期刊论文详细信息
Molecular Neurodegeneration
Quantitative connection between polyglutamine aggregation kinetics and neurodegenerative process in patients with Huntington’s disease
Shiro Matsubara1  Keizo Sugaya1 
[1] Department of Neurology, Tokyo Metropolitan Neurological Hospital, 2-6-1 Musashidai, Fuchu, Tokyo, 183-0042, Japan
关键词: Elongation;    Nucleation;    Nucleated growth polymerization;    One-hit model;    Cumulative damage;    Stochastic kinetics model;    SCA3;    Polyglutamine aggregation;    Huntington’s disease;   
Others  :  863849
DOI  :  10.1186/1750-1326-7-20
 received in 2011-10-05, accepted in 2012-04-16,  发布年份 2012
PDF
【 摘 要 】

Background

Despite enormous progress in elucidating the biophysics of aggregation, no cause-and-effect relationship between protein aggregation and neurodegenerative disease has been unequivocally established. Here, we derived several risk-based stochastic kinetic models that assess genotype/phenotype correlations in patients with Huntington’s disease (HD) caused by the expansion of a CAG repeat. Fascinating disease-specific aspects of HD include the polyglutamine (polyQ)-length dependence of both age at symptoms onset and the propensity of the expanded polyQ protein to aggregate. In vitro, aggregation of polyQ peptides follows a simple nucleated growth polymerization pathway. Our models that reflect polyQ aggregation kinetics in a nucleated growth polymerization divided aggregate process into the length-dependent nucleation and the nucleation-dependent elongation. In contrast to the repeat-length dependent variability of age at onset, recent studies have shown that the extent of expansion has only a subtle effect on the rate of disease progression, suggesting possible differences in the mechanisms underlying the neurodegenerative process.

Results

Using polyQ-length as an index, these procedures enabled us for the first time to establish a quantitative connection between aggregation kinetics and disease process, including onset and the rate of progression. Although the complexity of disease process in HD, the time course of striatal neurodegeneration can be precisely predicted by the mathematical model in which neurodegeneration occurs by different mechanisms for the initiation and progression of disease processes. Nucleation is sufficient to initiate neuronal loss as a series of random events in time. The stochastic appearance of nucleation in a cell population acts as the constant risk of neuronal cell damage over time, while elongation reduces the risk by nucleation in proportion to the increased extent of the aggregates during disease progression.

Conclusions

Our findings suggest that nucleation is a critical step in gaining toxic effects to the cell, and provide a new insight into the relationship between polyQ aggregation and neurodegenerative process in HD.

【 授权许可】

   
2012 Sugaya and Matsubara; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140725065120974.pdf 904KB PDF download
128KB Image download
75KB Image download
37KB Image download
55KB Image download
68KB Image download
49KB Image download
52KB Image download
【 图 表 】

【 参考文献 】
  • [1]Gatchel JR, Zoghbi HY: Disease of unstable repeat expansion: mechanisms and common principles. Nat Rev Genet 2005, 6:743-755.
  • [2]Gusella JF, MacDonald ME: Molecular genetics: unmasking polyglutamine triggers in neurodegenerative disease. Nat Rev Neurosci 2000, 1:109-115.
  • [3]Chen S, Ferrone FA, Wetzel R: Huntington’s disease age-of-onset linked to polyglutamine aggregation nucleation. Proc Natl Acad Sci USA 2002, 99:11884-11889.
  • [4]Ferrone F: Analysis of protein aggregation kinetics. Methods Enzymol 1999, 309:256-274.
  • [5]Perutz MF, Windle AH: Cause of neural death in neurodegenerative diseases attributable to expansion of glutamine repeats. Nature 2001, 412:143-144.
  • [6]Ellisdon AM, Thomas B, Bottomley SP: The two-stage pathway of ataxin-3 fibrillogenesis involves a polyglutamine-independent step. J Biol Chem 2006, 281:16888-16896.
  • [7]Nekooki-Machida Y, Kurosawa M, Nukina N, Ito K, Oda T, Tanaka M: Distinct conformations of in vitro and in vivo amyloids of huntingtin-exon1 show different cytotoxicity. Proc Natl Acad Sci USA 2009, 106:9679-9684.
  • [8]Saunders HM, Bottomley SP: Multi-domain misfolding: understanding the aggregation pathway of polyglutamine proteins. Protein Eng Des sel 2009, 22:447-451.
  • [9]Kawaguchi Y, Okamoto T, Taniwaki M, Aizawa M, Inoue M, Katayama S, Kawakami H, Nakamura S, Nishimura M, Akiguchi I, et al.: CAG expansions in a novel gene for Machado-Joseph disease at chromosome 14q32.1. Nat Genet 1994, 8:221-228.
  • [10]Masino L, Nicastro G, Menon RP, Dal Piaz F, Calder L, Pastore A: Characterization of the structure and the amyloidogenic properties of the Josephin domain of the polyglutamine-containing protein ataxin-3. J Mol Biol 2004, 344:1021-1035.
  • [11]Kayed R, Head E, Thompson JL, McIntire TM, Milton SC, Cotman CW, Glabe CG: Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science 2003, 300:486-489.
  • [12]Coyle JT, Putfarken P: Oxidative stress, glutamate, and neurodegenerative disorders. Science 1993, 262:689-695.
  • [13]Selkoe D: Transplanting cell biology into therapeutic advances in Alzheimer’s disease. Nature 1999, 399:A23-A31.
  • [14]Smith MA, Rottkamp CA, Nunomura A, Raina AK, Perry G: Oxidative stress in Alzheimer’s disease. Biochim Biophys Acta 2000, 1502:139-144.
  • [15]Gidalevitz T, Ben-Zvi AB, Ho KH, Brignull HR, Morimoto RI: Progressive disruption of cellular protein folding in models of polyglutamine diseases. Science 2006, 311:1471-1474.
  • [16]Olshina M, Angley LM, Ramdzan YM, Tang J, Bailey MF, Hill AF, Hatters DM: Tracking mutant huntingtin aggregation kinetics in cells reveals three major populations that include an invariant oligomer pool. J Biol Chem 2010, 285:21807-21816.
  • [17]Rosenblatt A, Liang K-Y, Zhou H, Abbott MH, Gourley LM, Margolis RL, Brandt J, Ross CA: The association of CAG repeat length with clinical progression in Huntington disease. Neurology 2006, 66:1016-1020.
  • [18]Clarke G, Collins RA, Leavitt BR, Andrews DF, Hayden MR, Lumsden CJ, Mcinnes RR: A one-hit model of cell death in inherited neuronal degeneration. Nature 2000, 406:195-199.
  • [19]Colby DW, Cassady JP, Lin GC, Ingram VM, Wittrup KD: Stochastic kinetics of intracellular huntingtin aggregate formation. Nat Chem Biol 2006, 2:319-323.
  • [20]Sugaya K, Matsubara S: Nucleation of protein aggregation kinetics as a basis for genotype-phenotype correlations in polyglutamine diseases. Mol Neurodegener 2009, 4:e29. BioMed Central Full Text
  • [21]Langbehn DR, Brinkman RR, Falush D, Paulsen JS, Hayden MR: A new model for prediction of the age of onset and penetrance for Huntington’s disease based on CAG length. Clin Genet 2004, 65:267-277.
  • [22]Cajavec B, Herzel H, Bernard S: Death of neuronal clusters contributes to variance of age at onset in Huntington’s disease. Neurogenetics 2006, 7:e21-e25.
  • [23]Clarke G, Lumsden CJ: Scale-free neurodegeneration: cellular heterogeneity and the stretched exponential kinetics of cell death. J Theor Biol 2005, 233:515-525.
  • [24]Gray DA, Tsirigotis M, Woulfe J: Ubiquitin, proteasomes, and the aging brain. Sci Aging Knowledge Environ 2003, 2003:RE6.
  • [25]Perutz MF, Finch JT, Berriman J, Lesk A: Amyloid fibers are water-filled nanotubes. Proc Natl Acad Sci USA 2002, 99:5591-5595.
  • [26]Bhattacharyya AM, Thanker AK, Wetzel R: Polyglutamine aggregation nucleation: thermodynamics of a highly unfavorable protein folding reaction. Proc Natl Acad Sci USA 2005, 102:15400-15405.
  • [27]Chen S, Berthelier V, Yang W, Wetzel R: Polyglutamine aggregation behavior in vitro supports a recruitment mechanism of cytotoxicity. J Mol Biol 2001, 311:173-182.
  • [28]O’Nuallain B, Thanker AK, Williams AD, Bhattacharyya AM, Chen S, Thiagarajan G, Wetzel R: Kinetics and thermodynamics of amyloid assembly using a high-performance liquid chromatography-based sedimentation assay. Methods Enzymol 2006, 413:34-74.
  • [29]Szabo A: Fluctuations in the polymerization of sickle hemoglobin: A simple analytic model. J Mol Biol 1988, 199:539-542.
  • [30]Wetzel R: Nucleation of huntingtin aggregation in cells. Nat Chem Biol 2006, 2:297-298.
  • [31]Sharp AH, Love SJ, Schilling G, Li SH, Li XJ, Bao J, Wagster MV, Kotzuk JA, Steiner JP, Lo A, et al.: Widespread expression of Huntington’s disease gene (IT15) protein product. Neuron 1995, 14:1065-1074.
  • [32]Aylward EH, Codori AM, Barta PE, Pearlson GD, Harris GJ, Brandt J: Basal ganglia volume and proximity to onset in presymptomatic Huntington disease. Arch Neurol 1996, 53:1293-1296.
  • [33]Aylward EH, Li Q, Stine OC, Ranen N, Sherr M, Barta PE, Bylsma FW, Pearlson GD, Ross CA: Longitudinal change in basal ganglia volume in patients with Huntington's disease. Neurology 1997, 48:394-399.
  • [34]Ruocco HH, Bonilha L, Li LM, Lopes-Cendes I, Cendes F: Longitudinal analysis of regional grey matter loss in Huntington disease: effects of the length of the expanded CAG repeat. J Neurol Neurosurg Psychiatry 2008, 79:130-135.
  • [35]Aylward EH, Sparks BF, Field KM, Yallapragada V, Shpritz BD, Rosenblatt A, Brandt J, Gourley LM, Liang K, Zhou H, et al.: Onset and rate of striatal atrophy in preclinical Huntington disease. Neurology 2004, 63:66-72.
  • [36]Andrew SE, Goldberg YP, Kremer B, Telenius H, Theilmann J, Adam S, Starr E, Squitieri F, Lin B, Kalchman MA, et al.: The relationship between trinucleotide (CAG) repeat length and clinical features of Huntington’s disease. Nat Genet 1993, 4:398-403.
  • [37]Maciel P, Gaspar C, DeStefano AL, Silveira I, Coutinho P, Radvany J, Dawson DM, Sudarsky L, Guimaraes J, Loureiro JEL, et al.: Correlation between CAG repeat length and clinical features in Machado-Joseph disease. Am J Hum Genet 1995, 57:54-61.
  • [38]Maruyama H, Nakamura S, Matsuyama Z, Sakai T, Doyu M, Sobue G, Seto M, Tsujihata M, Oh-i T, Nishino T, et al.: Molecular features of the CAG repeats and clinical manifestation of Machado-Joseph disease. Hum Mol Genet 1995, 4:807-812.
  • [39]van de Warrenburg BP, Sinke RJ, Verschuuren-Bemelmans CC, Scheffer H, Brunt ER, Ippel PF, Maat-Kievit JA, Dooijes D, Notermans NC, Lindhout D, et al.: Spinocerebellar ataxias in the Netherlands: prevalence and age at onset variance analysis. Neurology 2002, 58:702-708.
  • [40]van de Warrenburg BP, Hendriks H, Dürr A, van Zuijelen MC, Stevanin G, Camuzat A, Sinke RJ, Brice A, Kremer BP: Age at onset variance analysis in spinocerebellar ataxias: a study in Dutch-French cohort. Ann Neurol 2005, 57:505-512.
  • [41]Abe Y, Tanaka F, Matsumoto M, Doyu M, Hirayama M, Kachi T, Sobue G: CAG repeat number correlates with the rate of brainstem and cerebellar atrophy in Machado-Joseph disease. Neurology 1995, 51:882-884.
  • [42]Rosenblatt A, Margolis RL, Becher MW, Aylward E, Franz ML, Sherr M, Abbott MH, Lian KY, Ross CA: Does CAG repeat number predict the rate of pathological changes in Huntington’s disease? Ann Neurol 1998, 44:708-709.
  • [43]Folstein SE, Jensen B, Leigh RJ, Folstein MF: The measurement of abnormal movement: methods developed for Huntington’s disease. Neurobehav Toxicol Teratol 1983, 5:605-609.
  • [44]Raz N, Rodrigue KM, Kennedy KM, Head D, Gunning-Dixon F, Acker JD: Differential aging of the human striatum: longitudinal evidence. AJNR Am J Neuroradiol 2003, 24:1849-1856.
  • [45]Hobbs NZ, Barnes J, Frost C, Henley SMD, Wild EJ, Macdonald K, Barker RA, Scahill RJ, Fox NC, Tabrizi SJ: Onset and progression of pathologic atrophy in Huntington disease: a longitudinal MR imaging study. AJNR Am J Neuroradiol 2010, 31:1036-1041.
  • [46]Wang Q, Xu X, Zhang M: Normal aging in the basal ganglia evaluated by eigenvalues of diffusion tensor imaging. AJNR Am J Neuroradiol 2010, 31:516-520.
  • [47]Gusella JF, MacDonald ME: Huntington’s disease: seeing the pathogenic process through a genetic lens. Trends Biochem Sci 2006, 31:533-540.
  • [48]Kremer B, Clark CM, Almqvist EW, Raymond LA, Graf P, Jacova C, Mezei M, Hardy MA, Snow B, Martin W, et al.: Influence of lamotrigine on progression of early Huntington disease: a randomized clinical trial. Neurology 1999, 53:1000-1011.
  • [49]Miller J, Arrasate M, Shaby BA, Mitra S, Masliah E, Finkbeiner S: Quantitative relationships between huntingtin levels, polyglutamine length, inclusion body formation, and neuronal death provide novel insight into Huntington’s disease molecular pathogenesis. J Neurosci 2010, 30:10541-10550.
  • [50]Ross CA: Polyglutamine pathogenesis: emergence of unifying mechanisms for Huntington’s disease and related disorders. Neuron 2002, 35:819-822.
  • [51]Thakur AK, Jayaraman M, Mishra R, Thakur M, Chellgren VM, Byeon IJ, Anjum DH, Kodali R, Creamer TP, Conway JF, et al.: Polyglutamine disruption of the huntingtin exon 1 N terminus triggers a complex aggregation mechanism. Nat Struct Mol Biol 2009, 16:380-389.
  • [52]Osmand AP, Berthelier V, Wetzel R: Imaging polyglutamine deposits in brain tissue. Methods Enzymol 2006, 412:106-122.
  • [53]Finch CE: Longevity, senescence and the genome. Chicago: University of Chicago Press; 1990.
  • [54]Gavrilov LA, Gavrilova NS: The biology of life span: a quantitative approach. New York: Harwood Academic Publisher; 1991.
  • [55]Klockgether T, Ludtke R, Kramer B, Abele M, Burk K, Schols L, Riess O, F. Laccone F, Boesch S, Lopes-Cendes I: The natural history of degenerative ataxia: a retrospective study in 466 patients. Brain 1998, 121:589-600.
  • [56]Clarke G, Lumsden CJ, Mclnnes RR: Inherited neurodegenerative diseases: the one-hit model of neurodegeneration. Hum Mol Genet 2001, 10:2269-2275.
  • [57]Nagai Y, Inui T, Popiel HA, Fujikake N, Hasegawa K, Urade Y, Goto Y, Naiki H, Toda T: A toxic monomeric conformer of the polyglutamine protein. Nat Struct Mol Biol 2007, 14:332-340.
  • [58]Arrasate M, Mitra S, Schweitzer ES, Segal MR, Finkbeiner S: Inclusion body formation reduces levels of mutant huntingtin and the risk of neuronal death. Nature 2004, 431:805-810.
  • [59]Xu J, Kao S-Y, Lee FJS, Song W, Jin L-W, Yankner BA: Dopamine-dependent neurotoxicity of α-synuclein: a mechanism for selective neurodegeneration in Parkinson disease. Nat Med 2002, 8:600-606.
  • [60]Haass C, Selkoe DJ: Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid β-peptide. Nat Rev Mol Cell Biol 2007, 8:101-112.
  • [61]Schwarz J, Storch A, Koch W, Pogarell O, Radau PE, Tatsch K: Loss of dopamine transporter binding in Parkinson’s disease follows a single exponential rather than linear decline. J Nucl Med 2004, 45:1694-1697.
  • [62]Hilker R, Schweitzer K, Coburger S, Ghaemi M, Weisenbach S, Jacobs AH, Rudolf J, Herholz K, Heiss WD: Nonlinear progression of Parkinson disease as determined by serial positron emission tomographic imaging of striatal fluorodopa F 18 activity. Arch Neurol 2005, 62:378-382.
  • [63]Nandhagopal R, Kuramoto L, Schulzer M, Mak E, Cragg J, Lee CS, Mckenzie J, McCormick S, Samii A, Troiano A, et al.: Longitudinal progression of sporadic Parkinson's disease: a multi-tracer positron emission tomography study. Brain 2009, 132:2970-2979.
  • [64]Uversky VM: Mysterious oligomerization of the amyloidogenic proteins. FEBS J 2010, 277:2940-2953.
  文献评价指标  
  下载次数:112次 浏览次数:23次