期刊论文详细信息
Plant Methods
Plant genome editing made easy: targeted mutagenesis in model and crop plants using the CRISPR/Cas system
Vladimir Nekrasov1  Sophien Kamoun1  Angela Chaparro-Garcia1  Khaoula Belhaj1 
[1] The Sainsbury Laboratory, Norwich Research Park, Norwich, UK
关键词: Targeted mutagenesis;    Genome engineering;    Genome editing;    Plant;    Cas9;    CRISPR;   
Others  :  811451
DOI  :  10.1186/1746-4811-9-39
 received in 2013-09-12, accepted in 2013-10-07,  发布年份 2013
PDF
【 摘 要 】

Targeted genome engineering (also known as genome editing) has emerged as an alternative to classical plant breeding and transgenic (GMO) methods to improve crop plants. Until recently, available tools for introducing site-specific double strand DNA breaks were restricted to zinc finger nucleases (ZFNs) and TAL effector nucleases (TALENs). However, these technologies have not been widely adopted by the plant research community due to complicated design and laborious assembly of specific DNA binding proteins for each target gene. Recently, an easier method has emerged based on the bacterial type II CRISPR (clustered regularly interspaced short palindromic repeats)/Cas (CRISPR-associated) immune system. The CRISPR/Cas system allows targeted cleavage of genomic DNA guided by a customizable small noncoding RNA, resulting in gene modifications by both non-homologous end joining (NHEJ) and homology-directed repair (HDR) mechanisms. In this review we summarize and discuss recent applications of the CRISPR/Cas technology in plants.

【 授权许可】

   
2013 Belhaj et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140709064247728.pdf 1152KB PDF download
Figure 4. 33KB Image download
Figure 3. 45KB Image download
Figure 2. 160KB Image download
Figure 1. 125KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Sorek R, Lawrence CM, Wiedenheft B: CRISPR-mediated adaptive immune systems in bacteria and archaea. Annu Rev Biochem 2013, 82:237-266.
  • [2]Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E: A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 2012, 337:816-821.
  • [3]Jinek M, East A, Cheng A, Lin S, Ma E, Doudna J: RNA-programmed genome editing in human cells. Elife 2013, 2:e00471.
  • [4]Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM: RNA-guided human genome engineering via Cas9. Science 2013, 339:823-826.
  • [5]Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F: Multiplex genome engineering using CRISPR/Cas systems. Science 2013, 339:819-823.
  • [6]Cho SW, Kim S, Kim JM, Kim JS: Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat Biotechnol 2013, 31:230-232.
  • [7]Hwang WY, Fu Y, Reyon D, Maeder ML, Tsai SQ, Sander JD, Peterson RT, Yeh JR, Joung JK: Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol 2013, 31:227-229.
  • [8]Jiang W, Bikard D, Cox D, Zhang F, Marraffini LA: RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat Biotechnol 2013, 31:233-239.
  • [9]Nekrasov V, Staskawicz B, Weigel D, Jones JD, Kamoun S: Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nat Biotechnol 2013, 31:691-693.
  • [10]Shan Q, Wang Y, Li J, Zhang Y, Chen K, Liang Z, Zhang K, Liu J, Xi JJ, Qiu JL, Gao C: Targeted genome modification of crop plants using a CRISPR-Cas system. Nat Biotechnol 2013, 31:686-688.
  • [11]Li JF, Norville JE, Aach J, McCormack M, Zhang D, Bush J, Church GM, Sheen J: Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat Biotechnol 2013, 31:688-691.
  • [12]Feng Z, Zhang B, Ding W, Liu X, Yang DL, Wei P, Cao F, Zhu S, Zhang F, Mao Y, Zhu JK: Efficient genome editing in plants using a CRISPR/Cas system. Cell Res 2013, 23:1229-1232.
  • [13]Mao Y, Zhang H, Xu N, Zhang B, Gao F, Zhu JK: Application of the CRISPR-Cas system for efficient genome engineering in plants. Mol Plantdoi:10.1093/mp/sst121 (August 20, 2013)
  • [14]Xie K, Yang Y: RNA-guided genome editing in plants using a CRISPR-Cas system. Mol Plantdoi:10.1093/mp/sst119 (August 17, 2013)
  • [15]Miao J, Guo D, Zhang J, Huang Q, Qin G, Zhang X, Wan J, Gu H, Qu LJ: Targeted mutagenesis in rice using CRISPR-Cas system. Cell Res 2013, 23:1233-1236.
  • [16]Jiang W, Zhou H, Bi H, Fromm M, Yang B, Weeks DP: Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Resdoi:10.1093/nar/gkt780 (September 2, 2013)
  • [17]Van der Hoorn RA, Laurent F, Roth R, De Wit PJ: Agroinfiltration is a versatile tool that facilitates comparative analyses of Avr9/Cf-9-induced and Avr4/Cf-4-induced necrosis. Mol Plant Microbe Interact 2000, 13:439-446.
  • [18]Deltcheva E, Chylinski K, Sharma CM, Gonzales K, Chao Y, Pirzada ZA, Eckert MR, Vogel J, Charpentier E: CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 2011, 471:602-607.
  • [19]Mussolino C, Cathomen T: RNA guides genome engineering. Nat Biotechnol 2013, 31:208-209.
  • [20]Yang H, Wang H, Shivalila CS, Cheng AW, Shi L, Jaenisch R: One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering. Cell 2013, 154:1370-1379.
  • [21]Wang HY, Yang H, Shivalila CS, Dawlaty MM, Cheng AW, Zhang F, Jaenisch R: One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 2013, 153:910-918.
  • [22]Voytas DF: Plant genome engineering with sequence-specific nucleases. Annu Rev Plant Biol 2013, 64:327-350.
  • [23]Fauser F, Roth N, Pacher M, Ilg G, Sanchez-Fernandez R, Biesgen C, Puchta H: In planta gene targeting. Proc Natl Acad Sci USA 2012, 109:7535-7540.
  • [24]D’Halluin K, Vanderstraeten C, Van Hulle J, Rosolowska J, Van Den Brande I, Pennewaert A, D’Hont K, Bossut M, Jantz D, Ruiter R, Broadhvest J: Targeted molecular trait stacking in cotton through targeted double-strand break induction. Plant Biotechnol J 2013, 11:933-941.
  • [25]Qi Y, Zhang Y, Zhang F, Baller JA, Cleland SC, Ryu Y, Starker CG, Voytas DF: Increasing frequencies of site-specific mutagenesis and gene targeting in Arabidopsis by manipulating DNA repair pathways. Genome Res 2013, 23:547-554.
  • [26]Fu Y, Foden JA, Khayter C, Maeder ML, Reyon D, Joung JK, Sander JD: High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol 2013, 31:822-826.
  • [27]Pattanayak V, Lin S, Guilinger JP, Ma E, Doudna JA, Liu DR: High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Nat Biotechnol 2013, 31:839-843.
  • [28]Mali P, Aach J, Stranges PB, Esvelt KM, Moosburner M, Kosuri S, Yang L, Church GM: CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat Biotechnol 2013, 31:833-838.
  • [29]Hsu PD, Scott DA, Weinstein JA, Ran FA, Konermann S, Agarwala V, Li Y, Fine EJ, Wu X, Shalem O, et al.: DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol 2013, 31:827-832.
  • [30]Carroll D: Staying on target with CRISPR-Cas. Nat Biotechnol 2013, 31:807-809.
  • [31]Lusser M, Davies HV: Comparative regulatory approaches for groups of new plant breeding techniques. N Biotechnol 2013, 30:437-446.
  • [32]Lusser M, Parisi C, Plan D, Rodriguez-Cerezo E: Deployment of new biotechnologies in plant breeding. Nat Biotechnol 2012, 30:231-239.
  • [33]Pauwels K, Podevin N, Breyer D, Carroll D, Herman P: Engineering nucleases for gene targeting: safety and regulatory considerations. N Biotechnoldoi:10.1016/j.nbt.2013.07.001 (July 12, 2013)
  • [34]Kuzma J, Kokotovich A: Renegotiating GM crop regulation. Targeted gene-modification technology raises new issues for the oversight of genetically modified crops. EMBO Rep 2011, 12:883-888.
  • [35]Weber E, Engler C, Gruetzner R, Werner S, Marillonnet S: A modular cloning system for standardized assembly of multigene constructs. PLoS One 2011, 6:e16765.
  • [36]Bos JI, Kanneganti TD, Young C, Cakir C, Huitema E, Win J, Armstrong MR, Birch PR, Kamoun S: The C-terminal half of Phytophthora infestans RXLR effector AVR3a is sufficient to trigger R3a-mediated hypersensitivity and suppress INF1-induced cell death in Nicotiana benthamiana. Plant J 2006, 48:165-176.
  文献评价指标  
  下载次数:59次 浏览次数:48次