期刊论文详细信息
Particle and Fibre Toxicology
Insecticidal and repellent activities of pyrethroids to the three major pyrethroid-resistant malaria vectors in western Kenya
Noboru Minakawa2  Charles Mwandawiro5  Sammy M Njenga6  George Sonye7  Gabriel O Dida3  Kazunori Ohashi4  Hitoshi Kawada1 
[1] Department of Vector Ecology & Environment, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan;The Global Center of Excellence Program, Nagasaki University, Nagasaki, Japan;School of Public Health, Maseno University, Kisumu, Kenya;Health and Crop Sciences Research Laboratory, Sumitomo Chemical Co Ltd, Hyogo, Japan;Kenya Medical Research Institute, Nairobi, Kenya;Eastern and Southern Africa Centre of International Parasite Control, Nairobi, Kenya;Springs of Hope, Mbita, Kenya
关键词: Kenya;    LLIN;    Anopheles funestus;    Anopheles arabiensis;    Anopheles gambiae s.s;    Repellency;    Resistance;    Deltamethrin;    Permethrin;   
Others  :  806934
DOI  :  10.1186/1756-3305-7-208
 received in 2014-03-04, accepted in 2014-04-18,  发布年份 2014
PDF
【 摘 要 】

Background

The dramatic success of insecticide treated nets (ITNs) and long-lasting insecticidal nets (LLINs) in African countries has been countered by the rapid development of pyrethroid resistance in vector mosquitoes over the past decade. One advantage of the use of pyrethroids in ITNs is their excito-repellency. Use of the excito-repellency of pyrethroids might be biorational, since such repellency will not induce or delay the development of any physiological resistance. However, little is known about the relationship between the mode of insecticide resistance and excito-repellency in pyrethroid-resistant mosquitoes.

Methods

Differences in the reactions of 3 major malaria vectors in western Kenya to pyrethroids were compared in laboratory tests. Adult susceptibility tests were performed using World Health Organization (WHO) test tube kits for F1 progenies of field-collected An. gambiae s.s., An. arabiensis, and An. funestus s.s., and laboratory colonies of An. gambiae s.s. and An. arabiensis. The contact repellency to pyrethroids or permethrin-impregnated LLINs (Olyset® Nets) was evaluated with a simple choice test modified by WHO test tubes and with the test modified by the WHO cone bioassay test.

Results

Field-collected An. gambiae s.s., An. arabiensis, and An. funestus s.s. showed high resistance to both permethrin and deltamethrin. The allelic frequency of the point mutation in the voltage-gated sodium channel (L1014S) in An. gambiae s.s. was 99.3–100%, while no point mutations were detected in the other 2 species. The frequency of takeoffs from the pyrethroid-treated surface and the flying times without contacting the surface increased significantly in pyrethroid-susceptible An. gambiae s.s. and An. arabiensis colonies and wild An. arabiensis and An. funestus s.s. colonies, while there was no significant increase in the frequency of takeoffs or flying time in the An. gambiae s.s. wild colony.

Conclusion

A different repellent reaction was observed in the field-collected An. gambiae s.s. than in An. arabiensis and An. funestus s.s. It might be that resistant mosquitoes governed by knockdown resistance (kdr) loose repellency to pyrethroids, whereas those lacking kdr maintain high repellency irrespective of their possessing metabolic resistance factors to pyrethroids. Further genetic evaluation is required for the demonstration of the above hypothesis.

【 授权许可】

   
2014 Kawada et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140708101737513.pdf 635KB PDF download
Figure 5. 36KB Image download
Figure 4. 35KB Image download
Figure 3. 20KB Image download
Figure 2. 35KB Image download
Figure 1. 25KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Zaim M, Jambulingam P: Global Insecticide Use for Vector-Borne Disease Control. Geneva: World Health Organization; 2007.
  • [2]RBM: The Global Partnership to Roll Back Malaria. Initial period covered July 1998–December 2001 (preparatory phase: July 1998–December 1999). Proposed strategy and work plA. Draft 3.1b/12. Geneva: World Health Organization; 1999.
  • [3]Curtis CF, Myamba J, Wilkes TJ: Various pyrethroids on bednets and curtains. Mem Inst Oswaldo Cruz Rio de Janeiro 1992, 87:363-370.
  • [4]Zaim M, Aitio A, Nakashima N: Safety of pyrethroid-treated mosquito nets. Med Vet Entomol 2000, 14:1-5.
  • [5]Ranson H, N’guessan R, Lines J, Moiroux N, Nkuni Z, Corbel V: Pyrethroid resistance in African anopheline mosquitoes: what are the implications for malaria control? Trends Parasitol 2011, 27:91-98.
  • [6]Mathias D, Ochomo EO, Atieli F, Ombok M, Bayoh MN, Olang G, Muhia D, Kamau L, Vulule JM, Hamel MJ, Hawley WA, Walker ED, Gimnig JE: Spatial and temporal variation in the kdr allele L1014S in Anopheles gambiae s.s. and phenotypic variability in susceptibility to insecticides in Western Kenya. Malar J 2011, 10:10. BioMed Central Full Text
  • [7]Santolamazza F, Calzetta M, Etang J, Barrese E, Dia I, Caccone A, Donnelly MJ, Petrarca V, Simard F, Pinto J, della Torre A: Distribution of knock-down resistance mutations in Anopheles gambiae molecular forms in West and West-Central Africa. Malar J 2008, 7:74. BioMed Central Full Text
  • [8]Himeidan YE, Chen H, Chandre F, Donnelly MJ, Yan G: Short report: permethrin and DDT resistance in the malaria vector Anopheles arabiensis from Eastern Sudan. Am J Trop Med Hyg 2007, 77:1066-1068.
  • [9]Kulkarni M, Rowland M, Alifrangis M, Mosha FW, Matowo J, Malima R, Peter J, Kweka E, Lyimo I, Magesa S, Salanti A, Rau ME, Drakeley C: Occurrence of the leucine-to-phenylalanine knockdown resistance (kdr) mutation in Anopheles arabiensis populations in Tanzania, detected by a simplified high-throughput SSOP-ELISA method. Malar J 2006, 5:56. BioMed Central Full Text
  • [10]Kawada H, Futami K, Komagata O, Kasai S, Tomita T, Sonye G, Mwatele C, Njenga SM, Mwandawiro C, Minakawa N, Takagi M: Distribution of a knockdown resistance mutation (L1014S) in Anopheles gambiae s.s. and Anopheles arabiensis in Western and Southern Kenya. PLoS One 2011, 6:e24323.
  • [11]Kawada H, Dida GO, Ohashi K, Komagata O, Kasai S, Tomita T, Sonye G, Maekawa Y, Mwatele C, Njenga SM, Mwandawiro C, Minakawa N, Takagi M: Multimodal pyrethroid resistance in malaria vectors, Anopheles gambiae s.s., Anopheles arabiensis, and Anopheles funestus s.s. in Western Kenya. PLoS One 2011, 6:e22574.
  • [12]Wondji CS, Irving H, Morgan J, Lobo NF, Collins FH, Hunt RH, Coetzee M, Hemingway J, Ranson H: Two duplicated P450 genes are associated with pyrethroid resistance in Anopheles funestus, a major malaria vector. Genome Res 2009, 19:452-459.
  • [13]Hargreaves K, Koekemoer LL, Brooke BD, Hunt RH, Mthembu J, Coetzee M: Anopheles funestus resistant to pyrethroid insecticides in South Africa. Med Vet Entomol 2000, 14:181-189.
  • [14]Kawada H, Dida GO, Sonye G, Njenga SM, Mwandawiro C, Minakawa N: Reconsideration of Anopheles rivulorum as a Vector of Plasmodium falciparum in Western Kenya: some evidence from biting time, blood preference, sporozoite positive rate, and pyrethroid resistance. Parasit Vectors 2012, 5:230. BioMed Central Full Text
  • [15]Darriet F, Guillet P, N’Guessan R, Doannio JM, Koffi A, Konan LY, Carnevale P: Impact of resistance of Anopheles gambiae s.s. to permethrin and deltamethrin on the efficacy of impregnated mosquito nets. Med Trop 1998, 58:349-354.
  • [16]Darriet F, N’Guessan R, Koffi AA, Konan L, Doannio JM, Chandre F, Carnevale P: Impact of pyrethrin resistance on the efficacy of impregnated mosquito nets in the prevention of malaria: results of tests in experimental cases with deltamethrin SC. Bull Soc Pathol Exot 2000, 93:131-134.
  • [17]Lines JD, Myamba J, Curtis CF: Experimental hut trials of permethrin-impregnated mosquito nets and eave curtains against malaria vectors in Tanzania. Med Vet Entomol 1987, 1:37-51.
  • [18]Kawada H: An inconvenient truth of pyrethroid–does it have a promising future? In Advances in Human Vector Control (ACS Symposium Book 1014). Edited by Clark J, Bloomquist JR, Kawada H. New York: American Chemical Society; 2009:171-190.
  • [19]Kawada H: New mosquito control techniques as countermeasures against insecticide resistance. In Insecticides–Advances in Integrated Pest Management. Edited by Perveen F. Europe, Rijeka, Croatia: InTech; 2012:657-682.
  • [20]Gouagna LC, Okech BA, Kabiru EW, Killeen GF, Obare P, Ombonya S, Bier JC, Knols BG, Githure JI, Yan G: Infectivity of Plasmodium falciparum gametocytes in patients attending rural health centers in Western Kenya. East Afr Med J 2003, 80:627-634.
  • [21]Noor AM, Gething PW, Alegana VA, Patil AP, Hay SI, Muchiri E, Juma E, Snow RW: The risks of malaria infection in Kenya in 2009. BMC Infect Dis 2009, 9:180. BioMed Central Full Text
  • [22]Grieco JP, Achee NL, Chareonviriyaphap T, Suwonkerd W, Chauhan K, Sardelis MR, Roberts DR: A new classification system for the actions of IRS chemicals traditionally used for malaria control. PLoS One 2007, 2:e716.
  • [23]Gillies MT, Coetzee M: A supplement to the Anophelinae of Africa south of the Sahara (Afrotropical region). South African Institute for Medical Research 1987, No. 55:1-139.
  • [24]Scott JA, Brogdon WG, Collins FH: Identification of single specimens of the Anopheles gambiae complex by the polymerase chain reaction. Am J Trop Med Hyg 1993, 49:520-529.
  • [25]Koekemoer LL, Kamau L, Hunt RH, Coetzee M: A cocktail polymerase chain reaction (PCR) assay to identify members of the Anopheles funestus (Diptera: Culicidae) group. Am J Trop Med Hyg 2002, 66:804-811.
  • [26]Bliss CI: The method of probits–a correction. Science 1934, 79:409-410.
  • [27]Bertram DS: Tsetse and trypanosomiasis control in Nyanza Province, Kenya. Trans R Soc Trop Med Hyg 1969, 63:125.
  • [28]Hardstone MC, Lazzaro BP, Scott JG: The effect of three environmental conditions on the fitness of cytochrome P450 monooxygenase-mediated permethrin resistance in Culex pipiens quinquefasciatus. BMC Evol Biol 2009, 9:42. BioMed Central Full Text
  • [29]Siegert PY, Walker E, Miller JR: Differential behavioral responses of Anopheles gambiae (Diptera: Culicidae) modulate mortality caused by pyrethroid-treated bednets. J Econ Entomol 2009, 102:2061-2071.
  • [30]Breckenridge CB, Holden L, Sturgess N, Weiner M, Sheets L, Sargent D, Soderlund DM, Choi JS, Symington S, Clark JM, Burr S, Ray D: Evidence for a separate mechanism of toxicity for the type I and the type II pyrethroid insecticides. Neurotoxicology 2009, Suppl 1:S17-S31.
  • [31]Chandre F, Darriet F, Duchon S, Finot L, Manguin S, Carnevale P, Guillet P: Modifications of pyrethroid effects associated with kdr mutation in Anopheles gambiae. Med Vet Entomol 2000, 14:81-88.
  • [32]Corbel V, Chandre F, Brengues C, Akogbéto M, Lardeux F, Hougard JM, Guillet P: Dosage-dependent effects of permethrin-treated nets on the behaviour of Anopheles gambiae and the selection of pyrethroid resistance. Malar J 2004, 3:22. BioMed Central Full Text
  • [33]Virgona CT, Holan G, Shipp E: Repellency of insecticides to resistant strains of housefly. Entomol Exp Appl 1983, 34:287-290.
  • [34]Sawicki RM: Resistance to insecticides in SKA strain of houseflies. Rep Rothamsted Exp Stn 1972, 2:168-181.
  • [35]Bayoh MN, Mathias DK, Odiere MR, Mutuku FM, Kamau L, Gimnig JE, Vulule JM, Hawley WA, Hamel MJ, Walker ED: Anopheles gambiae: historical population decline associated with regional distribution of insecticide-treated bed nets in Western Nyanza Province, Kenya. Malar J 2010, 9:62. BioMed Central Full Text
  文献评价指标  
  下载次数:19次 浏览次数:18次