期刊论文详细信息
Nutrition & Metabolism
The impact of cow's milk-mediated mTORC1-signaling in the initiation and progression of prostate cancer
Loren Cordain2  Pedro Carrera-Bastos1  Swen Malte John3  Bodo C Melnik3 
[1] Center for Primary Health Care Research, Lund University, Lund, Sweden;Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, 80523, USA;Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, Sedanstrasse 115, Osnabrück, D-49090, Germany
关键词: Prostate cancer;    mTORC1;    Morphogenesis;    Milk signaling;    Metformin;    Leucine;    Insulin;    IGF-1;    Estrogens;    Dairy;    Cancer prevention;   
Others  :  1131763
DOI  :  10.1186/1743-7075-9-74
 received in 2012-05-11, accepted in 2012-08-06,  发布年份 2012
PDF
【 摘 要 】

Prostate cancer (PCa) is dependent on androgen receptor signaling and aberrations of the PI3K-Akt-mTORC1 pathway mediating excessive and sustained growth signaling. The nutrient-sensitive kinase mTORC1 is upregulated in nearly 100% of advanced human PCas. Oncogenic mTORC1 signaling activates key subsets of mRNAs that cooperate in distinct steps of PCa initiation and progression. Epidemiological evidence points to increased dairy protein consumption as a major dietary risk factor for the development of PCa. mTORC1 is a master regulator of protein synthesis, lipid synthesis and autophagy pathways that couple nutrient sensing to cell growth and cancer. This review provides evidence that PCa initiation and progression are promoted by cow´s milk, but not human milk, stimulation of mTORC1 signaling. Mammalian milk is presented as an endocrine signaling system, which activates mTORC1, promotes cell growth and proliferation and suppresses autophagy. Naturally, milk-mediated mTORC1 signaling is restricted only to the postnatal growth phase of mammals. However, persistent consumption of cow´s milk proteins in humans provide highly insulinotropic branched-chain amino acids (BCAAs) provided by milk´s fast hydrolysable whey proteins, which elevate postprandial plasma insulin levels, and increase hepatic IGF-1 plasma concentrations by casein-derived amino acids. BCAAs, insulin and IGF-1 are pivotal activating signals of mTORC1. Increased cow´s milk protein-mediated mTORC1 signaling along with constant exposure to commercial cow´s milk estrogens derived from pregnant cows may explain the observed association between high dairy consumption and increased risk of PCa in Westernized societies. As well-balanced mTORC1-signaling plays an important role in appropriate prostate morphogenesis and differentiation, exaggerated mTORC1-signaling by high cow´s milk consumption predominantly during critical growth phases of prostate development and differentiation may exert long-term adverse effects on prostate health. Attenuation of mTORC1 signaling by contemporary Paleolithic diets and restriction of dairy protein intake, especially during mTORC1-dependent phases of prostate development and differentiation, may offer protection from the most common dairy-promoted cancer in men of Western societies.

【 授权许可】

   
2012 Melnik et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150303060553287.pdf 1768KB PDF download
Figure 5. 74KB Image download
Figure 4. 41KB Image download
Figure 3. 61KB Image download
Figure 2. 55KB Image download
Figure 1. 36KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Globocan (2008) Prostate cancer incidence and mortality worldwide in 2008 summary. 2008. http://globocan.oarc.fr/factsheets/cancers/prostate.asp webcite. Accessed 05/2012
  • [2]World Cancer Research Fund/American Institute for Cancer Research (2007) Food, Nutrition, Physical Activity, and the Prevention of Cancer: A Global Perspective. American Institute for Cancer Research, Washington, DC; 2007. http://www.scribd.com/doc/28815788/Food-Nutrition-Physical-Activity-and-the Prevention-of-Cancer-a-Global-Perspective webcite
  • [3]Sonn GA, Aronson W, Litwin MS: Impact of diet on prostate cancer: a review. Prostate Cancer Prostatic Dis 2005, 8:304-310.
  • [4]Marshall JR: Diet and prostate cancer prevention. World J Urol 2012, 30:157-165.
  • [5]Cheung E, Wadhera P, Dorff T, Pinski J: Diet and prostate cancer risk reduction. Expert Rev Anticancer Ther 2008, 8:43-50.
  • [6]Ganmaa D, Li XM, Wang J, Qin LQ, Wang PY, Sato A: Incidence and mortality of testicular and prostatic cancers in relation to world dietary practices. Int J Cancer 2002, 98:262-267.
  • [7]Colli JL, Colli A: International comparisons of prostate cancer mortality rates with dietary practices and sunlight levels. Urol Oncol 2006, 24:194-194.
  • [8]Ganmaa D, Li XM, Qin LQ, Wang PY, Takeda M, Sato A: The experience of Japan as a clue to the etiology of testicular and prostatic cancers. Med Hypotheses 2003, 60:724-730.
  • [9]Giovannucci E, Liu Y, Stampfer MJ, Willett WC: A prospective study of calcium intake and incident and fatal prostate cancer. Cancer Epidemiol Biomarkers Prev 2006, 15:203-210.
  • [10]Allen NE, Key TJ, Appleby PN, Travis RC, Roddam AW, Tjønneland A, Johnsen NF, Overvad K, Linseisen J, Rohrmann S, Boeing H, Pischon T, Bueno-de-Mesquita HB, Kiemeney L, Tagliabue G, Palli D, Vineis P, Tumino R, Trichopoulou A, Kassapa C, Trichopoulos D, Ardanaz E, Larrañaga N, Tormo MJ, González CA, Quirós JR, Sánchez MJ, Bingham S, Khaw KT, Manjer J, Berglund G, Stattin P, Hallmans G, Slimani N, Ferrari P, Rinaldi S, Riboli E: Animal foods, protein, calcium and prostate cancer risk: the European Prospective Investigation into Cancer and Nutrition. Br J Cancer 2008, 98:1574-1581.
  • [11]Ahn J, Albanes D, Peters U, Schatzkin A, Lim U, Freedman M, Chatterjee N, Andriole GL, Leitzmann MF, Hayes RB, Prostate, Lung, Colorectal, and Ovarian Trial Project Team: Dairy products, calcium intake, and risk of prostate cancer in the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial. Cancer Epidemiol Biomarkers Prev 2007, 16:2623-2630.
  • [12]Heaney RP: Calcium, dairy, and prostate cancer. Br J Cancer 2007, 96(6):1008.
  • [13]Chan JM, Giovannucci E, Andersson SO, Yuen J, Adami HO, Wolk A: Dairy products, calcium, phosphorus, vitamin D, and risk of prostate cancer (Sweden). Cancer Causes Control 1998, 9:559-566.
  • [14]Chan JM, Stampfer MJ, Ma J, Gann PH, Gaziano JM, Giovannucci EL: Dairy products, calcium, and prostate cancer risk in the Physician´s Health Study. Am J Clin Nutr 2001, 74:549-554.
  • [15]Tseng M, Breslow RA, Graubard BI, Ziegler RG: Dairy, calcium, and vitamin D intakes and prostate cancer risk in the National Health and Nutrition Examination Epidemiologic Follow-up Study cohort. Am J Clin Nutr 2005, 81:1147-1154.
  • [16]Kesse E, Bertrais S, Astorg P, Jaouen A, Arnault N, Galan P, Hercberg S: Dairy products, calcium and phosphorus intake, and the risk of prostate cancer: results of the French prospective SU.VI.MAX (Supplémentation en Vitamines etMinnéraux Antioxydants) study. Br J Nutr 2006, 95:539-545.
  • [17]Torniainen S, Hedelin M, Autio V, Rasinperä H, Augustsson Bälter K, Kint A, Bellocco R, Wiklund F, Stattin P, Ikonen T, Tammela TL, Schleutker J, Grönberg H, Järvelä I: Lactase persistence, dietary intake of milk, and the risk for prostate cancer in Sweden and Finland. Cancer Epidemiol Biomarkers Prev 2007, 16:956-961.
  • [18]Park SY, Murphy SP, Wilkens LR, Stram DO, Henderson BE, Kolonel LN: Calcium, vitamin D, and dairy product intake and prostate cancer risk. The Multiethnic Cohort Study. Am J Epidemiol 2007, 166:1259-1269.
  • [19]Mitrou PN, Albanes D, Weinstein SJ, Pietinen P, Taylor PR, Virtamo J, Leitzmann MF: A prospective study of dietary calcium, dairy products and prostate cancer risk (Finland). Int J Cancer 2007, 120:2466-2473.
  • [20]Kurahashi N, Inoue M, Iwasaki M, Sasazuki S, Tsugane AS, Japan Public Health Center-Based Prospective Study Group: Dairy product, saturated fatty acid, and calcium intake and prostate cancer in a prospective cohort of Japanese men. Cancer Epidemiol Biomarkers Prev 2008, 17:930-937.
  • [21]Raimondi S, Mabrouk JB, Shatenstein B, Maisonneuve P, Ghadirian P: Diet and prostate cancer risk with specific focus on dairy products and dietary calcium: a case-control study. Prostate 2010, 70:1054-1065.
  • [22]Qin LQ, Xu JY, Wang PY, Kaneko T, Hoshi K, Sato A: Milk consumption is a risk factor for prostatic cancer: meta-analysis of case-control studies. Nutr Cancer 2004, 48:22-27.
  • [23]Gao X, LaValley MP, Tucker KL: Prospective studies of dairy product and calcium intakes and prostate cancer risk: a meta-analysis. J Natl Cancer Inst 2005, 97:1768-1777.
  • [24]Qin LQ, Xu JY, Wang PY, Tong J, Hoshi K: Milk consumption is a risk factor for prostate cancer in Western countries: evidence from cohort studies. Asia Pac J Clin Nutr 2007, 16:467-476.
  • [25]Ma RW, Chapman K: A systematic review of the effect of diet in prostate cancer prevention and treatment. J Hum Nutr Diet 2009, 22:187-199.
  • [26]Rodriguez C, McCullough ML, Mondul AM, Jacobs EJ, Fakhrabadi-Shokoohi D, Giovannucci EL, Thun MJ, Calle EE: Calcium, dairy products, and risk of prostate cancer in a prospective cohort of the United States men. Cancer Epidemiol Biomarkers Prev 2003, 12:597-603.
  • [27]Huncharek M, Muscat J, Kupelnick B: Dairy products, dietary calcium and vitamin D intake as risk factors for prostate cancer: a meta-analysis of 26,769 cases from 45 observational studies. Nutr Cancer 2008, 60:421-441.
  • [28]Dewailly E, Mulvad G, Pedersen HS, Hansen JC, Behrendt N, Hansen JP: Inuit are protected against prostate cancer. Cancer Epidemiol Biomarkers Prev 2003, 12:926-927.
  • [29]Snyder OB, Kelly JJ, Lanier AP: Prostate cancer in Alaska native men, 1969-2003. Int J Circumpolar Health 2006, 65:8-17.
  • [30]Torfadottir JE, Steingrimsdottir L, Mucci L, Aspelund T, Kasperzyk JL, Olafsson O, Fall K, Tryggvadottir L, Harris TB, Launer L, Jonsson E, Tulinius H, Stampfer M, Adami HO, Gudnason V, Valdimarsdottir UA: Milk intake in early life and risk of advanced prostate cancer. Am J Epidemiol 2012, 175:144-153.
  • [31]Adebamowo CA, Spiegelman D, Danby FW, Frazier AL, Willett WC, Holmes MD: High school dietary intake and acne. J Am Acad Dermatol 2005, 52:207-211.
  • [32]Adebamowo CA, Spiegelman D, Berkey CS, Danby FW, Rockett HH, Colditz GA, Willett WC, Holmes MD: Milk consumption and acne in adolescent girls. Dermatology Online J 2006, 12:1-12.
  • [33]Adebamowo CA, Spiegelman D, Berkey CS, Danby FW, Rockett HH, Colditz GA, Willett WC, Holmes MD: Milk consumption and acne in teenaged boys. J Am Acad Dermatol 2008, 58:787-793.
  • [34]Jung JY, Yoon MY, Min SU, Hong JS, Choi YS, Suh DH: The influence of dietary patterns on acne vulgaris in Koreans. Eur J Dermatol 2010, 20:768-772.
  • [35]Melnik BC: Evidence for acne-promoting effects of milk and other insulinotropic dairy products. Nestle Nutr Workshop Ser Pediatr Program 2011, 67:131-145.
  • [36]Sutcliffe S, Giovannucci E, Isaacs WB, Willett WC, Platz EA: Acne and risk of prostate cancer. Int J Cancer 2007, 121:2688-2692.
  • [37]Melnik BC: Dietary intervention in acne: attenuation of increased mTORC1 signaling promoted by Western diet. Dermatoendocrinology 2012, 4:1.
  • [38]Giovannucci E: Dietary influences of 1,25(OH)2 vitamin D in relation to prostate cancer: a hypothesis. Cancer Causes Control 1998, 9:567-582.
  • [39]Koh KA, Sesso HD, Paffenbarger RS, Lee IM: Dairy products, calcium and prostate cancer risk. Br J Cancer 2006, 95:1582-1585.
  • [40]Newmark HL, Heaney RP: Dairy products and prostate cancer risk. Nutr Cancer 2010, 62:297-299.
  • [41]Tate PL, Bibb R, Larcom LL: Milk stimulates growth of prostate cancer cells in culture. Nutr Cancer 2011, 63:1361-1366.
  • [42]Pettersson A, Kasperzyk JL, Kenfield SA, Richman EL, Chan JM, Willett WC, Stampfer MJ, Mucci LA, Giovannucci EL: Milk and dairy consumption among men with prostate cancer and risk of metastases and prostate cancer death. Cancer Epidemiol Biomarkers Prev 2012, 21:428-436.
  • [43]Pópulo H, Lopes JM, Soares P: The mTOR signalling pathway in human cancer. Int J Mol Sci 2012, 13:1886-1918.
  • [44]Inoki K, Ouyang H, Li Y, Guan KL: Signaling by target of rapamycin proteins in cell growth control. Microbiol Mol Biol Rev 2005, 69:79-100.
  • [45]Bhaskar PT, Hay N: The two TORCs and Akt. Develop Cell 2007, 12:487-502.
  • [46]Wang X, Proud CG: Nutrient control of TORC1, a cell-cycle regulator. Cell 2009, 19:260-267.
  • [47]Sengupta S, Peterson TR, Sabatini DM: Regulation of the mTOR complex 1 pathway by nutrients, growth factors, and stress. Mol Cell 2010, 40:310-322.
  • [48]Suzuki T, Inoki K: Spatial regulation of the mTORC1 system in amino acids sensing pathway. Acta Biochim Biophys Sin 2011, 43:671-679.
  • [49]Wang X, Proud CG: mTORC1 signaling: what we still don´t know. J Mol Cell Biol 2011, 3:206-220.
  • [50]Shaw RJ: LKB1 and AMPK control of mTOR signalling and growth. Acta Physiol(Oxf.) 2009, 196:65-80.
  • [51]Avruch J, Long X, Ortiz-Vega S, Rapley J, Papageorgiou A, Dai N: Amino acid regulation of TOR complex 1. Am J Physiol Endocrinol Metab 2009, 296:592-602.
  • [52]Kimball SR, Jefferson LS: Signaling pathways and molecular mechanisms through which branched-chain amino acids mediate translational control of protein synthesis. J Nutr 2006, 136:227S-231S.
  • [53]Sancak Y, Peterson TR, Shaul YD, Lindquist RA, Thoreen CC, Bar-Peled L, Sabatini DM: The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 2008, 320:1496-1501.
  • [54]Dodd KM, Tee AR: Leucine and mTORC1: a complex relationship. Am J Physiol Endocrinol Metab 2012, 302:E1329-E1342.
  • [55]Sancak Y, Bar-Peled L, Zoncu R, Markhard AL, Nada S, Sabatini DM: Ragulator- Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell 2010, 141:290-303.
  • [56]Goberdhan DC: Intracellular amino acid sensing and mTORC1-regulated growth: New ways to block an old target? Curr Opin Invest Drugs 2010, 11:1360-1367.
  • [57]Inoki K, Li Y, Zhu T, Wu J, Guan KL: TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat Cell Biol 2002, 4:648-657.
  • [58]Manning BD, Tee AR, Logsdon MN, Blenis J, Cantley LC: Identification of the tuberous sclerosis complex-2 tumor suppressor gene product tuberin as a target of the phosphoinositide-3-kinase/akt pathway. Mol Cell 2002, 10:151-162.
  • [59]Tee AR, Fingar DC, Manning BD, Kwiatkowski DJ, Cantley LC, Blenis J: Tuberous sclerosis complex-1 and -2 gene products function together to inhibit mammalian target of rapamycin (mTOR)-mediated downstream signaling. Proc Natl Acad Sci USA 2001, 99:13571-13576.
  • [60]Inoki K, Zhu T, Guan KL: TSC2 mediates cellular energy response to control cell growth and survival. Cell 2003, 115:577-590.
  • [61]Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, Turk BE, Shaw RJ: AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell 2008, 30:214-226.
  • [62]Hara K, Yonezawa K, Weng QP, Kozlowski MT, Belham C, Avruch J: Amino acid sufficiency and mTOR regulate p70 S6 kinase and eIF-4EBP1 through a common effector mechanism. J Biol Chem 1998, 273:14484-14494.
  • [63]Long X, Ortiz-Vega S, Lin Y, Avruch J: Rheb binding to mammalian target of rapamycin (mTOR) is regulated by amino acid sufficiency. J Biol Chem 2005, 280:23433-23436.
  • [64]Nobukuni T, Joaquin M, Roccio M, Dann SG, Kim SY, Gulati P, Byfield MP, Backer JM, Natt F, Bos JL, Zwartkruis FJ, Thomas G: Amino acids mediate mTOR/raptor signaling through activation of class 3 phosphatidylinositol 3OH-kinase. Proc Natl Acad Sci USA 2005, 102:14238-14243.
  • [65]Dennis MD, Baum JI, Kimball SR, Jefferson LS: Mechanisms involved in the coordinate regulation of mTORC1 by insulin and amino acids. J Biol Chem 2011, 286:8287-8296.
  • [66]Porstmann T, Santos CR, Lewis C, Griffiths B, Schulze A: A new player in the orchestra of cell growth: SREBP activity is regulated by mTORC1 and contributes to the regulation of cell and organ size. Biochem Soc Trans 2009, 37:278-283.
  • [67]Peterson TR, Sengupta SS, Harris TE, Carmack AE, Kang SA, Balderas E, Guertin DA, Madden KL, Carpenter AE, Finck BN, Sabatini DM: mTOR complex 1 regulates lipin 1 localization to control the SREBP pathway. Cell 2011, 146:408-420.
  • [68]Zoncu R, Efeyan A, Sabatini DM: mTOR: from growth signal integration to cancer, diabetes and ageing. Nature Rev 2011, 12:21-35.
  • [69]Proud CG: mTOR signalling in health and disease. Biochem Soc Trans 2011, 39:431-436.
  • [70]Mieulet V, Lamb RF: Tuberous sclerosis complex: liking cancer to metabolism. Trends Mol Med 2010, 16:329-335.
  • [71]Dann SG, Selvaraj A, Thomas G: mTOR Complex 1–S6K1 signaling: at the crossroads of obesity, diabetes and cancer. Trends Mol Med 2007, 13:252-259.
  • [72]Shaw RJ, Cantley LC: Ras, PI(3)K and mTOR signalling controls tumour cell growth. Nature 2006, 441:424-430.
  • [73]Majumder PK, Sellers WR: Akt-regulated pathways in prostate cancer. Oncogene 2005, 24:7465-7474.
  • [74]Easton JB, Houghton PJ: mTOR and cancer therapy. Oncogene 2006, 25:6436-6446.
  • [75]Gray IC, Stewart LM, Phillips SM, Hamilton JA, Gray NE, Watson GJ, Spurr NK, Snary D: Mutation and expression analysis of the putative prostate tumour- suppressor gene PTEN. Br J Cancer 1998, 78:1296-1300.
  • [76]Taylor BS, Schultz N, Hieronymus H, Gopalan A, Xiao Y, Carver BS, Arora VK, Kaushik P, Cerami E, Reva B, Antipin Y, Mitsiades N, Landers T, Golgalev I, Major JE, Wilson M, Socci ND, Lash AE, Heguy A, Eastham JA, Scher HI, Reuter VE, Scardino PT, Sander C, Sawyers CL, Gerlad WL, for the MSKCC Prostate Cancer Oncogenome Group (PCOG): Integrative genomic profiling of human prostate cancer. Cancer Cell 2010, 18:11-22.
  • [77]Um SH, D`Alessio D, Thomas G: Nutrient overload, insulin resistance, and ribosomal S6 kinase, S6K1. Cell Metab 2006, 3:393-402.
  • [78]Inoki K, Li Y, Xu T, Guan KL: Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling. Genes Dev 2003, 17:1829-1834.
  • [79]Long X, Lin Y, Ortiz-Vega S, Yonezawa K, Avruch J: Rheb binds and regulates the mTOR kinase. Curr Biol 2005, 15:702-713.
  • [80]Stambolic V, Suzuki A, de la Pompa JL, Brothers GM, Mirtsos C, Sasaki T, Ruland J, Penninger JM, Siderovski DP, Mak TW: Negative regulation of PKB/Akt- dependent cell survival by the tumor suppressor PTEN. Cell 1998, 95:29-39.
  • [81]Whang YE, Wu X, Suzuki H, Reiter RE, Tran C, Vessella RL, Said JW, Isaacs WB, Sawyers CL: Inactivation of the tumor suppressor PTEN/MMAC1 in advanced human prostate cancer through loss of expression. Proc Natl Acad Sci USA 1998, 95:5246-5250.
  • [82]Di Cristofano A, De Acetis M, Koff A, Cordon-Cardo C, Pandolfi PP: Pten and p27KIP1 cooperate in prostate cancer tumor suppression in the mouse. Nat Genet 2001, 27:222-224.
  • [83]Trotman LC, Niki M, Dotan ZA, Koutcher JA, Di Cristofano A, Xiao A, Khoo AS, Roy-Burman P, Greenberg NM, Van Dyke T, Cordon-Cardo C, Pandolfi PP: Pten dose dictates cancer progression in the prostate. PLoS Biol 2003, 1(3):E59.
  • [84]Mamane Y, Petroulakis E, LeBacquer O, Sonenberg N: mTOR, translation initiation and cancer. Oncogene 2006, 25:6416-6422.
  • [85]Guertin DA, Stevens DM, Saitoh M, Kinkel S, Crosby K, Sheen J-H, Mullholland DJ, Magnuson MA, Wu H, Sabatini DM: The mTOR complex 2 is required for the development of prostate cancer induced by Pten loss in mice. Cancer Cell 2009, 15:148-159.
  • [86]Nardella C, Carracedo A, Altimonti A, Hobbs RM, Clohessy JG, Chen Z, Egia A, Fornari A, Fiorentino M, Loda M, Kozma SC, Thomas G, Cordon-Cardo C, Pandolfi PP: Differential requirement of mTOR in post-mitotic tissues and tumorigenesis. Sci Signal 2010, 2(55):ra2.
  • [87]Furic L, Rong L, Larsson O, Hervé Koumakpayi I, Yoshida K, Brueschke A, Petroulakis E, Robichaud N, Pollak M, Gaboury LA, Pandolfi PP, Saad F, Sonenberg N: eIF4E phosphorylation promotes tumorigenesis and is associated with prostate cancer progression. Proc Natl Acad Sci USA 2010, 107:14134-14139.
  • [88]Nardella C, Chen Z, Salmena L, Carracedo A, Alimonti A, Egia A, Carver B, Gerald W, Cordon-Cardo C, Pandolfi PP: Aberrant Rheb-mediated mTORC1 activation and Pten haploinsufficiency are cooperative oncogenic events. Genes Dev 2008, 22:2172-2177.
  • [89]Clohessy JG, Reschke M, Pandolfi PP: Found in translation of mTOR signaling. Cell Res 2012, 1-4. May 29, doi:10.1038/cr.2012.85
  • [90]Thoreen CC, Chantranupong L, Keys HR, Wang T, Gray NS, Sabatini DM: A unifying model for mTORC1-mediated regulation of mRNA translation. Nature 2012, 485:109-116.
  • [91]Hsieh AC, Liu Y, Edlind MP, Ingolia NT, Janes MR, Sher A, Shi EY, Stumpf CR, Christensen C, Bonham MJ, Wang S, Ren P, Martin M, Jessen K, Feldman ME, Weissman JS, Shokat KM, Rommel C, Ruggero D: The translational landscape of mTOR signalling steers cancer initiation and metastasis. Nature 2012, 485:55-64.
  • [92]Chen ML, Xu PZ, Peng XD, Chen WS, Guuzman G, Yang Y, Di Cristofano A, Pandolfoi PP, Hay N: The deficiency of Akt 1 is sufficient to suppress tumor development in Pten+/- mice. Genes Develop 2006, 20:1569-1574.
  • [93]Majumder PK, Febbo PG, Bikoff R, Berger R, Xue Q, McMahon LM, Manola J, Brugarollas J, McDonnell TJ, Golub TR, Loda M, Lane HA, Sellers WR: mTOR inhibition reverses Akt-dependent prostate intraepithelial neoplasia through regulation of apoptotic and HIF-1 dependent pathways. Nat Med 2004, 10:594-601.
  • [94]Zhang W, Zhu J, Efferson CL, Ware C, Tammam J, Angagaw M, Laskey J, Bettano KA, Kasibhatla S, Reilly JF, Sur C, Majumder PK: Inhibition of tumor progression by antiandrogens and mTOR inhibitor in a Pten-deficient mouse model of prostate cancer. Cancer Res 2009, 69:7466-7472.
  • [95]Carver BS, Chapinski C, Wongvipat J, Hieronymus H, Chen Y, Chandarlapaty S, Arora VK, Le C, Koutcher J, Scher H, Scardino PT, Posen N, Sawyers CL: Reciprocal feedback regulation of PI3K and androgen receptor signaling in PTEN-deficient prostate cancer. Cancer Cell 2011, 19:575-586.
  • [96]Xu Y, Chen SY, Ross KN, Balk SP: Androgens induce prostate cancer cell proliferation through mammalian target of rapamycin activation and posttranscriptional increases in cyclin D proteins. Cancer Res 2006, 66:7783-7791.
  • [97]Wang Q, Bailey CG, Ng C, Tiffen J, Thoeng A, Minhas V, Lehman ML, Hendy SC, Buchanan G, Nelson CC, Rasko JE, Holst J: Androgen receptor and nutrient signaling pathways coordinate the demand for increased amino acid transport during prostate cancer progression. Cancer Res 2011, 71:7525-7536.
  • [98]Teahan O, Bevan CL, Waxman J, Keun HC: Metabolic signatures of malignant progression in prostate epithelial cells. Int J Biochem Cell Biol 2011, 43:1002-1009.
  • [99]Fang Z, Zhang T, Dizeyi N, Chen S, Wang H, Swanson KD, Cai C, Balk SP, Yan X: Androgen receptor enhances p27 degradation in prostate cancer cells through rapid and selective TORC2 activation. J Biol Chem 2012, 287:2090-2098.
  • [100]Cao Y, Kamioka Y, Yokoi N, Kobayashi T, Hino O, Onodera M, Mochizuki N, Nakae J: Interaction of FoxO1 and TSC2 induces insulin resistance through activation of the mammalian target of rapamycin /p70 S6K pathway. J Biol Chem 2006, 52:40242-40251.
  • [101]Chen CC, Jeon SM, Bhaskar PT, Nogueira V, Sundararajan D, Tonic I, Park Y, Hay N: FoxOs inhibit mTORC1 and activate Akt by inducing the expression of Sestrin3 and Rictor. Dev Cell 2010, 18:592-604.
  • [102]Hanahan D, Weinberg RA: Hallmarks of cancer: the next generation. Cell 2011, 144:646-674.
  • [103]Orr JB: Influence of amount of milk consumption on the rate of growth of school children. B Med J 1928, 1:140-141.
  • [104]Hoppe C, Mølgaard C, Michaelsen KF: Cow's milk and linear growth in industrialized and developing countries. Annu Rev Nutr 2006, 26:131-173.
  • [105]Wiley AS: Dairy and milk consumption and child growth: Is BMI involved? An analysis of NHANES 1999–2004. Am J Hum Biol 2010, 22:517-525.
  • [106]Wiley AS: Milk intake and total dairy consumption: associations with early menarche in NHANES 1999–2004. PloS One 2011, 6:e14685.
  • [107]Bounous G, Kongshavn PA, Taveroff A, Gold P: Evolutionary traits in human milk proteins. Med Hypotheses 1988, 27:133-140.
  • [108]Davis TA, Nguyen HV, Garcia-Bravo R, Fiorotto ML, Jackson EM, Lewis DS, Lee DR, Reeds PJ: Amino acid composition of human milk is not unique. J Nutr 1994, 124:1126-1132.
  • [109]Wiley AS: Cow milk consumption, insulin-like growth factor-I, and human biology: a life history approach. Am J Hum Biol 2012, 24:130-138.
  • [110]Socha P, Grote V, Gruszfeld D, Janas R, Demmelmair H, Closa-Monasterolo R, Escribano Subías J, Scaglioni S, Verduci E, Dain E, Langhendries JP, Perrin E, Koletzko B, for the European Childhood Obesity Trial Study Group: Milk protein intake, the metabolic-endocrine response, and growth in infancy: data from a randomized clinical trial. Am J Clin Nutr 2011, 94(suppl 6):1776S-1784S.
  • [111]Axelsson IE, Ivarsson SA, Räihä NC: Protein intake in early infancy: effects on plasma amino acid concentrations, insulin metabolism, and growth. Pediatr Res 1989, 26:614-617.
  • [112]Melnik BC: Leucine signaling in the pathogenesis of type 2 diabetes and obesity. World J Diabetes 2012, 3:38-53.
  • [113]Melnik BC: Excessive leucine-mTORC1-signalling of cow milk-based infant formula: the missing link to understand early childhood obesity. J Obesity 2012, 2012:197653.
  • [114]Cordain L, Watkins BA, Mann NJ: Fatty acid composition and energy density of foods available to African hominids. Evolutionary implications for human brain development. World Rev Nutr Diet 2001, 90:144-161.
  • [115]Thissen JP, Pucilowska JB, Underwood LE: Differential regulation of insulin-like growth factor I (IGF-I) and IGF binding protein-1 messenger ribonucleic acids by amino acid availability and growth hormone in rat hepatocyte primary culture. Endocrinology 1994, 134:1570-1576.
  • [116]Hoppe C, Udam TR, Lauritzen L, Molgaard C, Juul A, Michaelsen KF: Animal protein intake, serum insulin-like growth factor I, and growth in healthy 2.5-y-old Danish children. Am J Clin Nutr 2004, 80:447-452.
  • [117]Hoppe C, Molgaard C, Juul A, Michaelsen KF: High intakes of skimmed milk, but not meat, increase serum IGF-I and IGFBP-3 in eight-year-old boys. Eur J Clin Nutr 2004, 58:1211-1216.
  • [118]Hoppe C, Molgaard C, Dalum C, Vaag A, Michaelsen KF: Differential effects ofcasein versus whey on fasting plasma levels of insulin, IGF-1 and IGF-1/IGFBP-3: results from a randomized 7-day supplementation study in prepubertal boys. Eur J Clin Nutr 2009, 63:1076-1083.
  • [119]Tazearslan C, Hunag H, Barzilai N, Suh Y: Impaired IGF1R signaling in cells expressing longevity-associated human IGF1R alleles. Aging Cell 2011, 10:551-554.
  • [120]Steuerman R, Shevah O, Laron Z: Congenital IGF1 deficiency tends to confer protection against post-natal development of malignancies. Eur J Endocrinol 2011, 164:485-489.
  • [121]Guevara-Aguirre J, Balasubramanian P, Guevara-Aguirre M, Wie M, Madia F, Cheng CW, Hwang D, Martin-Montalvo A, Saavedra J, Ingles S, de Cabo R, Cohne P, Longo VD: Growth hormone receptor deficiency is associated with a major reduction in proaging signaling, cancer, and diabetes in humans. Sci Transl Med 2011, 3:70ra13.
  • [122]Maiese K, Chong ZZ, Shang YC, Hou J: Clever cancer strategies with FoxO transcription factors. Cell Cycle 2008, 7:3829-3839.
  • [123]Major JM, Laughlin GA, Kritz-Silverstein D, Wingard DL, Barrett-Connor E: Insulin-like growth factor-I and cancer mortality in older men. J Clin Endocrinol Metab 2010, 95:1054-1059.
  • [124]Dunger DB, Ong KK, Sandhu MS: Serum insulin-like growth factor-I levels and potential risk of type 2 diabetes. Horm Res 2003, 60(suppl 3):131-135.
  • [125]Hara N: Prostate carcinogenesis with diabetes and androgen-deprivation-therapy- related diabetes: an update. Exp Diabetes Res 2012, 2012:801610.
  • [126]Stattin P, Bylund A, Rinaldi S, Biessy C, Déchaud H, Stenman UH, Egevad L, Riboli E, Hallmans G, Kaaks R: Plasma insulin-like growth factor-I, insulin-like growth factor-binding proteins, and prostate cancer risk: a prospective study. J Natl Cancer Inst 2000, 92:1910-1907.
  • [127]Renehan AG, Zwahlen M, Minder C, O´Dwyer ST, Shalet SM, Egger M: Insulin-like growth factor (IGF)-I, IGF binding protein-3, and cancer risk:systematic review and meta-regression analysis. Lancet 2004, 363:1353.
  • [128]Clayton PE, Banerjee I, Murray PG, Renehan AG: Growth hormone, the insulin-like growth factor axis, insulin and cancer risk. Nature Rev Endocrinol 2011, 7:11-24.
  • [129]Norat T, Dossus L, Rinaldi S, Overvad K, Grønbaek H, Tjønneland A, Halkjær J, Dossus L, Boeing H, Kröger J, Trichopoulou A, Zylis D, Trichopoulos D, Boutron-Ruault MC, de Lauzon-Guillain B, Clavel-Chapelon F, Palli D, Berrino F, Panico S, Tumino R, Sacerdote C, Bueno-de-Mesquita HB, van Gils CH, Peeters PH, Gram IT, Rodríguez L, Jakszyn P, Molina-Montes E, Navarro C, Barricarte A, Larrañaga N, Khaw KT, Rodwell S, Rinaldi S, Slimani N, Norat T, Gallo V, Riboli E, Kaaks R: Diet, serum insulin-like growth factor-I and IGF-binding protein-3 in European women. Eur J Clin Nutr 2007, 6:91-98.
  • [130]Crowe FL, Key TJ, Allen NE Appleby PN, Roddam A, Overvad K, Grønbaek H, Tjønneland A, Halkjaer J, Dossus L, Boeing H, Kröger J, Trichopoulou A, Dilis V, Trichopoulos D, Boutron-Ruault MC, De Lauzon B, Clavel-Chapelon F, Palli D, Berrino F, Panico S, Tumino R, Sacerdote C, Bueno-de-Mesquita HB, Vrieling A, van Gils CH, Peeters PH, Gram IT, Skeie G, Lund E, Rodríguez L, Jakszyn P, Molina- Montes E, Tormo MJ, Barricarte A, Larrañaga N, Khaw KT, Bingham S, Rinaldi S, Slimani N, Norat T, Gallo V, Riboli E, Kaaks R: The association between diet and serum concentrations of IGF-I, IGFBP-1, IGFBP-2, and IGFBP-3 in the European Prospective Investigation into Cancer and Nutrition. Cancer Epidemiol Biomarkers Prev 2009, 18:1333-1340.
  • [131]Young NJ, Metcalfe C, Gunnell D, Rowlands MA, Lane JA, Gilbert R, Avery KNL, Davis M, Neal DE, Hamdy FC, Donovan J, Martin RM, Holly JMP: A cross-sectional analysis of the association between diet and insulin-like growth factor (IGF)-I, IGF-II, IGF-binding protein (IGFBP)-2, and IGFBP-3 in men in the United Kingdom. Cancer Causes Control 2012, 23:907-917.
  • [132]Denley A, Cosgrove LJ, Booker GW, Wallace JC, Forbes BE: Molecular interactions of the IGF system. Cytokine Growth Factor Rev 2005, 16:421-439.
  • [133]Melnik BC, John SM, Schmitz G: Over-stimulation of insulin/IGF-1 signaling by Western diet promotes diseases of civilization: lessons learnt from Laron syndrome. Nutr Metab (Lond) 2011, 8:41. BioMed Central Full Text
  • [134]Xu G, Kwon G, Marsahll CA, Lin TA, Lawrence JC, McDaniel ML: Branched-chain amino acids are essential in the regulation of PHAS-I and p70 S6 kinase by pancreatic β-cells. A possible role in protein translation and mitogenic signaling. J Biol Chem 1998, 273:18178-28184.
  • [135]Yang J, Chi Y, Burkhardt BR, Guan Y, Wolf BA: Leucine metabolism in regulation of insulin secretion from pancreatic beta cells. Nutr Rev 2010, 68:270-279.
  • [136]McDaniel ML, Marshall CA, Pappan KL, Kwon G: Metabolic and autocrine regulation of the mammalian target of rapamycin by pancreatic beta-cells. Diabetes 2002, 51:2877-2885.
  • [137]Xu G, Kwon G, Cruz WS, Marshall CA, McDaniel ML: Metabolic regulation by leucine of translation initiation through the mTOR-signaling pathway by pancreatic beta-cells. Diabetes 2001, 50:353-360.
  • [138]Rich-Edwards JW, Ganmaa D, Pollak MN, Nakamoto EK, Kleinman K, Willett WC, Frazier A, Tserendolgor : Milk consumption and the prepubertal somatotropic axis. Nutr J 2007, 6:28. BioMed Central Full Text
  • [139]Nilsson M, Holst JJ, Björck IM: Metabolic effects of amino acid mixtures and whey protein in healthy subjects: studies using glucose-equivalent drinks. Am J Clin Nutr 2007, 85:996-1004.
  • [140]Hoyt G, Hickey MS, Cordain L: Dissociation of the glycaemic and insulinaemic responses to whole and skimmed milk. Br J Nutr 2005, 93:175-177.
  • [141]Salehi A, Gunnerud U, Muhammed SJ, Ostman E, Holst JJ, Björck I, Rorsman P: The insulinogenic effect of whey protein is partially mediated by a direct effect of amino acids and GIP on beta-cells. Nutr Metab (Lond) 2012, 9(1):48. BioMed Central Full Text
  • [142]Manders RJ, Prate SF, Meex RC, Koopman R, de Roos AL, Wagenmakers AJ, Saris WH, van Loon LJ: Protein hydrolysate/leucine co-ingestion reduces the prevalence of hyperglycemia in type 2 diabetic patients. Diabetes Care 2006, 29:2721-2722.
  • [143]Hoppe C, Mølgaard C, Vaag A, Barkholt V, Michaelsen KF: High intakes of milk, but not meat, increase s-insulin and insulin resistance in 8-year-old boys. Eur J Clin Nutr 2005, 59:393-398.
  • [144]Zick Y: Ser/Thr phosphorylation of IRS proteins: a molecular basis for insulin resistance. Sci STKE 2005, 268:pe4.
  • [145]Venkateswaran V, Haddad AQ, Fleshner NE, Fan R, Sugar LM, Nam R, Klotz LH, Pollak M: Association of diet-induced hyperinsulinemia with accelerated growth of prostate cancer (LNCaP) xenografts. J Natl Cancer Inst 2007, 99:1793-1800.
  • [146]Weinstein D, Simon M, Yeheezkel E, Laron Z, Werner H: Insulin analogues diplay IGF-1-like mitogenic and anti-apoptotic activities in cultured cancer cells. Diabetes Metab Res Rev 2009, 25:41-49.
  • [147]Moore T, Carbajal S, Beltran L, Perkins SN, Yakar S, LeRoith D, Hursting SD, DiGiovanni J: Reduced susceptibility to two-stage skin carcinogenesis in mice with low circulating insulin-like growth factor-I levels. Cancer Res 2008, 68:3680-3688.
  • [148]Moore T, Beltran L, Carbajal S, Strom S, Traag J, Husting SD, DiGiovanni J: Dietary energy balance modulates signalling through the Akt/mammalian target of rapamycin pathways in multiple epithelial tissues. Cancer Prev Res 2008, 1:65-76.
  • [149]Zhu ML, Kyrianou N: Androgen receptor and growth factor signaling cross-talk in prostate cancer cells. Endocr Relat Cancer 2008, 15:841-849.
  • [150]Fontana L, Weiss EP, Villareal DT, Klein S, Holloszy JO: Long-term effects of calorie or protein restriction on serum IGF-1 and IGFBP-3 concentrations in humans. Aging Cell 2008, 7:681-687.
  • [151]Farnfield MM, Carey KA, Gran P, Trenerry MK, Cameron-Smith D: Whey protein ingestion activates mTOR-dependent signalling after resistance exercise in young men: A double-blinded randomized controlled trial. Nutrients 2009, 1:263-275.
  • [152]Crozier SJ, Kimball SR, Emmert SW, Anthony JC, Jefferson LS: Oral leucine administration stimulates protein synthesis in rat skeletal muscle. J Nutr 2005, 135:376-382.
  • [153]Long W, Saffer L, Wei L, Barrett EJ: Amino acids regulate skeletal muscle PHAS-I and p70S6-kinase phosphorylation independently of insulin. Am J Physiol Endocrinol Metab 2000, 279:301-306.
  • [154]Gingras AC, Gygi SP, Raught B, Polakiewicz RD, Abraham RT, Hoekstra MF, Aebersold R, Sonenberg N: Regulation of 4E-BP1 phosphorylation: a novel two- step mechanism. Genes Dev 1999, 13:1422-1437.
  • [155]Millward DJ, Layman DK, Tomé D, Schaafsma G: Protein quality assessment: impact of expanding understanding of protein and amino acid needs for optimal health. Am J Clin Nutr 2008, 87:1576S-1581S.
  • [156]Holt S, Brand Miller J, Petocz P: An insulin index of foods: the insulin demand generated by 1000-kJ portions of common foods. Am J Clin Nutr 1997, 66:1264-1276.
  • [157]Frassetto LA, Schloetter M, Mietus-Synder M, Morris RC Jr, Sebastian A: Metabolic and physiologic improvements from consuming a paleolithic, hunter-gatherer type diet. Eur J Clin Nutr 2009, 63:947-955.
  • [158]Agostoni C, Turck D: Is cow´s milk harmful to a child´s health? J Pediatr Gastroenterol Nutr 2011, 53:594-600.
  • [159]Qin LQ, Wang PY, Kaneko T, Hoshi K, Sato A: Estrogen: one of the risk factors in milk for prostate cancer. Med Hypotheses 2004, 62:133-142.
  • [160]Kruithof-Dekker IG, Tetu B, Janssen PJ, Van der Kwast TH: Elevated estrogen receptor expression in human prostatic stromal cells by androgen ablation therapy. J Urol 1996, 156:1194-1197.
  • [161]Malekinejad H, Scherpenisse P, Bergwerff AA: Naturally occurring estrogens in processed milk and in raw milk (from gestated cows). J Agric Food Chem 2006, 54:9785-9791.
  • [162]Farlow DW, Xu X, Veenstra TD: Quantitative measurement of endogenous estrogen metabolites, risk-factors for development of breast cancer, in commercial milk products by LC-MS/MS. J Chromatography B Analyt Technol Biomed Life Sci 2009, 877:1327-1334.
  • [163]Danby FW: Acne, dairy and cancer. The 5alpha-P link. Dermatoendocrinology 2009, 1:9-13.
  • [164]Maruyama K, Oshima T, Ohyama K: Exposure to exogenous estrogen through intake of commercial milk produced from pregnant cows. Pediatr Internat 2010, 52:33-38.
  • [165]Santti R, Newbold RR, Makela S, Pylkkanen L, Mclachlan JA: Developmental estrogenization and prostatic neoplasia. Prostate 1994, 24:67-78.
  • [166]Bosland MC, Mahmoud AM: Hormones and prostate carcinogenesis: Androgens and estrogens. J Carcinog 2011, 10:33.
  • [167]DeKlerk DP, Coffey DS, Ewing LL, McDermott IR, Reiner WG, Robinson CH, Scott WW, Strandberg JD, Talalay P, Walsh PC, Wheaton LG, Zirkin BR: Comparison of spontaneous and experimentally induced canine prostatic hyperplasia. J Clin Invest 1979, 64:842-849.
  • [168]Coffey DS: Similarities of prostate and breast cancer: Evolution, diet, and estrogens. Urology 2001, 57(Suppl 4A):31-33.
  • [169]Torlakovic E, Lilleby W, Torlakovic G, Fosså SD, Chibbar R: Prostate carcinoma expression of estrogen receptor-beta as detected by PPG5/10 antibody has positive association with primary Gleason grade and Gleason score. Hum Pathol 2002, 33:646-651.
  • [170]Dunsmuir WD, Gillett CE, Meyer LC, Young MP, Corbishley C, Eeles RA, Kirby RS: Molecular markers for predicting prostate cancer stage and survival. BJU Int 2000, 86:869-878.
  • [171]Asgari M, Morakabati A: Estrogen receptor beta expression in prostate adenocarcinoma. Diagn Pathol 2011, 6:61. BioMed Central Full Text
  • [172]Shennan DB, Thomson J, Gow IF, Travers MT, Barber MC: L-leucine transport in human breast cancer cells (MCF-7 and MDA-MB-231): kinetics, regulation by estrogen and molecular identity of the transporter. Biochim Biophys Acta 2004, 1664:206-216.
  • [173]Qin LQ, Xu JY, Wang PY, Ganmaa D, Li J, Wang J, Kaneko T, Hoshi K, Shirai T, Sato A: Low-fat milk promotes the development of 7,12-dimethylbenz(a)anthracene (DMBA)-induced mammary tumors in rats. Int J Cancer 2004, 110:491-496.
  • [174]Ma DF, Katoh R, Zhou H, Wang PY: Promoting effects of milk on the development of 7,12-diemethylbenz(a)anthracene (DMBA)-induced mammary tumors in rats. Acta Histochem Cytochem 2007, 40:61-67.
  • [175]Ganmaa D, Tezuka H, Enkhmaa D, Hoshi K, Sato A: Commercial cows´milk has uterotrophic activity on the uteri of young ovariectomized rats and immature rats. Int J Cancer 2006, 118:2363-2365.
  • [176]Chang SB, Miron P, Miron A, Iglehart JD: Rapamycin inhibits proliferation of estrogen-receptor-positive breast cancer cells. J Surg Res 2007, 138:37-44.
  • [177]Tewari R, Rajender S, Natu SM, Dalela D, Goel A, Goel MM, Tandon P: Diet, obesity, and prostate health: Are we missing the link? J Androl 2012. Feb 9 Epubahead of print
  • [178]Gronberf H, Damber L, Damber JE: Total food consumption and body mass index in relation to prostate cancer risk: a case-control study in Sweden with prospectively collected exposure data. J Urol 1996, 155:969-974.
  • [179]Freeland SJ, Platz EA: Obesity and prostate cancer: making sense out of apparently conflicting data. Epidemiol Rev 2007, 29:88-97.
  • [180]Gong Z, Neuhouser ML, Goodman PJ, Albanes D, Chi C, Hsing AW, Lippman SM, Platz EA, Pollak MN, Thompson IM, Kristal AR: Obesity, diabetes and risk of prostate cancer: results from the Prostate Cancer Prevention Trial. Cancer Epidemiol Biomarkers Prev 2006, 15:1977-1983.
  • [181]Discacciati A, Orsini N, Wolk A: Body mass index and incidence of localized andadvanced prostate cancer - a dose-response meta-analysis of prospective studies. Ann Oncol 2012. Jan 6 [Epub ahead of print]
  • [182]Fowke JH, Motley SS, Concepcion RS, Penson DF, Barocas DA: Obesity, body composition, and prostate cancer. BMC Cancer 2012, 12:23. BioMed Central Full Text
  • [183]Lynch CJ, Fox HL, Vary TC, Jefferson LS, Kimball SR: Regulation of amino acid- sensitive TOR signaling by leucine analogues in adipocytes. J Cell Biochem 2000, 77:234-251.
  • [184]Lynch CJ: Role of leucine in the regulation of mTOR by amino acids: revelations from structure-activity studies. J Nutr 2001, 131:861S-865S.
  • [185]Pham PT, Heydrick SJ, Fox HL Kimball SR, Jefferson LS Jr, Lynch CJ: Assessment of cell-signaling pathways in the regulation of mammalian target of rapamycin (mTOR) by amino acids in rat adipocytes. J Cell Biochem 2000, 79:427-441.
  • [186]Kim JE, Chen J: Regulation of peroxisome proliferator-activated receptor-γ activity by mammalian target of rapamycin and amino acids in adipogenesis. Diabetes 2004, 53:2748-2756.
  • [187]Fox HL, Kimball SR, Jefferson LS, Lynch CJ: Amino acids stimulate phosphorylation of p70S6k and organization of rat adipocytes into multicellular clusters. Am J Physiol Cell Physiol 1998, 274:C206-C213.
  • [188]Fox HL, Pham PT, Kimball SR, Jefferson LS, Lynch CJ: Amino acid effects on translational repressor 4E-BP1 are mediated primarily by L-leucine in isolated adiopocytes. Am J Physiol Cell Physiol 1998, 275:C1232-C1238.
  • [189]Carnevalli LS, Masuda K, Frigerio F, Le Bacquer O, Um SH, Gandin V, Topisirovic I, Sonenberg N, Thomas G, Kozma SC: S6K1 plays a critical role in early adipocyte differentiation. Dev Cell 2010, 18:763-774.
  • [190]Boura-Halfon S, Zick Y: Phosphorylation of IRS proteins, insulin action, and insulin resistance. Am J Physiol Endocrinol Metab 2009, 296:E581-E591.
  • [191]Krebs M, Brunmair B, Brehm A, Artwohl M, Szendroedi J, Nowotny P, Roth E, Fürnsinn C, Promintzer M, Anderwald C, Bischof M, Roden M: The mammalian target of rapamycin pathway regulates nutrient-sensitive glucose uptake in man. Diabetes 2007, 56:1600-1607.
  • [192]Tremblay F, Krebs M, Dombrowski L, Brehm A, Bernroider E, Roth E, Nowotny P, Waldhäusl W, Marette A, Roden M: Overactivation of S6 kinase 1 as a cause of human insulin resistance during increased amino acid availability. Diabetes 2005, 54:2674-2684.
  • [193]Johnson S, Karam JH, Levin SR, Grodsky GM, Forsham PH: Hyperinsulin response to oral leucine in obesity and acromegaly. J Clin Endocrinol Metab 1973, 37:431-435.
  • [194]Vikram A, Jena G: Diet-induced hyperinsulinemia accelerates growth of androgen-independent PC-3 cells in vitro. Nutr Cancer 2012, 64:121-127.
  • [195]Felig P, Marliss E, Cahill GF Jr: Plasma amino acid levels and insulin secretion in obesity. N Engl J Med 1969, 281:811-816.
  • [196]Rosenthal J, Angel A, Farkas J: Metabolic fate of leucine: a significant sterol precursor in adipose tissue and muscle. Am J Physiol 1974, 226:411-418.
  • [197]She P, Van Horn C, Reid T, Hutson SM, Cooney RN, Lynch CJ: Obesity-related elevations in plasma leucine are associated with alterations in enzymes involved in branched-chain amino acid metabolism. Am J Physiol Endocrinol Metab 2007, 293:E1552-E1563.
  • [198]Herman MA, She P, Peroni OD, Lynch CJ, Kahn BB: Adipose tissue branched chain amino acid (BCAA) metabolism modulates circulating BCAA levels. J Biol Chem 2010, 285:11348-11356.
  • [199]She P, Reid TM, Bronson SK, Vary TC, Hajnal A, Lynch CJ, Hutson SM: Disruption of BCATm in mice leads to increased energy expenditure associated with the activation of a futile protein turnover cycle. Cell Metab 2007, 6:181-194.
  • [200]Liu EY, Ryan KM: Autophagy and cancer – issues we need to digest. J Cell Sci 2012, 125:2349-2358.
  • [201]Jegga AG, Schneider L, Ouyang X, Zhang J: Systems biology of the autophagy- lysosomal pathway. Autophagy 2011, 5:477-489.
  • [202]Jin S, White E: Role of autophagy in cancer: management of metabolic stress. Autophagy 2007, 3:28-31.
  • [203]Lozy F, Karantza V: Autophagy and cancer cell metabolism. Sem Cell Dev Biol 2012, 23:395-401.
  • [204]Chang YY, Juhász G, Goraksha-Hicks P, Arsham AM, Mallin DR, Muller LK, Neufeld TP: Nutrient-dependent regulation of autophagy through the target of rapamycin pathway. Biochem Soc Trans 2009, 37:232-236.
  • [205]Mathew R, Karantza-Wadsworth V, White E: Role of autophagy in cancer. Nat Rev Cancer 2007, 7:961-967.
  • [206]DiPaola RS, Dvorzhinski D, Thalasila A, Garikapaty V, Doram D, May M, Bray K, Mathew R, Beaudoin B, Karp C, Stein M, Foran DJ, White E: Therapeutic starvation and autophagy in prostate cancer: a new paradigm for targeting metabolism in cancer therapy. Prostate 2008, 68:1743-1752.
  • [207]Lozy F, Karantza V: Autophagy and cancer cell metabolism. Semin Cell Dev Biol 2012. Jan 18 [Epub ahead of print]
  • [208]Kaini RR, Sillerud LO, Zhaorigetu S, Hu CA: Autophagy regulates lipolysis and cell survival through lipid droplet degradation in androgen-sensitive prostate cancer cells. Prostate 2012. Epub ahead of print
  • [209]Meijer AJ: Amino acid regulation of autophagosome formation. Methods Mol Biol 2008, 445:89-109.
  • [210]Yan X, Sun Q, Ji J, Zhu Y, Liu Z, Zhong Q: Reconstitution of leucine-mediated autophagy via the mTORC1 –Barkor pathway in vitro. Autophagy 2012, 8:213-221.
  • [211]Cao C, Subhawong T, Albert JM, Kim KW, Geng L, Sekhar KR, Gi YJ, Lu B: Inhibition of mammalian target of rapamycin or apoptotic pathway induces autophagy and radiosensitizes PTEN null prostate cancer cells. Cancer Res 2006, 66:10040-10047.
  • [212]Chiu HW, Fang WH, Chen YL, Wu MD, Yuan MD, Ho SY, Wang YJ: Monascuspiloin enhances the radiation sensitivity of human prostate cancer cells by stimulating endoplasmic reticulum stress and inducing autophagy. PLoS ONE 2012, 7:e40462.
  • [213]Costa MM, Violato NM, Taboga SR, Góes RM, Bosqueiro JR: Reduction of insulin signalling pathway IRS-1/IRS-2/AKT/mTOR and decrease of epithelial cell proliferation in the prostate of glucocorticoid-treated rats. Int J Exp Pathol 2012, 93:188-195.
  • [214]Shimizu N, Yoshikawa N, Ito N, Maruyama T, Suzuki Y, Takeda S, Nishitani S, Takehana K, Sano M, Fukuda K, Suematsu M, Morimoto C, Tanaka H: Crosstalk between glucocorticoid receptor and nutritional sensor mTOR in skeletal muscle. Cell Metab 2011, 13:170-182.
  • [215]Brugarolas J, Lei K, Hurley RL, Manning BD, Reiling JH, Hafen E, Witters LA, Ellisen LW, Kaelin WG Jr: Regulation of mTOR function in response to hypoxia by REDD1 and the TSC1/TSC2 tumor suppressor complex. Genes Dev 2004, 18:2893-2904.
  • [216]DeYoung MP, Horak P, Sofer A, Sgroi D, Ellisen LW: Hypoxia regulates TSC1/2-mTOR signaling and tumor suppression through REDD1-mediated 14-3-3 shuttling. Genes Dev 2008, 22:239-251.
  • [217]Wang H, Kubica N, Ellisen LW, Jefferson LS, Kimball SR: Dexamethasone represses signaling through the mammalian target of rapamycin muscle cells by enhancing expression of REDD1. J Biol Chem 2006, 281:39128-39134.
  • [218]Gray S, Wang B, Orihuela Y, Hong EG, Fisch S, Haldar S, Cline GW, Kim JK, Peroni OD, Kahn BB, Jain MK: Regulation of gluconeogenesis by Krüppel-like factor 15. Cell Metab 2007, 5:305-312.
  • [219]Clements A, Gao B, Yeap SHO, Wong MKY, Ali SS, Gurney H: Metformin in prostate cancer: two for the price of one. Ann Oncol 2011, 22:2556-2560.
  • [220]Currie CJ, Poole CD, Jenkins-Jones S, Gale EA, Johnson JA, Morgan CL: Mortality after incident cancer in people with and without type 2 diabetes. Diabetes Care 2012, 35:299-304.
  • [221]He XX, Tu SM, Lee MH, Yeung SC: Thiazolidinediones and metformin associated with improved survival of diabetic prostate cancer patients. Ann Oncol 2011, 22:2640-2645.
  • [222]Ben Sahra I, Laurent K, Loubat A, Giorgett-Peraldi S, Colosetti P, Auberger P, Tanti JF, Le Marchand-Brustel Y, Bost F: The antidiabetic drug metformin exerts an antitumorial effect in vitro and in vivo through a decrease of cyclin D1 level. Oncogene 2008, 27:3576-3586.
  • [223]Hardie DG: Role of AMP-activated protein kinase in the metabolic syndrome and in heart disease. FEBS Lett 2008, 582:81-89.
  • [224]Xie J, Ponuwei GA, Moore CE, Willars GB, Tee AR, Herbert TP: cAMP inhibits mammalian target of rapamycin complex-1 and -2 (mTORC1 and 2) by promoting complex dissociation and inhibiting mTOR kinase activity. Cell Signal 2011, 23:1927-1935.
  • [225]Ben Sahra I, Laurent K, Giuliano S, Larbret F, Ponzio G, Gounon P, Le Marchand- Brustel Y, Giorgetti-Peraldi S, Cormont M, Bertolotto C, Deckert M, Auberger P, Tanti JF, Bost F: Targeting cancer cell metabolism: the combination of metformin and 2-dexoyglucose induces p53-dependent apoptosis in prostate cancer cells. Cancer Res 2010, 70:2465-2475.
  • [226]Kalender A, Selvaraj A, Kim SY, Gulati P, Brûlé S, Viollet B, Kemp BE, Bardeesy N, Dennis P, Schlager JJ, Marette A, Kozma SC, Thomas G: Metformin, independent of AMPK, inhibits mTORC1 in a RAG GTPase-dependent manner. Cell Metab 2010, 11:390-398.
  • [227]Kim E, Goraksha-Hicks P, Li L, Neufeld TP, Guan KL: Regulation of TORC1 by Rag GTPases in nutrient response. Nat Cell Biol 2008, 10:935-945.
  • [228]Chan JM, Gann PH, Giovannucci EL: Role of diet in prostate cancer development and progression. J Clin Oncol 2005, 23:8152-8160.
  • [229]Sonn GA, Aronson W, Litwin MS: Impact of diet on prostate cancer: a review. Prostate Cancer Prostatic Dis 2005, 8:304-310.
  • [230]Kristal AR, Cohen JH, Qu P, Stanford JL: Association of energy, fat, calcium, and vitamin D with prostate cancer risk. Cancer Epidemiol Biomarkers Prev 2002, 11:719-725.
  • [231]Giovannucci E, Ascherio A, Rimm EB, Stampfer MJ, Colditz GA, Willett WC: Intake of carotenoids and retinol in relation to risk of prostate cancer. J Natl Cancer Inst 1995, 87:1767-1776.
  • [232]Graham S, Haughey B, Marshall J, Priore R, Byers T, Rzepka T, Mettlin C, Pontes JE: Diet in the epidemiology of carcinoma of the prostate gland. J Natl Cancer Inst 1983, 70:687-692.
  • [233]Kolonel LN, Hankin JH, Whittemore AS, Wu AH, Gallaher RP, Wilkens LR, John EM, Howe GR, Dreon DM, West DW, Paffenbarger RS: Vegetables, fruits, legumes and prostate cancer: a multi-ethnic case-control study. Cancer Epidemiol Biomarkers Prev 2000, 9:795-804.
  • [234]Marques FZ, Markus MA, Morris BJ: Resveratrol: cellular actions of a potent natural chemical that confers a diversity of health benefits. Int J Biochem Cell Biol 2009, 41:2125-2128.
  • [235]Zhou H, Luo Y, Huang S: Updates of mTOR inhibitors. Anticancer Agents Med Chem 2010, 10:571-581.
  • [236]Jiang H, Shang X, Wu H, Gautam SC, Al-Holou S, Li C, Kuo J, Zhang L, Chopp M: Resveratrol downregulates PI3K/Akt/mTOR signaling pathways in human U251 glioma cells. J Exp Ther Oncol 2009, 8:25-33.
  • [237]Brito PM, Devillard R, Negre-Salvayre A, Almeida LM, Dinis TC, Salvayre R, Augé N: Resveratrol inhibits the mTOR mitogenic signaling evoked by oxidized LDL in smooth muscle cells. Atherosclerosis 2009, 205:126-134.
  • [238]Lin JN, Lin VC, Rau KM, Shieh PC, Kuo DH, Shieh JC, Chen WJ, Tsai SC, Way TD: Resveratrol modulates tumor cell proliferation and protein translation via SIRT1-dependent AMPK activation. J Agric Food Chem 2010, 58:1584-1592.
  • [239]Fröjdjö S, Cozzone D, Vidal H, Pirola L: Resveratrol is a class IA phosphoinositide 3-kinase inhibitor. Biochem J 2007, 406:511-518.
  • [240]Zhang Q, Kelly AP, Wang L, French SW, Tang X, Duong HS, Messadi DV, Le AD: Green tea extract and (-)-epigallocatechin-3-gallate inhibit mast cell-stimulated type I collagen expression in keloid fibroblasts via blocking PI-3 K/Akt signaling pathways. J Invest Dermatol 2006, 126:2607-2613.
  • [241]Van Aller GS, Carson JD, Tang W, Peng H, Zhao L, Copeland RA, Tummino PJ, Luo L: Epigallocatechin gallate (EGCG), a major component of green tea, is a dual phosphoinositide-3-kinase/mTOR inhibitor. Biochem Biophys Res Commun 2011, 406:194-199.
  • [242]Beevers CS, Chen L, Liu L, Luo Y, Webster NJ, Huang S: Curcumin disrupts the mammalian target of rapamycin-raptor complex. Cancer Res 2009, 69:1000-1008.
  • [243]Anastasius N, Boston S, Lacey M, Storing N, Whitehead SA: Evidence that low- dose, long-term genistein treatment inhibits oestradiol-stimulated growth in MCF-7 cells by down-regulation of the PI3-kinase/Akt signalling pathway. J Steroid Biochem Mol Biol 2009, 116:50-55.
  • [244]Nakamura Y, Yogosawa S, Izutani Y, Watanabe H, Otsuji E, Sakai T: A combination of indol-3-carbinol and genistein synergistically induces apoptosis in human colon cancer HT-29 cells by inhibiting Akt phosphorylation and progression of autophagy. Mol Cancer 2009, 8:100. BioMed Central Full Text
  • [245]Kong D, Banerjee S, Huang W, Li Y, Wang Z, Kim HR, Sarkar FH: Mammalian target of rapamycin repression by 3,3-diindolylmethane inhibits invasion and angiogenesis in platelet-derived growth factor-D-overexpressing PC3 cells. Cancer Res 2008, 68:1927-1934.
  • [246]Reinke A, Chen JC, Aronova S, Powers T: Caffeine targets TOR complex I and provides evidence for a regulatory link between the FRB and kinase domains of Tor1p. J Biol Chem 2006, 281:31616-31626.
  • [247]Goel A, Kunnumakkara AB, Aggarwal BB: Curcumin as “Curecumin”: from kitchen to clinic. Biochem Pharmacol 2008, 75:787-809.
  • [248]Johnson SM, Gulhati P, Arrieta I, Wang X, Uchida T, Gao T, Evers BM: Curcumin inhibits proliferation of colorectal carcinoma by modulating Akt/mTOR signaling. Anticancer Res 2009, 29:3185-3190.
  • [249]Beevers CS, Li F, Liu L, Huang S: Curcumin inhibits the mammalian target of rapamycin-mediated signaling pathways in cancer cells. Int J Cancer 2006, 119:757-764.
  • [250]Banerjee S, Kong D, Wang Z, Bao B, Hillman GG, Sarkar FH: Attenuation of multi-targeted proliferation-linked signaling by 3,3'-diindolylmethane (DIM): from bench to clinic. Mutat Res 2011, 728:47-66.
  • [251]Connors SK, Chornokur G, Kumar NB: New insights into the mechanisms of green tea catechins in the chemoprevention of prostate cancer. Nutr Cancer 2012, 64:4-22.
  • [252]Henning SM, Wang P, Heber D: Chemopreventive effects of tea in prostate cancer: green tea versus black tea. Mol Nutr Food Res 2011, 55:905-920.
  • [253]Yang CS, Wang H, Li GX, Yang Z, Guan F, Jin H: Cancer prevention by tea: Evidence from laboratory studies. Pharmacol Res 2011, 64:113-122.
  • [254]Henning SM, Aronson W, Niu Y, Conde F, Lee NH, Seeram NP, Lee RP, Lu J, Harris DM, Moro A, Hong J, Pak-Shan L, Barnard RJ, Ziaee HG, Csathy G, Go VL, Wang H, Heber D: Tea polyphenols and theaflavins are present in prostate tissue of humans and mice after green and black tea consumption. J Nutr 2006, 136:1839-1843.
  • [255]Chen Q, Ganapathy S, Singh KP, Shankar S, Srivastava RK: Resveratrol induces growth arrest and apoptosis through activation of FOXO transcription factors in prostate cancer cells. PloS ONE 2010, 5:e15288.
  • [256]Olsen SF, Halldorsson TI, Willett WC, Knudsen VK, Gillman MW, Mikkelsen TB, Olsen J, and the NUTRIX Consortium: Milk consumption during pregnancy is associated with increased size at birth: prospective cohort study. Am J Clin Nutr 2007, 86:1104-1110.
  • [257]Roos S, Powell TL, Jansson T: Placental mTOR links maternal nutrient availability to fetal growth. Biochem Soc Trans 2009, 37:295-298.
  • [258]Roos S, Lagerlöf O, Wennergren M, Powell TL, Jansson T: Regulation of amino acid transporters by glucose and growth factors in cultured primary human trophoblast cells is mediated by mTOR singaling. Am J Physiol Cell Physiol 2009, 297:C723-C731.
  • [259]Ghosh S, Lau H, Simons BW, Powell JD, Meyers DJ, De Marzo AM, Berman DM, Lotan TL: PI3K/mTOR signaling regulates prostatic branching morphogenesis. Dev Biol 2011, 360:329-342.
  • [260]Chantaravisoot N, Tamanoi F: mTOR signaling and human cancer. The Enzymes 2010, 28:301-316.
  • [261]Li L, Ittmann MM, Ayala G, Tsai MJ, Amato RJ, Wheeler TM, Miles BJ, Kadmon D, Thompson TC: The emerging role of the PI3-K-Akt pathway in prostate cancer progression. Prostate Cancer Prostatic Dis 2005, 8:108-118.
  • [262]Tolcher AW: Novel therapeutic molecular targets for prostate cancer: the mTOR signaling pathway and epidermal growth factor receptor. J Urol 2004, 171:S41-S44.
  • [263]Morgan TM, Koreckij TD, Corey E: Targeted therapy for advanced prostate cancer: inhibition of the PI3K/Akt/mTOR pathway. Curr Cancer Drug Target 2009, 9:237-249.
  • [264]Mazzoletti M, Bortolin F, Brunelli L, Pastorelli R, Di Giandomenico S, Erba E, Ubezio P, Broggini M: Combination of PI3K/mTOR inhibitors: Antitumor activity and molecular correlates. Cancer Res 2011, 71:4573-4584.
  • [265]Wang Y, Kresiberg JI, Ghosh PM: Cross-talk between the androgen receptor and the phosphatidylinositol 3-kinase/Akt pathway in prostate cancer. Curr Cancer Drug Targets 2007, 7:591-604.
  • [266]Parkin DM: The fraction of cancer attributable to lifestyle and environmental factors in the UK in 2010. Br J Cancer 2011, 105:S2-S5.
  • [267]Ross RK, Henderson BE: Do diet and androgens alter prostate cancer risk via a common etiologic pathway? J Nat Cancer Inst 1994, 86:252-254.
  • [268]Cordain L, Eades MR, Eades MD: Hyperinsulinemic diseases of civilization: more than just Sysdrome X. Comp Biochem Physiol A Mol Integr Physiol 2003, 136:95-112.
  • [269]Eaton SB, Konner M: Paleolithic nutrition. A consideration of its nature and current implications. N Engl J Med 1985, 312:283-289.
  • [270]Brand-Miller J: Origins and evolution of the Western diet: health implications for the 21st century. Am J Clin Nutr 2005, 81:341-354.
  • [271]Carrera-Bastos P, Fontes-Villalba M, O´Keefe JH, Lindeberg S, Cordain L: The western diet and lifestyle and diseases of civilization. Res Rep Clin Cardiol 2011, 2:15-35.
  • [272]Bryder L: From breast to bottle: a history of modern infant feeding. Endeavour 2009, 33:54-59.
  • [273]Melnik BC: Androgen abuse in the community. Curr Opin Endocrinol Diabetes Obes 2009, 16:218-223.
  文献评价指标  
  下载次数:23次 浏览次数:27次