期刊论文详细信息
Molecular Cytogenetics
Comparative cytogenetics in the genus Hoplias (Characiformes, Erythrinidae) highlights contrasting karyotype evolution among congeneric species
Marcelo de Bello Cioffi3  Thomas Liehr2  Cassia Fernanda Yano3  Luiz Antônio Carlos Bertollo3  Ezequiel Aguiar de Oliveira1 
[1] SEDUC-MT, Cuiabá, MT, Brazil;Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Kollegiengasse 10, Jena, D-07743, Germany;Universidade Federal de São Carlos, Departamento de Genética e Evolução, São Carlos, SP, Brazil
关键词: Chromosome change and speciation;    Repetitive DNA;    FISH;    Fish cytogenetics;    Trahiras;   
Others  :  1221565
DOI  :  10.1186/s13039-015-0161-4
 received in 2015-05-28, accepted in 2015-07-14,  发布年份 2015
PDF
【 摘 要 】

Background

The Erythrinidae fish family contains three genera, Hoplias, Erythrinus and Hoplerythrinus widely distributed in Neotropical region. Remarkably, species from this family are characterized by an extensive karyotype diversity, with 2n ranging from 39 to 54 chromosomes and the occurrence of single and/or multiple sex chromosome systems in some species. However, inside the Hoplias genus, while H. malabaricus was subject of many studies, the cytogenetics of other congeneric species remains poorly explored. In this study, we have investigated chromosomal characteristics of four Hoplias species, namely H. lacerdae, H. brasiliensis, H. intermedius and H. aimara. We used conventional staining techniques (C-banding, Ag-impregnation and CMA 3-fluorescence) as well as fluorescence in situ hybridization (FISH) with minor and major rDNA and microsatellite DNAs as probes in order to analyze the karyotype evolution within the genus.

Results

All species showed invariably 2n = 50 chromosomes and practically identical karyotypes dominated only by meta- and submetacentric chromosomes, the absence of heteromorphic sex chromosomes, similar pattern of C-positive heterochromatin blocks and homologous Ag-NOR-bearing pairs. The cytogenetic mapping of five repetitive DNA sequences revealed some particular interspecific differences between them. However, the examined chromosomal characteristics indicate that their speciation was not associated with major changes in their karyotypes.

Conclusion

Such conserved karyotypes contrasts with the extensive karyotype diversity that has been observed in other Erythrinidae species, particularly in the congeneric species H. malabaricus. Nevertheless, what forces drive such particularly different modes of karyotype evolution among closely related species? Different life styles, population structure and inner chromosomal characteristics related to similar cases in other vertebrate groups can also account for the contrasting modes of karyotype evolution in Hoplias genus.

【 授权许可】

   
2015 de Oliveira et al.

【 预 览 】
附件列表
Files Size Format View
20150802082324746.pdf 1639KB PDF download
Fig. 8. 34KB Image download
Fig. 7. 44KB Image download
Fig. 6. 48KB Image download
Fig. 5. 47KB Image download
Fig. 4. 47KB Image download
Fig. 3. 48KB Image download
Fig. 2. 77KB Image download
Fig. 1. 72KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

Fig. 7.

Fig. 8.

【 参考文献 】
  • [1]Oyakawa OT. Family Erythrinidae. In: Check list of the freshwater fishes of South and Central America. Reis RE, Kullander SO, Ferraris CJ Jr, editors. Edipucrs, Porto Alegre; 2003: p.238-240.
  • [2]Bertollo LAC, Born GG, Dergam JA, Fenocchio AS, Moreira-Filho O. A biodiversity approach in the Neotropical Erythrinidae fish, Hoplias malabaricus. Karyotypic survey, geographic distribution of cytotypes and citotaxonomic considerations. Chromosome Res. 2000; 8:603-613.
  • [3]Bertollo LAC. Chromosome evolution in the Neotropical Erythrinidae fish family: An overview. In: Fish Cytogenetics. Pizano E, Ozouf-Costaz C, Foresti F, Kapoor BG, editors. Science Publishers, Enfield; 2007: p.195-211.
  • [4]Cioffi MB, Molina WF, Artoni RF, Bertollo LAC. Chromosomes as tools for discovering biodiversity. The case of Erythrinidae fish family. In: Recent Trends in Cytogenetic Studies. Methodologies and Applications. Tirunilai P, editor. Intech, Rijeka; 2012: p.125-146.
  • [5]Cioffi MB, Liehr T, Trifonov V, Molina WF, Bertollo LAC. Independent sex chromosome evolution in lower vertebrates: A molecular cytogenetic overview in the Erythrinidae fish family. Cytogenet Genome Res. 2013; 141:86-194.
  • [6]Oyakawa OT, Mattox MT. Revision of the Neotropical trahiras of the Hoplias lacerdae species-group (Ostariophysi: Characiformes: Erythrinidae) with descriptions of two new species. Neotrop Ichthyol. 2009; 7:117-140.
  • [7]Mattox GT, Toledo-Piza M, Oyakawa OT. Taxonomic study of Hoplias aimara (Valenciennes, 1846) and Hoplias macrophthalmus (Pellegrin, 1907) (Ostariophysi, Characiformes, Erythrinidae). Copeia. 2006; 2006(3):516-528.
  • [8]Bertollo LAC, Takahashi CS, Moreira-Filho O. Cytotaxonomic considerations on Hoplias lacerdae (Pisces, Erythrinidae). Braz J Genet. 1978; 1:103-120.
  • [9]Morelli S, Vicari MR, Bertollo LAC. Evolutionary cytogenetics of the Hoplias lacerdae, Miranda Ribeiro, 1908 group. A particular pathway concerning the other Erythrinidae fish. Braz J Biol. 2007; 67:897-903.
  • [10]Blanco DR, Lui RL, Vicari MR, Bertollo LAC, Moreira-Filho O. Comparative cytogenetics of giant trahiras Hoplias aimara and H. intermedius (Characiformes, Erythrinidae): Chromosomal characteristics of minor and major ribosomal DNA and cross-species repetitive centromeric sequences mapping differ among morphologically identical karyotypes. Cytogenet Genome Res. 2011; 132:71-78.
  • [11]Biemont C, Vieira C. Genetics: junk DNA as an evolutionary force. Nature. 2006; 443:521-524.
  • [12]Raskina O, Barber JC, Nevo E, Belyayev A. Repetitive DNA and chromosomal rearrangements: Speciation-related events in plant genomes. Cytogenet Genome Res. 2008; 120:351-357.
  • [13]Mayr B, Kalat M, Ràb P. Localization of NORs and counterstain enhanced fluorescence studies in Perca fluviatilis (Pisces, Percidae). Genetica. 1985; 67:51-56.
  • [14]Phillips RB, Hartley SE. Fluorescent banding patterns of the chromosomes of the genus Salmo. Genome. 1988; 30:193-197.
  • [15]Sola L, Rossi AR, Laselli V, Rash EM, Monaco PJ. Cytogenetics of bisexual/unisexual species of Poecilia. II. Analysis of heterochromatin and nucleolar organizer regions in Poecilia mexicana mexicana by C-banding and DAPI, quinacrine, chromomycin A3 and silver staining. Cytogenet Cell Genet. 1992; 60:229-235.
  • [16]Rábová M, Ráb P, Ozouf-Costaz C, Ene C, Wanzeböck J. Comparative cytogenetics and chromosomal characteristics of ribosomal DNA in the fish genus Vimba (Cyprinidae). Genetica. 2003; 118:83-91.
  • [17]Bellafronte E, Vicari MR, Artoni RF, Margarido VP, Moreira-Filho O. Differentiated ZZ/ZW sex chromosomes in Apareiodon ibitiensis (Teleostei, Parodontidae): considerations on cytotaxonomy and biogeography. J Fish Biol. 2009; 75:2313-2325.
  • [18]Mandrioli M, Manicardi GC, Machella N, Caputo V. Molecular and cytogenetic analysis of the goby Gobius niger (Teleostei, Gobiidae). Genetica. 2001; 110:73-78.
  • [19]Souza IL, Galián J, De La Rúa P, Bertollo LAC, Moreira FO. Non-random distribution of the GC-rich heterochromatin and nucleolar rDNA sites on Astyanax scabripinnis chromosomes. Cytologia. 2001; 66:85-91.
  • [20]Volff JN. Genome evolution and biodiversity in teleost fish. Heredity. 2005; 94:280-294.
  • [21]Costa AC, Loh SH, Martins LM. Drosophila Trap1 protects against mitochondrial dysfunction in a PINK1/parkin model of Parkinson's disease. Cell Death Dis. 2013; 4:e467.
  • [22]Cioffi MB, Martins C, Bertollo LAC. Chromosome spreading of associated transposable elements and ribosomal DNA in the fish Erythrinus erythrinus. Implications for genome change and karyoevolution in fish. BMC Evol Biol. 2010; 10:271. BioMed Central Full Text
  • [23]Martins NF, Bertollo LAC, Troy WP, Feldberg E, Valentin FCS, Cioffi MB. Differentiation and evolutionary relationships in Erythrinus erythrinus (Characiformes, Erythrinidae): comparative chromosome mapping of repetitive sequences. Rev Fish Biol Fisher. 2013; 23:261-269.
  • [24]Tautz D, Renz M. Simple sequences are ubiquitous repetitive components of eukaryote genomes. Nucleic Acids Res. 1984; 12:4127-4138.
  • [25]Cioffi MB, Bertollo LAC. Chromosomal distribution and evolution of repetitive DNAs in fish. In: Genome Dynamics. Garrido-Ramos MA, editor. Karger, Basel; 2012: p.197-221.
  • [26]Vanzela ALL, Swarça AC, Dias AL, Stolf R, Ruas PM, Ruas CF. Differential distribution of (GA)9 + C microsatellite on chromosomes of some animal and plant species. Cytologia. 2002; 67:9-13.
  • [27]Cioffi MB, Kejnovsky E, Bertollo LAC. The chromosomal distribution of microsatellite repeats in the wolf fish genome Hoplias malabaricus, focusing on the sex chromosomes. Cytogenet Genome Res. 2011; 132:289-296.
  • [28]Yano CF, Poltronieri J, Bertollo LAC, Artoni RF, Liehr T, Cioffi MB. Chromosomal mapping of repetitive DNAs in Triportheus trifurcatus (Characidae, Characiformes): Insights into the differentiation of the Z and W chromosomes. PLoS One. 2014; 9: Article ID e90946
  • [29]Wichman HA, Payne CT, Ryder OA, Hamilton MJ, Maltbie M, Baker RJ. Genomic distribution of heterochromatin sequences in equids: implications to rapid chromosomal evolution. J Hered. 1991; 82:369-377.
  • [30]López-Flores I, Garrido-Ramos MA. The repetitive DNA content of eukaryotic genomes. In: Genome Dynamics. Garrido-Ramos MA, editor. Karger, Basel; 2012: p.1-28.
  • [31]Bhargava A, Fuentes FF. Mutational dynamics of microsatellites. Mol Biotechnol. 2010; 44(3):250-66.
  • [32]Martins C. Chromosomes and repetitive DNAs: a contribution to the knowledge of the fish genome. In: Fish Cytogenetics. Pizano E, Ozouf-Costaz C, Foresti F, Kapoor BG, editors. Science Publishers, Enfield; 2007: p.421-452.
  • [33]Cioffi MB, Martins C, Bertollo LAC. Comparative chromosome mapping of repetitive sequences. Implications for genomic evolution in the fish, Hoplias malabaricus. BMC Genet. 2009; 10:34. BioMed Central Full Text
  • [34]Marques DF, Dos Santos FA, Da Silva SS, Sampaio I, Rodrigues LRR. Cytogenetic and DNA barcoding reveals high divergence within the trahira, Hoplias malabaricus (Characiformes: Erythrinidae) from the lower Amazon River. Neotrop Ichthyol. 2013; 11(2):459-466.
  • [35]Cioffi MB, Martins C, Centofante L, Jacobina U, Bertollo LAC. Chromosomal variability among allopatric populations of Erythrinidae fish Hoplias malabaricus: Mapping of three classes of repetitive DNAs. Cytogenet Genome Res. 2009; 125:132-141.
  • [36]Wainwright PC, Reilly SM. Ecological morphology: integrative organismal biology. University of Chicago Press, Chicago; 1994.
  • [37]Rabosky DL, Santini F, Eastman J, Smith SA, Sidlauskas B, Chang J. Rates of speciation and morphological evolution are correlated across the largest vertebrate radiation. Nat Commun. 2013; 4:1958.
  • [38]Wilson AC, Bush GL, Case SM, King MC. Social structuring of mammalian populations and rate of chromosomal evolution. Proc Natl Acad Sci U S A. 1975; 72:5061-5065.
  • [39]Bush GL, Case SM, Wilson AC, Patton JL. Rapid speciation and chromosomal evolution in mammals. Proc Natl Acad Sci U S A. 1977; 74:3942-3946.
  • [40]Bush GL. Modes of animal speciation. Ann Rev Eco Syst. 1975; 6:339-364.
  • [41]Gibson LJ. Chromosomal changes in mammalian speciation: a literature review. Origins. 1984; 11:67-89.
  • [42]Radinsky LB. New Pantodonta and Dinocerata from the Upper Paleocene of Western Colorado. Field Mus Nat Hist Geol. 1966; 6:351-384.
  • [43]Prothero DR, Schoch RM. Classification of the Perissodactyla. In: The evolution of perissodactyls. Prothero DR, Schoch RM, editors. Oxford University Press, New York; 1989: p.530-537.
  • [44]Phillips R, Rab P. Chromosome Evolution in the Salmonidae (Pisces): an update. Biol Rev Camb Philos Soc. 2001; 76:1-25.
  • [45]Pellestor F, Anahory T, Lefort G, Puechberty J, Liehr T, Hédon B. Complex chromosomal rearrangements: origin and meiotic behavior. Hum Reprod Update. 2011; 17(4):476-94.
  • [46]Butlin RK. Recombination and speciation. Mol Ecol. 2005; 14:2621-2635.
  • [47]Bertollo LAC, Moreira-Filho O, Galetti PM. Cytogenetics and taxonomy: consideration based on chromosome studies of freshwater fish. J Fish Biol. 1986; 28:153-159.
  • [48]Oliveira C, Almeida-Toledo LF, Foresti F, Britski H, Toledo-Filho SA. Chromosome formulae of Neotropical freshwater fishes. Braz J Genet. 1988; 11:577-624.
  • [49]Rishi KK, Haobam MS. A chromosomal study on four species of snakeheads (Ophiocephalidae: Pisces) with comments on their karyotypic evolution. Caryologia. 1990; 43:163-167.
  • [50]Naorem S, Bhagirath T. Chromosomal differentiations in the evolution of channid fishes – molecular genetic perspective. Caryologia. 2006; 59:235-240.
  • [51]Cioffi MB, Bertollo LAC, Villa MA, Oliveira EA, Tanomtong A, Yano CF. Genomic organization of repetitive DNA elements and its implications for the chromosomal evolution of channid fishes (Actinopterygii, Perciformes). PLoS One. 2015; 10(6):e0130199.
  • [52]Gileva EA. A contrasted pattern of chromosome evolution in two genera of lemmings, Lemmus and Dicrostonyx. Genetica. 1983; 60:173-179.
  • [53]Ruiz-Herrera A, Castresana J, Robinson TJ. Is mammalian chromosomal evolution driven by regions of genome fragility? Genome Biol. 2006; 7:R115. BioMed Central Full Text
  • [54]Eldridge MDB, Johnston PG. Chromosomal rearrangements in rock wallabies, Petrogale (Marsupialia: Macropodidae). VIII. An investigation of the non-random nature of karyotypic change. Genome. 1993; 36:524-534.
  • [55]Mudry M, Fundia A, Hick A, Gorostiaga MA. Labilidad cromosómica: una posible explicación en el origen de los reordenamientos cromosómicos en cébidos. Bol Primatol Lat. 1995; 5:7-15.
  • [56]Duarte JMB, Jorge W. Chromosomal polymorphism in several populations of deer (genus Mazama) from Brazil. Arch Zootec. 1996; 45:281-287.
  • [57]Howell WM, Black DA. Controlled silver staining of nucleolus organizer regions with a protective colloidal developer: a 1-step method. Experientia. 1980; 36:1014-1015.
  • [58]Sumner AT. A simple technique for demonstrating centromeric heterochromatin. Exp Cell Res. 1972; 75:304-306.
  • [59]Martins C, Ferreira IA, Oliveira C, Foresti F, Galetti PM. A tandemly repetitive centromeric DNA sequence of the fish Hoplias malabaricus (Characiformes: Erythrinidae) is derived from 5S rDNA. Genetica. 2006; 127:133-14.
  • [60]Kubat Z, Hobza R, Vyskot B, Kejnovsky E. Microsatellite accumulation in the Y chromosome of Silene latifolia. Genome. 2008; 51:350-356.
  • [61]Levan A, Fredgra K, Sandberg AA. Nomenclature for centromeric position on chromosomes. Hereditas. 1964; 52:201-220.
  文献评价指标  
  下载次数:0次 浏览次数:2次