期刊论文详细信息
Respiratory Research
Anti-inflammatory deficiencies in neutrophilic asthma: reduced galectin-3 and IL-1RA/IL-1β
Jodie L Simpson8  Jie Zhang3  Matthew J Peters2  Christine Jenkins1  Alan L James9  Sandra Hodge5  Paul N Reynolds5  John W Upham4  Ian A Yang6  Katherine J Baines8  Peter G Gibson7  Peng Gao8 
[1] Respiratory Trials, The George Institute for Global Health, Sydney, NSW, Australia;Department of Thoracic Medicine, Concord General Hospital, Concord, NSW, Australia;Department of Respiratory Medicine, The Second Affiliated Hospital of Jilin University, Changchun, Jilin, China;Department of Respiratory Medicine, Princess Alexandra Hospital, Brisbane, QLD, Australia;Lung Research Laboratory, Hanson Institute, Adelaide, SA, Australia;Department of Thoracic Medicine, The Prince Charles Hospital, Brisbane, QLD, Australia;Woolcock Institute of Medical Research, Glebe, NSW, Australia;Priority Research Centre for Asthma and Respiratory Disease, The University of Newcastle, Callaghan, NSW, Australia;School of Medicine and Pharmacology, The University of Western Australia, Perth, WA, Australia
关键词: lectin;    IL-1β;    Macrophage;    Neutrophil;    Induced sputum;    Galectin-3;    Asthma;   
Others  :  1135898
DOI  :  10.1186/s12931-014-0163-5
 received in 2014-09-15, accepted in 2014-12-29,  发布年份 2015
PDF
【 摘 要 】

Background

Galectin-3 (gal-3), a member of the β-galactoside-binding animal lectins, is involved in the recruitment, activation and removal of neutrophils. Neutrophilic asthma is characterized by a persistent elevation of airway neutrophils and impaired efferocytosis. We hypothesized that sputum gal-3 would be reduced in neutrophilic asthma and the expression of gal-3 would be associated with other markers of neutrophilic inflammation.

Methods

Adults with asthma (n = 80) underwent a sputum induction following clinical assessment and blood collection. Sputum was dispersed for a differential cell count and ELISA assessment of gal-3, gal-3 binding protein (BP), interleukin (IL)-1β, IL-1 receptor antagonist (RA), IL-8 and IL-6. Gal-3 and gal-3BP immunoreactivity were assessed in mixed sputum cells.

Results

Sputum gal-3 (median, (q1,q3)) was significantly reduced in neutrophilic asthma (183 ng/mL (91,287)) compared with eosinophilic (293 ng/mL (188,471), p = 0.021) and paucigranulocytic asthma (399 ng/mL (213,514), p = 0.004). The gal-3/gal-3BP ratio and IL-1RA/IL-1β ratio were significantly reduced, while gal-3BP and IL-1β were significantly elevated in neutrophilic asthma compared with eosinophilic and paucigranulocytic asthma.

Conclusion

Patients with neutrophilic asthma have impairment in anti-inflammatory ratio of gal-3/gal-3BP and IL-1RA/IL-1β which provides a further framework for exploration into pathologic mechanisms of asthma phenotypes.

【 授权许可】

   
2015 Gao et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150311091514300.pdf 2544KB PDF download
Figure 2. 117KB Image download
Figure 1. 47KB Image download
【 图 表 】

Figure 1.

Figure 2.

【 参考文献 】
  • [1]Busse WW, Lemanske RF Jr: Asthma. N Engl J Med 2001, 344:350-62.
  • [2]Gibson PG, Simpson JL, Saltos N: Heterogeneity of airway inflammation in persistent asthma: evidence of neutrophilic inflammation and increased sputum interleukin-8. Chest 2001, 119:1329-36.
  • [3]Simpson JL, Scott R, Boyle MJ, Gibson PG: Inflammatory subtypes in asthma: assessment and identification using induced sputum. Respirology 2006, 11:54-61.
  • [4]Berry M, Morgan A, Shaw DE, Parker D, Green R, Brightling C, et al.: Pathological features and inhaled corticosteroid response of eosinophilic and non-eosinophilic asthma. Thorax 2007, 62:1043-9.
  • [5]Luyster FS, Teodorescu M, Bleecker E, Busse W, Calhoun W, Castro M, et al.: Sleep quality and asthma control and quality of life in non-severe and severe asthma. Sleep Breath 2012, 16:1129-37.
  • [6]Haldar P, Brightling CE, Hargadon B, Gupta S, Monteiro W, Sousa A, et al.: Mepolizumab and exacerbations of refractory eosinophilic asthma. N Engl J Med 2009, 360:973-84.
  • [7]Keely S, Talley NJ, Hansbro PM: Pulmonary-intestinal cross-talk in mucosal inflammatory disease. Mucosal Immunol 2012, 5:7-18.
  • [8]Corren J, Busse W, Meltzer EO, Mansfield L, Bensch G, Fahrenholz J, et al.: A randomized, controlled, phase 2 study of AMG 317, an IL-4Ralpha antagonist, in patients with asthma. Am J Respir Crit Care Med 2010, 181:788-96.
  • [9]Piccirillo JF, Merritt MG, J, Richards ML: Psychometric and clinimetric validity of the 20-Item Sino-Nasal Outcome Test (SNOT-20). Otolaryngol Head Neck Surg 2002, 126:41-7.
  • [10]Lee Y, Kim H, Kim S, Kim KH, Chung JH: Activation of toll-like receptors 2, 3 or 5 induces matrix metalloproteinase-1 and -9 expression with the involvement of MAPKs and NF-kappaB in human epidermal keratinocytes. Exp Dermatol 2010, 19:e44-9.
  • [11]Gao P, Simpson JL, Zhang J, Gibson PG: Galectin-3: its role in asthma and potential as an anti-inflammatory target. Respir Res 2013, 14:136. BioMed Central Full Text
  • [12]Chambers MA, Whelan AO, Spallek R, Singh M, Coddeville B, Guerardel Y, et al.: Non-acylated Mycobacterium bovis glycoprotein MPB83 binds to TLR1/2 and stimulates production of matrix metalloproteinase 9. Biochem Biophys Res Commun 2010, 400:403-8.
  • [13]Nieminen J, St-Pierre C, Bhaumik P, Poirier F, Sato S: Role of galectin-3 in leukocyte recruitment in a murine model of lung infection by Streptococcus pneumoniae. J Immunol 2008, 180:2466-73.
  • [14]Nieminen J, St-Pierre C, Sato S: Galectin-3 interacts with naive and primed neutrophils, inducing innate immune responses. J Leukoc Biol 2005, 78:1127-35.
  • [15]Karlsson A, Christenson K, Matlak M, Bjorstad A, Brown KL, Telemo E, et al.: Galectin-3 functions as an opsonin and enhances the macrophage clearance of apoptotic neutrophils. Glycobiology 2009, 19:16-20.
  • [16]Mukaro VR, Bylund J, Hodge G, Holmes M, Jersmann H, Reynolds PN, et al.: Lectins offer new perspectives in the development of macrophage-targeted therapies for COPD/emphysema. PLoS One 2013, 8:e56147.
  • [17]Powell TJ, Schreck R, McCall M, Hui T, Rice A, App H, et al.: A tumor-derived protein which provides T-cell costimulation through accessory cell activation. J Immunother Emphasis Tumor Immunol 1995, 17:209-21.
  • [18]Fukaya Y, Shimada H, Wang LC, Zandi E, DeClerck YA: Identification of galectin-3-binding protein as a factor secreted by tumor cells that stimulates interleukin-6 expression in the bone marrow stroma. J Biol Chem 2008, 283:18573-81.
  • [19]Trahey M, Weissman IL: Cyclophilin C-associated protein: a normal secreted glycoprotein that down-modulates endotoxin and proinflammatory responses in vivo. Proc Natl Acad Sci U S A 1999, 96:3006-11.
  • [20]Kong W, Longaker MT, Lorenz HP: Cyclophilin C-associated protein is a mediator for fibronectin fragment-induced matrix metalloproteinase-13 expression. J Biol Chem 2004, 279:55334-40.
  • [21]Rubinstein I: Nasal inflammation in patients with obstructive sleep apnea. Laryngoscope 1995, 105:175-7.
  • [22]Standards for the diagnosis and care of patients with chronic obstructive pulmonary disease (COPD) and asthma. This official statement of the American Thoracic Society was adopted by the ATS Board of Directors, November 1986. Am Rev Respir Dis. 1987;136:225-244.
  • [23]Gibson PG, Wlodarczyk JW, Hensley MJ, Gleeson M, Henry RL, Cripps AR, et al.: Epidemiological association of airway inflammation with asthma symptoms and airway hyperresponsiveness in childhood. Am J Respir Crit Care Med 1998, 158:36-41.
  • [24]Simpson JL, Scott RJ, Boyle MJ, Gibson PG: Differential proteolytic enzyme activity in eosinophilic and neutrophilic asthma. Am J Respir Crit Care Med 2005, 172:559-65.
  • [25]Simpson JL, Phipps S, Baines KJ, Oreo KM, Gunawardhana L, Gibson PG: Elevated expression of the NLRP3 inflammasome in neutrophilic asthma. Eur Respir J 2014, 43:1067-76.
  • [26]Baines KJ, Simpson JL, Wood LG, Scott RJ, Gibson PG: Systemic upregulation of neutrophil alpha-defensins and serine proteases in neutrophilic asthma. Thorax 2011, 66:942-7.
  • [27]Simpson JL, McElduff P, Gibson PG: Assessment and reproducibility of non-eosinophilic asthma using induced sputum. Respiration 2010, 79:147-51.
  • [28]Simpson JL, Gibson PG, Yang IA, Upham J, James A, Reynolds PN, et al.: Impaired macrophage phagocytosis in non-eosinophilic asthma. Clin Exp Allergy 2013, 43:29-35.
  • [29]Sanchez-Cuellar S, de la Fuente H, Cruz-Adalia A, Lamana A, Cibrian D, Giron RM, et al.: Reduced expression of galectin-1 and galectin-9 by leucocytes in asthma patients. Clin Exp Immunol 2012, 170:365-74.
  • [30]Herrmann J, Turck CW, Atchison RE, Huflejt ME, Poulter L, Gitt MA, et al.: Primary structure of the soluble lactose binding lectin L-29 from rat and dog and interaction of its non-collagenous proline-, glycine-, tyrosine-rich sequence with bacterial and tissue collagenase. J Biol Chem 1993, 268:26704-11.
  • [31]Karlsson A, Follin P, Leffler H, Dahlgren C: Galectin-3 activates the NADPH-oxidase in exudated but not peripheral blood neutrophils. Blood 1998, 91:3430-8.
  • [32]Chung F, Yegneswaran B, Liao P, Chung SA, Vairavanathan S, Islam S, et al.: STOP questionnaire: a tool to screen patients for obstructive sleep apnea. Anesthesiology 2008, 108:812-21.
  • [33]MacKinnon AC, Farnworth SL, Hodkinson PS, Henderson NC, Atkinson KM, Leffler H, et al.: Regulation of alternative macrophage activation by galectin-3. J Immunol 2008, 180:2650-8.
  • [34]Goleva E, Hauk PJ, Hall CF, Liu AH, Riches DW, Martin RJ, et al.: Corticosteroid-resistant asthma is associated with classical antimicrobial activation of airway macrophages. J Allergy Clin Immunol 2008, 122:550-9. e553
  • [35]Li Y, Komai-Koma M, Gilchrist DS, Hsu DK, Liu FT, Springall T, et al.: Galectin-3 is a negative regulator of lipopolysaccharide-mediated inflammation. J Immunol 2008, 181:2781-9.
  • [36]Ferraz LC, Bernardes ES, Oliveira AF, Ruas LP, Fermino ML, Soares SG, et al.: Lack of galectin-3 alters the balance of innate immune cytokines and confers resistance to Rhodococcus equi infection. Eur J Immunol 2008, 38:2762-75.
  • [37]Simpson JL, McDonald VM, Baines KJ, Oreo KM, Wang F, Hansbro PM, et al.: Influence of age, past smoking, and disease severity on TLR2, neutrophilic inflammation, and MMP-9 levels in COPD. Mediators Inflamm 2013, 2013:462934.
  • [38]Simpson JL, Grissell TV, Douwes J, Scott RJ, Boyle MJ, Gibson PG: Innate immune activation in neutrophilic asthma and bronchiectasis. Thorax 2007, 62:211-8.
  • [39]Zuberi RI, Hsu DK, Kalayci O, Chen HY, Sheldon HK, Yu L, et al.: Critical role for galectin-3 in airway inflammation and bronchial hyperresponsiveness in a murine model of asthma. Am J Pathol 2004, 165:2045-53.
  • [40]Gil CD, La M, Perretti M, Oliani SM: Interaction of human neutrophils with endothelial cells regulates the expression of endogenous proteins annexin 1, galectin-1 and galectin-3. Cell Biol Int 2006, 30:338-44.
  • [41]Wang JL, Gray RM, Haudek KC, Patterson RJ: Nucleocytoplasmic lectins. Biochim Biophys Acta 2004, 1673:75-93.
  • [42]Califice S, Castronovo V, Bracke M, van den Brule F: Dual activities of galectin-3 in human prostate cancer: tumor suppression of nuclear galectin-3 vs tumor promotion of cytoplasmic galectin-3. Oncogene 2004, 23:7527-36.
  • [43]Chung KF, Barnes PJ: Cytokines in asthma. Thorax 1999, 54:825-57.
  • [44]Hakonarson H, Herrick DJ, Serrano PG, Grunstein MM: Autocrine role of interleukin 1beta in altered responsiveness of atopic asthmatic sensitized airway smooth muscle. J Clin Invest 1997, 99:117-24.
  文献评价指标  
  下载次数:12次 浏览次数:5次