期刊论文详细信息
Molecular Neurodegeneration
Novel (Hetero)arylalkenyl propargylamine compounds are protective in toxin-induced models of Parkinson’s disease
Beáta Sperlágh2  Micaela Morelli6  Peter Mátyus1  Petra Dunkel1  Christina L. L. Chai7  Mui-Ling Khoo3  Paul B. Huleatt3  Lucia Frau4  Annalisa Pinna6  Ágnes Kittel2  Lilla Otrokocsi5  Szabina Kulcsár2  Flóra Gölöncsér5  Pier Francesca Porceddu4  Mária Baranyi2 
[1] Institute of Organic Chemistry, Semmelweis University, Budapest, Hungary;Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary;Institute of Chemical Engineering and Science, A*STAR, 8 Biomedical Grove, Neuros, Singapore 138665, Singapore;Department of Biomedical Sciences, Section of Neuropsychopharmacology, University of Cagliari, Cagliari, Italy;János Szentágothai Doctoral School of Neurosciences, Semmelweis University, Budapest, Hungary;National Research Council of Italy, Neuroscience Institute, Cagliari, Italy;Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore
关键词: Dopamine;    Neuroprotection;    Mono-aminooxidase B;    Mitochondrial dysfunction;    Parkinson’s disease;    Propargylamine;   
Others  :  1235369
DOI  :  10.1186/s13024-015-0067-y
 received in 2015-08-25, accepted in 2015-12-22,  发布年份 2016
PDF
【 摘 要 】

Background

Mitochondrial dysfunction, oxidative stress and their interplay are core pathological features of Parkinson’s disease. In dopaminergic neurons, monoamines and their metabolites provide an additional source of reactive free radicals during their breakdown by monoamine oxidase or auto-oxidation. Moreover, mitochondrial dysfunction and oxidative stress have a supraadditive impact on the pathological, cytoplasmic accumulation of dopamine and its subsequent release. Here we report the effects of a novel series of potent and selective MAO-B inhibitory (hetero)arylalkenylpropargylamine compounds having protective properties against the supraadditive effect of mitochondrial dysfunction and oxidative stress.

Results

The (hetero)arylalkenylpropargylamines were tested in vitro, on acute rat striatal slices, pretreated with the complex I inhibitor rotenone and in vivo, using the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) induced acute, subchronic, and chronic experimental models of Parkinson’s disease in mice. The compounds exhibited consistent protective effects against i) in vitro oxidative stress induced pathological dopamine release and the formation of toxic dopamine quinone in the rat striatum and rescued tyrosine hydroxylase positive neurons in the substantia nigra after rotenone treatment; ii) in vivo MPTP-induced striatal dopamine depletion and motor dysfunction in mice using acute and subchronic, delayed application protocols. One compound (SZV558) was also examined and proved to be protective in a chronic mouse model of MPTP plus probenecid (MPTPp) administration, which induces a progressive loss of nigrostriatal dopaminergic neurons.

Conclusions

Simultaneous inhibition of MAO-B and oxidative stress induced pathological dopamine release by the novel propargylamines is protective in animal models and seems a plausible strategy to combat Parkinson’s disease.

【 授权许可】

   
2016 Baranyi et al.

【 预 览 】
附件列表
Files Size Format View
20160118040346344.pdf 3651KB PDF download
Fig. 8. 53KB Image download
Fig. 7. 124KB Image download
Fig. 6. 50KB Image download
Fig. 5. 16KB Image download
Fig. 4. 81KB Image download
Fig. 3. 32KB Image download
Fig. 2. 265KB Image download
Fig. 1. 61KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

Fig. 7.

Fig. 8.

【 参考文献 】
  • [1]Jankovic J, Poewe W. Therapies in Parkinson's disease. Curr Opin Neurol. 2012; 25(4):433-47.
  • [2]Poewe W, Mahlknecht P, Jankovic J. Emerging therapies for Parkinson's disease. Curr Opin Neurol. 2012; 25(4):448-59.
  • [3]Vitale C, Santangelo G, Erro R, Errico D, Manganelli F, Improta I et al.. Impulse control disorders induced by rasagiline as adjunctive therapy for Parkinson's disease: report of 2 cases. Parkinsonism Relat Disord. 2013; 19(4):483-4.
  • [4]Youdim MB, Riederer PF. A review of the mechanisms and role of monoamine oxidase inhibitors in Parkinson's disease. Neurology. 2004; 63:S32-5.
  • [5]Bar-Am O, Amit T, Youdim MB. Aminoindan and hydroxyaminoindan, metabolites of rasagiline and ladostigil, respectively, exert neuroprotective properties in vitro. J Neurochem. 2007; 103(2):500-8.
  • [6]Zheng H, Gal S, Weiner LM, Bar-Am O, Warshawsky A, Fridkin M et al.. Novel multifunctional neuroprotective iron chelator-monoamine oxidase inhibitor drugs for neurodegenerative diseases: in vitro studies on antioxidant activity, prevention of lipid peroxide formation and monoamine oxidase inhibition. J Neurochem. 2005; 95(1):68-78.
  • [7]Ahlskog JE, Uitti RJ. Rasagiline, Parkinson neuroprotection, and delayed-start trials: still no satisfaction? Neurology. 2010; 74(14):1143-8.
  • [8]Olanow CW, Rascol O. The delayed-start study in Parkinson disease: can't satisfy everyone. Neurology. 2010; 74(14):1149-50.
  • [9]Meissner WG, Frasier M, Gasser T, Goetz CG, Lozano A, Piccini P et al.. Priorities in Parkinson's disease research. Nat Rev Drug Discov. 2011; 10(5):377-93.
  • [10]Seidl SE, Potashkin JA. The promise of neuroprotective agents in Parkinson's disease. Front Neurol. 2011; 2:68.
  • [11]Dunkel P, Chai CL, Sperlagh B, Huleatt PB, Matyus P. Clinical utility of neuroprotective agents in neurodegenerative diseases: current status of drug development for Alzheimer's, Parkinson's and Huntington's diseases, and amyotrophic lateral sclerosis. Expert Opin Investig Drugs. 2012; 21(9):1267-308.
  • [12]Fahn S, Sulzer D. Neurodegeneration and neuroprotection in Parkinson disease. NeuroRx. 2004; 1(1):139-54.
  • [13]Schapira AH, Olanow CW. Neuroprotection in Parkinson disease: mysteries, myths, and misconceptions. JAMA. 2004; 291(3):358-64.
  • [14]Greenamyre JT, Hastings TG. Biomedicine. Parkinson's--divergent causes, convergent mechanisms. Science. 2004; 304(5674):1120-2.
  • [15]Betarbet R, Sherer TB, MacKenzie G, Garcia-Osuna M, Panov AV, Greenamyre JT. Chronic systemic pesticide exposure reproduces features of Parkinson's disease. Nat Neurosci. 2000; 3(12):1301-6.
  • [16]Milusheva E, Baranyi M, Kittel A, Sperlagh B, Vizi ES. Increased sensitivity of striatal dopamine release to H2O2 upon chronic rotenone treatment. Free Radic Biol Med. 2005; 39(1):133-42.
  • [17]Sherer TB, Kim JH, Betarbet R, Greenamyre JT. Subcutaneous rotenone exposure causes highly selective dopaminergic degeneration and alpha-synuclein aggregation. Exp Neurol. 2003; 179(1):9-16.
  • [18]Milusheva E, Baranyi M, Kittel A, Fekete A, Zelles T, Vizi ES et al.. Modulation of dopaminergic neurotransmission in rat striatum upon in vitro and in vivo diclofenac treatment. J Neurochem. 2008; 105(2):360-8.
  • [19]Milusheva E, Baranyi M, Kormos E, Hracsko Z, Sylvester Vizi E, Sperlagh B. The effect of antiparkinsonian drugs on oxidative stress induced pathological [3H]dopamine efflux after in vitro rotenone exposure in rat striatal slices. Neuropharmacology. 2010; 58(4–5):816-25.
  • [20]Baranyi M, Milusheva E, Vizi ES, Sperlagh B. Chromatographic analysis of dopamine metabolism in a Parkinsonian model. J Chromatogr A. 2006; 1120(1–2):13-20.
  • [21]Hastings TG. The role of dopamine oxidation in mitochondrial dysfunction: implications for Parkinson's disease. J Bioenerg Biomembr. 2009; 41(6):469-72.
  • [22]Yamato M, Kudo W, Shiba T, Yamada KI, Watanabe T, Utsumi H. Determination of reactive oxygen species associated with the degeneration of dopaminergic neurons during dopamine metabolism. Free Radic Res. 2010; 44(3):249-57.
  • [23]Graham DG. Oxidative pathways for catecholamines in the genesis of neuromelanin and cytotoxic quinones. Mol Pharmacol. 1978; 14(4):633-43.
  • [24]Huleatt PB, Khoo ML, Chua YY, Tan TW, Liew RS, Balogh B et al.. Novel arylalkenylpropargylamines as neuroprotective, potent, and selective monoamine oxidase B inhibitors for the treatment of Parkinson's disease. J Med Chem. 2015; 58(3):1400-19.
  • [25]Bezard E, Jaber M, Gonon F, Boireau A, Bloch B, Gross CE. Adaptive changes in the nigrostriatal pathway in response to increased 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neurodegeneration in the mouse. Eur J Neurosci. 2000; 12(8):2892-900.
  • [26]Fornai F, Schluter OM, Lenzi P, Gesi M, Ruffoli R, Ferrucci M et al.. Parkinson-like syndrome induced by continuous MPTP infusion: convergent roles of the ubiquitin-proteasome system and alpha-synuclein. Proc Natl Acad Sci U S A. 2005; 102(9):3413-8.
  • [27]Meredith GE, Rademacher DJ. MPTP mouse models of Parkinson's disease: an update. J Parkinsons Dis. 2011; 1(1):19-33.
  • [28]Petroske E, Meredith GE, Callen S, Totterdell S, Lau YS. Mouse model of Parkinsonism: a comparison between subacute MPTP and chronic MPTP/probenecid treatment. Neuroscience. 2001; 106(3):589-601.
  • [29]Schintu N, Frau L, Ibba M, Garau A, Carboni E, Carta AR. Progressive dopaminergic degeneration in the chronic MPTPp mouse model of Parkinson's disease. Neurotox Res. 2009; 16(2):127-39.
  • [30]Carta AR, Carboni E, Spiga S. The MPTP/probenecid model of progressive Parkinson's disease. Methods Mol Biol. 2013; 964:295-308.
  • [31]Ugrumov MV, Khaindrava VG, Kozina EA, Kucheryanu VG, Bocharov EV, Kryzhanovsky GN et al.. Modeling of presymptomatic and symptomatic stages of parkinsonism in mice. Neuroscience. 2011; 181:175-88.
  • [32]Jackson-Lewis V, Przedborski S. Protocol for the MPTP mouse model of Parkinson's disease. Nat Protoc. 2007; 2(1):141-51.
  • [33]Tatton NA, Kish SJ. In situ detection of apoptotic nuclei in the substantia nigra compacta of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated mice using terminal deoxynucleotidyl transferase labelling and acridine orange staining. Neuroscience. 1997; 77(4):1037-48.
  • [34]De Jesus-Cortes H, Xu P, Drawbridge J, Estill SJ, Huntington P, Tran S et al.. Neuroprotective efficacy of aminopropyl carbazoles in a mouse model of Parkinson disease. Proc Natl Acad Sci U S A. 2012; 109(42):17010-5.
  • [35]Blandini F, Armentero MT. Animal models of Parkinson's disease. FEBS J. 2012; 279(7):1156-66.
  • [36]Cicchetti F, Drouin-Ouellet J, Gross RE. Environmental toxins and Parkinson's disease: what have we learned from pesticide-induced animal models? Trends Pharmacol Sci. 2009; 30(9):475-83.
  • [37]Cadet JL, Brannock C. Free radicals and the pathobiology of brain dopamine systems. Neurochem Int. 1998; 32(2):117-31.
  • [38]Asanuma M, Miyazaki I, Ogawa N. Dopamine- or L-DOPA-induced neurotoxicity: the role of dopamine quinone formation and tyrosinase in a model of Parkinson's disease. Neurotox Res. 2003; 5(3):165-76.
  • [39]Miyazaki I, Asanuma M. Approaches to prevent dopamine quinone-induced neurotoxicity. Neurochem Res. 2009; 34(4):698-706.
  • [40]Wang N, Wang Y, Yu G, Yuan C, Ma J. Quinoprotein adducts accumulate in the substantia nigra of aged rats and correlate with dopamine-induced toxicity in SH-SY5Y cells. Neurochem Res. 2011; 36(11):2169-75.
  • [41]Berman SB, Hastings TG. Dopamine oxidation alters mitochondrial respiration and induces permeability transition in brain mitochondria: implications for Parkinson's disease. J Neurochem. 1999; 73(3):1127-37.
  • [42]Bisaglia M, Soriano ME, Arduini I, Mammi S, Bubacco L. Molecular characterization of dopamine-derived quinones reactivity toward NADH and glutathione: implications for mitochondrial dysfunction in Parkinson disease. Biochim Biophys Acta. 2010; 1802(9):699-706.
  • [43]Li H, Dryhurst G. Irreversible inhibition of mitochondrial complex I by 7-(2-aminoethyl)-3,4-dihydro-5-hydroxy-2H-1,4-benzothiazine-3-carboxyli c acid (DHBT-1): a putative nigral endotoxin of relevance to Parkinson's disease. J Neurochem. 1997; 69(4):1530-41.
  • [44]Hauser DN, Dukes AA, Mortimer AD, Hastings TG. Dopamine quinone modifies and decreases the abundance of the mitochondrial selenoprotein glutathione peroxidase 4. Free Radic Biol Med. 2013; 65:419-27.
  • [45]Belluzzi E, Bisaglia M, Lazzarini E, Tabares LC, Beltramini M, Bubacco L. Human SOD2 modification by dopamine quinones affects enzymatic activity by promoting its aggregation: possible implications for Parkinson's disease. PLoS One. 2012; 7(6):e38026.
  • [46]Zafar KS, Siegel D, Ross D. A potential role for cyclized quinones derived from dopamine, DOPA, and 3,4-dihydroxyphenylacetic acid in proteasomal inhibition. Mol Pharmacol. 2006; 70(3):1079-86.
  • [47]Kuhn DM, Arthur RE, Thomas DM, Elferink LA. Tyrosine hydroxylase is inactivated by catechol-quinones and converted to a redox-cycling quinoprotein: possible relevance to Parkinson's disease. J Neurochem. 1999; 73(3):1309-17.
  • [48]Xu Y, Stokes AH, Roskoski R, Vrana KE. Dopamine, in the presence of tyrosinase, covalently modifies and inactivates tyrosine hydroxylase. J Neurosci Res. 1998; 54(5):691-7.
  • [49]Whitehead RE, Ferrer JV, Javitch JA, Justice JB. Reaction of oxidized dopamine with endogenous cysteine residues in the human dopamine transporter. J Neurochem. 2001; 76(4):1242-51.
  • [50]Conway KA, Rochet JC, Bieganski RM, Lansbury PT. Kinetic stabilization of the alpha-synuclein protofibril by a dopamine-alpha-synuclein adduct. Science. 2001; 294(5545):1346-9.
  • [51]Hracsko Z, Baranyi M, Csolle C, Goloncser F, Madarasz E, Kittel A et al.. Lack of neuroprotection in the absence of P2X7 receptors in toxin-induced animal models of Parkinson's disease. Mol Neurodegener. 2011; 6:28. BioMed Central Full Text
  • [52]Melrose HL, Lincoln SJ, Tyndall GM, Farrer MJ. Parkinson's disease: a rethink of rodent models. Exp Brain Res. 2006; 173(2):196-204.
  • [53]Mori A, Ohashi S, Nakai M, Moriizumi T, Mitsumoto Y. Neural mechanisms underlying motor dysfunction as detected by the tail suspension test in MPTP-treated C57BL/6 mice. Neurosci Res. 2005; 51(3):265-74.
  • [54]Kupsch A, Sautter J, Gotz ME, Breithaupt W, Schwarz J, Youdim MB et al.. Monoamine oxidase-inhibition and MPTP-induced neurotoxicity in the non-human primate: comparison of rasagiline (TVP 1012) with selegiline. J Neural Transm. 2001; 108(8–9):985-1009.
  • [55]Bove J, Perier C. Neurotoxin-based models of Parkinson's disease. Neuroscience. 2012; 211:51-76.
  • [56]Fleming SM, Ekhator OR, Ghisays V. Assessment of sensorimotor function in mouse models of Parkinson's disease. J Vis Exp. 2013(76). doi:10.3791/50303.
  • [57]Chia LG, Ni DR, Cheng LJ, Kuo JS, Cheng FC, Dryhurst G. Effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and 5,7-dihydroxytryptamine on the locomotor activity and striatal amines in C57BL/6 mice. Neurosci Lett. 1996; 218(1):67-71.
  • [58]Sulzer D, Surmeier DJ. Neuronal vulnerability, pathogenesis, and Parkinson's disease. Mov Disord. 2013; 28(6):715-24.
  • [59]Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951; 193(1):265-75.
  • [60]Sedelis M, Schwarting RK, Huston JP. Behavioral phenotyping of the MPTP mouse model of Parkinson's disease. Behav Brain Res. 2001; 125(1–2):109-25.
  • [61]Hu SC, Chang FW, Sung YJ, Hsu WM, Lee EH. Neurotoxic effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in the substantia nigra and the locus coeruleus in BALB/c mice. J Pharmacol Exp Ther. 1991; 259(3):1379-87.
  • [62]Shiozaki S, Ichikawa S, Nakamura J, Kitamura S, Yamada K, Kuwana Y. Actions of adenosine A2A receptor antagonist KW-6002 on drug-induced catalepsy and hypokinesia caused by reserpine or MPTP. Psychopharmacology (Berl). 1999; 147(1):90-5.
  • [63]Shiotsuki H, Yoshimi K, Shimo Y, Funayama M, Takamatsu Y, Ikeda K et al.. A rotarod test for evaluation of motor skill learning. J Neurosci Methods. 2010; 189(2):180-5.
  • [64]Baiguera C, Alghisi M, Pinna A, Bellucci A, De Luca MA, Frau L et al.. Late-onset Parkinsonism in NFkappaB/c-Rel-deficient mice. Brain. 2012; 135(Pt 9):2750-65.
  • [65]Fleming SM, Zhu C, Fernagut PO, Mehta A, DiCarlo CD, Seaman RL et al.. Behavioral and immunohistochemical effects of chronic intravenous and subcutaneous infusions of varying doses of rotenone. Exp Neurol. 2004; 187(2):418-29.
  • [66]Meredith GE, Kang UJ. Behavioral models of Parkinson's disease in rodents: a new look at an old problem. Mov Disord. 2006; 21(10):1595-606.
  • [67]Frau L, Borsini F, Wardas J, Khairnar AS, Schintu N, Morelli M. Neuroprotective and anti-inflammatory effects of the adenosine A(2A) receptor antagonist ST1535 in a MPTP mouse model of Parkinson's disease. Synapse. 2011; 65(3):181-8.
  文献评价指标  
  下载次数:2次 浏览次数:4次