renewal in mammals. Anat Rec (Hoboken) 2011, 294(8):1284-1306.
  • [119]Zhang H, Zheng W, Shen Y, Adhikari D, Ueno H, Liu K: Experimental evidence showing that no mitotically active female germline progenitors exist in postnatal mouse ovaries. Proc Natl Acad Sci U S A 2012, 109(31):12580-12585.
  • [120]Acton BM, Lai I, Shang X, Jurisicova A, Casper RF: Neutral mitochondrial heteroplasmy alters physiological function in mice. Biol Reprod 2007, 77(3):569-576.
  • [121]Zhong Z, Spate L, Ha Y, Li R, Lai L, Katayama M, Sun QY, Prather RS, Schatten H: Remodeling of centrosomes in intraspecies and interspecies nuclear transfer porcine embryos. Cell Cycle 2007, 6(12):1510-1521.
  • [122]Yabuuchi A, Beyhan Z, Kagawa N, Mori C, Ezoe K, Kato K, Aono F, Takehara Y, Kato O: Prevention of mitochondrial disease inheritance by assisted reproductive technologies: Prospects and challenges. Biochim Biophys Acta 1820, 2012:637-642.
  • [123]Johnson J, Canning J, Kaneko T, Pru JK, Tilly JL: Germline stem cells and follicular renewal in the postnatal mammalian ovary. Nature 2004, 428(6979):145-150.
  • [124]White YAR, Woods DC, Takai Y, Ishihara O, Seki H, Tilly JL: Oocyte formation by mitotically active germ cells purified from ovaries of reproductive-age women. Nat Med 2012, 18:413-421.
  • [125]Zou K, Yuan Z, Yang Z, Luo H, Sun K, Zhou L, Xiang J, Shi L, Yu Q, Zhang Y, Hou R, Wu J: Production of offspring from a germline stem cell line derived from neonatal ovaries. Nat Cell Biol 2009, 11(5):631-636.
  • [126]Bukovsky A, Caudle MR, Svetlikova M, Upadhyaya NB: Origin of germ cells and formation of new primary follicles in adult human ovaries. Reprod Biol Endocrinol 2004, 2:20-50.
  • [127]Bukovsky A, Svetlikova M, Caudle MR: Oogenesis in cultures derived from adult human ovaries. Reprod Biol Endocrinol 2005, 3:17-30.
  • [128]Virant-Klun I, Stimpfel M, Skutella T: Ovarian pluripotent/multipotent stem cells and in vitro oogenesis in mammals. Histol Histopathol 2011, 26:1071-1082.
  • [129]Virant-Klun I, Skutella T, Hren M, Gruden K, Cvjeticanin B, Vogler A, Sinkovec J: Isolation of small SSEA-4-positive putative stem cells from the ovarian surface epithelium of adult human ovaries by two different methods. BioMed Res Intl 2013, 15:1-15. Article ID 690415
  • [130]Shamsi MB, Govindaraj P, Chawla L, Malhotra N, Singh N, Mittal S, Talwar P, Thangaraj K, Dada R: Mitochondrial DNA variations in ova and blastocyst: implications in assisted reproduction. Mitochondrion 2013, 13:96-105.
  • [131]Bentov YN, Esfandiari N, Burstein E, Casper RF: The use of mitochondrial nutrients to improve the outcome of infertility treatment in older patients. Fertil Steril 2010, 93(1):272-275.
  • [132]Craven L, Tuppen HA, Greggains GD, Harbottle SJ, Murphy JL, Cree LM, Murdoch AP, Chinnery PF, Taylor RW, Lightowlers RN, Herbert M, Turnbull DM: Pronuclear transfer in human embryos to prevent transmission of mitochondrial DNA disease. Nature 2010, 465(7294):82-85.
  • [133]Chiaratti MR, Meirelles FV, Wells D, Poulton J: Therapeutic treatments of mtDNA diseases at the earliest stages of human development. Mitochondrion 2011, 11:820-828.
  • [134]Wang T, Sha H, Ji D, Zhang HL, Chen D, Cao Y, Zhu J: Polar body genome transfer for preventing the transmission of inherited mitochondrial diseases. Cell 2014, 157:1591-1604.
  • [135]Bacman SR, Williams SL, Pinto M, Peralta S, Moraes CT: Specific elimination of mutant mitochondrial genomes in patient-derived cells by mitoTALENs. Nat Med 2013, 9:1111-1113.
  文献评价指标  
  下载次数:6次 浏览次数:8次