期刊论文详细信息
Molecular Neurodegeneration
Age-dependent roles of peroxisomes in the hippocampus of a transgenic mouse model of Alzheimer’s disease
Sandra Moreno5  Maria Paola Ceru'1  Francesco Cecconi4  AnnaMaria Cimini1  Loredana Cristiano1  Cinzia Bernardi2  Marcello D’Amelio3  Sara Sepe5  Francesca Fanelli3 
[1] Department of Life, Health and Environmental Sciences, University of L’Aquila, piazzale Salvatore Tommasi 1, 67100, Coppito, (AQ), Italy;Department of Radiological Sciences and Laboratory Medicine, UOC Pathological Anatomy, San Filippo Neri Hospital, via Martinotti 20, 00135, Rome, Italy;University Campus Bio-Medico, via Alvaro del Portillo 21, 00128, Rome, Italy;Department of Biology, University of Rome ‘Tor Vergata’, via della Ricerca Scientifica, 00133, Rome, Italy;Department of Biology-LIME, University “Roma Tre”, viale Marconi 446, 00146, Rome, Italy
关键词: Acyl-CoA beta-oxidation;    Glutathione peroxidase;    Superoxide dismutase;    Catalase;    Lipid metabolism;    Oxidative stress;    Neurodegeneration;    Alzheimer’s disease;    Brain aging;    Peroxisome;   
Others  :  863278
DOI  :  10.1186/1750-1326-8-8
 received in 2012-11-08, accepted in 2013-01-29,  发布年份 2013
PDF
【 摘 要 】

Background

Alzheimer’s Disease (AD) is a progressive neurodegenerative disease, especially affecting the hippocampus. Impairment of cognitive and memory functions is associated with amyloid β-peptide-induced oxidative stress and alterations in lipid metabolism. In this scenario, the dual role of peroxisomes in producing and removing ROS, and their function in fatty acids β-oxidation, may be critical. This work aims to investigating the possible involvement of peroxisomes in AD onset and progression, as studied in a transgenic mouse model, harboring the human Swedish familial AD mutation. We therefore characterized the peroxisomal population in the hippocampus, focusing on early, advanced, and late stages of the disease (3, 6, 9, 12, 18 months of age). Several peroxisome-related markers in transgenic and wild-type hippocampal formation were comparatively studied, by a combined molecular/immunohistochemical/ultrastructural approach.

Results

Our results demonstrate early and significant peroxisomal modifications in AD mice, compared to wild-type. Indeed, the peroxisomal membrane protein of 70 kDa and acyl-CoA oxidase 1 are induced at 3 months, possibly reflecting the need for efficient fatty acid β-oxidation, as a compensatory response to mitochondrial dysfunction. The concomitant presence of oxidative damage markers and the altered expression of antioxidant enzymes argue for early oxidative stress in AD. During physiological and pathological brain aging, important changes in the expression of peroxisome-related proteins, also correlating with ongoing gliosis, occur in the hippocampus. These age- and genotype-based alterations, strongly dependent on the specific marker considered, indicate metabolic and/or numerical remodeling of peroxisomal population.

Conclusions

Overall, our data support functional and biogenetic relationships linking peroxisomes to mitochondria and suggest peroxisomal proteins as biomarkers/therapeutic targets in pre-symptomatic AD.

【 授权许可】

   
2013 Fanelli et al; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140725033755970.pdf 12315KB PDF download
356KB Image download
259KB Image download
126KB Image download
177KB Image download
151KB Image download
210KB Image download
118KB Image download
161KB Image download
145KB Image download
121KB Image download
【 图 表 】

【 参考文献 】
  • [1]Bonda DJ, Wang X, Perry G, Nunomura A, Tabaton M, Zhu X, Smith MA: Oxidative stress in Alzheimer disease: a possibility for prevention. Neuropharmacology 2010, 59:290-294.
  • [2]Querfurth HW, LaFerla FM: Alzheimer’s disease. N Engl J Med 2010, 362:329-344.
  • [3]Di Paolo G, Kim TW: Linking lipids to Alzheimer’s disease: cholesterol and beyond. Nat Rev Neurosci 2011, 12:284-296.
  • [4]Huang Y, Mucke L: Alzheimer mechanisms and therapeutic strategies. Cell 2012, 148:1204-1222.
  • [5]Walsh DM, Teplow DB: Alzheimer’s disease and the amyloid β-protein. Prog Mol Biol Transl Sci 2012, 107:101-124.
  • [6]De Duve C, Baudhuin P: Peroxisomes (microbodies and related particles). Physiol Rev 1966, 46:323-357.
  • [7]Poirier Y, Antonenkov VD, Glumoff T, Hiltunen JK: Peroxisomal beta-oxidation, a metabolic pathway with multiple functions. Biochim Biophys Acta 2006, 1763:1413-1426.
  • [8]Wanders RJ, Waterham HR: Biochemistry of mammalian peroxisomes revisited. Annu Rev Biochem 2006, 75:295-332.
  • [9]Sprecher H, Luthria DL, Mohammed BS, Baykousheva SP: Reevaluation of the pathways for the biosynthesis of polyunsaturated fatty acids. J Lipid Res 1995, 36:2471-2477.
  • [10]Wanders RJ, Ferdinandusse S, Brites P, Kemp S: Peroxisomes, lipid metabolism and lipotoxicity. Biochim Biophys Acta 2010, 1801:272-280.
  • [11]Drago I, Giacomello M, Pizzo P, Pozzan T: Calcium dynamics in the peroxisomal lumen of living cells. J Biol Chem 2008, 283:14384-14390.
  • [12]Lasorsa FM, Pinton P, Palmieri L, Scarcia P, Rottensteiner H, Rizzuto R, Palmieri F: Peroxisomes as novel players in cell calcium homeostasis. J Biol Chem 2008, 283:15300-15308.
  • [13]Titorenko VI, Terlecky SR: Peroxisome metabolism and cellular aging. Traffic 2011, 12:252-259.
  • [14]Ribeiro D, Castro I, Fahimi HD, Schrader M: Peroxisome morphology in pathology. Histol Histopathol 2012, 27:661-676.
  • [15]Lizard G, Rouaud O, Demarquoy J, Cherkaoui-Malki M, Iuliano L: Potential roles of peroxisomes in Alzheimer’s disease and in dementia of the Alzheimer’s type. J Alzheimers Dis 2012, 29:241-254.
  • [16]Kou J, Kovacs GG, Höftberger R, Kulik W, Brodde A, Forss-Petter S, Hönigschnabl S, Gleiss A, Brugger B, Wanders R, Just W, Budka H, Jungwirth S, Fischer P, Berger J: Peroxisomal alterations in Alzheimer’s disease. Acta Neuropathol 2011, 122:271-283.
  • [17]Santos MJ, Quintanilla RA, Toro A, Grandy R, Dinamarca MC, Godoy JA, Inestrosa NC: Peroxisomal proliferation protects from beta-amyloid neurodegeneration. J Biol Chem 2005, 280:41057-41068.
  • [18]Cimini A, Moreno S, D’Amelio M, Cristiano L, D’Angelo B, Falone S, Benedetti E, Carrara P, Fanelli F, Cecconi F, Amicarelli F, Cerù MP: Early biochemical and morphological modifications in the brain of a transgenic mouse model of Alzheimer’s disease: a role for peroxisomes. J Alzheimer Dis 2009, 18:935-952.
  • [19]Cimini A, Benedetti E, D’Angelo B, Cristiano L, Falone S, Di Loreto S, Amicarelli F, Cerù MP: Neuronal response of peroxisomal and peroxisome-related proteins to chronic and acute Abeta injury. Curr Alzheimer Res 2009, 6:238-251.
  • [20]Hsiao K, Chapman P, Nilsen S, Eckman C, Harigaya Y, Younkin S, Yang F, Cole G: Correlative memory deficits, Abeta elevation, and amyloid plaques in transgenic mice. Science 1996, 274:99-102.
  • [21]Jacobsen JS, Wu CC, Redwine JM, Comery TA, Arias R, Bowlby M, Martone R, Morrison JH, Pangalos MN, Reinhart PH, Bloom FE: Early-onset behavioral and synaptic deficits in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci USA 2006, 103:5161-5166.
  • [22]D’Amelio M, Cavallucci V, Middei S, Marchetti C, Pacioni S, Ferri A, Diamantini A, De Zio D, Carrara P, Battistini L, Moreno S, Bacci A, Ammassari-Teule M, Marie H, Cecconi F: Caspase-3 triggers early synaptic dysfunction in a mouse model of Alzheimer’s disease. Nat Neurosci 2011, 14:69-76.
  • [23]Lee SH, Kim KR, Ryu SY, Son S, Hong HS, Mook-Jung I, Lee SH, Ho WK: Impaired short-term plasticity in mossy fiber synapses caused by mitochondrial dysfunction of dentate granule cells is the earliest synaptic deficit in a mouse model of Alzheimer’s disease. J Neurosci 2012, 32:5953-5963.
  • [24]Scheff SW, Price DA, Schmitt FA, DeKosky ST, Mufson EJ: Synaptic alterations in CA1 in mild Alzheimer disease and mild cognitive impairment. Neurology 2007, 68:1501-1508.
  • [25]Schrader M, Fahimi HD: Peroxisomes and oxidative stress. Biochim Biophys Acta 2006, 1763:1755-1766.
  • [26]Montagner A, Rando G, Degueurce G, Leuenberger N, Michalik L, Wahli W: New insights into the role of PPARs. Prostaglandins Leukot Essent Fatty Acids 2011, 85:235-243.
  • [27]Issemann I, Green S: Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators. Nature 1990, 347:645-650.
  • [28]Chung JH, Seo AY, Chung SW, Kim MK, Leeuwenburgh C, Yu BP, Chung HY: Molecular mechanism of PPAR in the regulation of age-related inflammation. Ageing Res Rev 2008, 7:126-136.
  • [29]Campolongo P, Roozendaal B, Trezza V, Cuomo V, Astarita G, Fu J, McGaugh JL, Piomelli D: Fat-induced satiety factor oleoylethanolamide enhances memory consolidation. PNAS 2009, 106:8027-8031.
  • [30]Delille HK, Alves R, Schrader M: Biogenesis of peroxisomes and mitochondria: linked by division. Histochem Cell Biol 2009, 131:441-446.
  • [31]Bagattin A, Hugendubler L, Mueller E: Transcriptional coactivator PGC-1alpha promotes peroxisomal remodeling and biogenesis. Proc Natl Acad Sci USA 2010, 107:20376-20381.
  • [32]Itoh R, Fujiki Y: Functional domains and dynamic assembly of the Peroxin Pex14p, the entry site of matrix proteins. J Biol Chem 2006, 281:10196-10205.
  • [33]Meinecke M, Cizmowski C, Schliebs W, Kruger V, Beck S, Wagner R, Erdmann R: The peroxisomal importomer constitutes a large and highly dynamic pore. Nat Cell Biol 2010, 12:273-277.
  • [34]van der Zand A, Gent J, Braakman I, Tabak HF: Biochemically distinct vesicles from the endoplasmic reticulum fuse to form peroxisomes. Cell 2012, 149:397-409.
  • [35]Ahlemeyer B, Neubert I, Kovacs WJ, Baumgart-Vogt E: Differential expression of peroxisomal matrix and membrane proteins during postnatal development of mouse brain. J Comp Neurol 2007, 505:1-17.
  • [36]Santos MJ, Kawada ME, Espeel M, Figueroa C, Alvarez A, Hidalgo U, Metz C: Characterization of human peroxisomal membrane proteins. J Biol Chem 1994, 269:24890-24896.
  • [37]Morita M, Imanaka T: Peroxisomal ABC transporters: Structure, function and role in disease. Biochim Biophys Acta 2012, 1822:1387-1396.
  • [38]Moreno S, Mugnaini E, Cerù MP: Immunocytochemical localization of catalase in the central nervous system of the rat. J Histochem Cytochem 1995, 43:1253-1267.
  • [39]Moreno S, Nardacci R, Cerù MP: Regional and ultrastructural immunolocalization of copper-zinc superoxide dismutase in rat central nervous system. J Histochem Cytochem 1997, 45:1611-1622.
  • [40]Qin W, Haroutunian V, Katsel P, Cardozo CP, Ho L, Buxbaum JD, Pasinetti GM: PGC-1alpha expression decreases in the Alzheimer disease brain as a function of dementia. Arch Neurol 2009, 66:352-361.
  • [41]Hirata-Fukae C, Li HF, Hoe HS, Gray AJ, Minami SS, Hamada K, Niikura T, Hua F, Tsukagoshi-Nagai H, Horikoshi-Sakuraba Y, Mughal M, Rebeck GW, LaFerla FM, Mattson MP, Iwata N, Saido TC, Klein WL, Duff KE, Aisen PS, Matsuoka Y: Females exhibit more extensive amyloid, but not tau, pathology in an Alzheimer transgenic model. Brain Res 2008, 1216:92-103.
  • [42]Craig MC, Murphy DG: Estrogen therapy and Alzheimer’s dementia. Ann N Y Acad Sci 2010, 1205:245-253.
  • [43]Small SA, Schobel SA, Buxton RB, Witter MP, Barnes CA: A pathophysiological framework of hippocampal dysfunction in ageing and disease. Nat Rev Neurosci 2011, 12:585-601.
  • [44]Bharti P, Schliebs W, Schievelbusch T, Neuhaus A, David C, Kock K, Herrmann C, Meyer HE, Wiese S, Warscheid B, Theiss C, Erdmann R: PEX14 is required for microtubule-based peroxisome motility in human cells. J Cell Sci 2011, 124:1759-1768.
  • [45]Pagani L, Eckert A: Amyloid-Beta interaction with mitochondria. Int J Alzheimers Dis 2011, 2011:1-12.
  • [46]Ferrer I: Altered mitochondria, energy metabolism, voltage-dependent anion channel, and lipid rafts converge to exhaust neurons in Alzheimer’s disease. J Bioenerg Biomembr 2009, 41:425-431.
  • [47]Gillardon F, Rist W, Kussmaul L, Vogel J, Berg M, Danzer K, Kraut N, Hengerer B: Proteomic and functional alterations in brain mitochondria from Tg2576 mice occur before amyloid plaque deposition. Proteomics 2007, 7:605-616.
  • [48]Gibson GE, Shi Q: A mitocentric view of Alzheimer’s disease suggests multi-faceted treatments. J Alzheimers Dis 2010, 2:S591-S607.
  • [49]Nicholson RM, Kusne Y, Nowak LA, LaFerla FM, Reiman EM, Valla J: Regional cerebral glucose uptake in the 3xTG model of Alzheimer’s disease highlights common regional vulnerability across AD mouse models. Brain Res 2010, 1347:179-185.
  • [50]Mosconi L, Pupi A, De Leon MJ: Brain glucose hypometabolism and oxidative stress in preclinical Alzheimer’s disease. Ann N Y Acad Sci 2008, 1147:180-195.
  • [51]Yao J, Rettberg JR, Klosinski LP, Cadenas E, Brinton RD: Shift in brain metabolism in late onset Alzheimer’s disease: implications for biomarkers and therapeutic interventions. Mol Aspects Med 2011, 32:247-257.
  • [52]Baarine M, Andréoletti P, Athias A, Nury T, Zarrouk A, Ragot K, Vejux A, Riedinger JM, Kattan Z, Bessede G, Trompier D, Savary S, Cherkaoui-Malki M, Lizard G: Evidence of oxidative stress in very long chain fatty acid - treated oligodendrocytes and potentialization of ROS production using RNA interference-directed knockdown of ABCD1 and ACOX1 peroxisomal proteins. Neuroscience 2012, 213:1-18.
  • [53]Zarrouk A, Vejux A, Nury T, El Hajj HI, Haddad M, Cherkaoui-Malki M, Riedinger JM, Hammami M, Lizard G: Induction of mitochondrial changes associated with oxidative stress on very long chain fatty acids (C22:0, C24:0, or C26:0)-treated human neuronal cells (SK-NB-E). Oxid Med Cell Longev 2012.
  • [54]Kane CD, Francone OL, Stevens KA: Differential regulation of the cynomolgus, human, and rat acyl-CoA oxidase promoters by PPARalpha. Gene 2006, 380:84-94.
  • [55]Gray E, Ginty M, Kemp K, Scolding N, Wilkins A: Peroxisome proliferator-activated receptor-α agonists protect cortical neurons from inflammatory mediators and improve peroxisomal function. Eur J Neurosci 2011, 33:1421-1432.
  • [56]Anderson EJ, Yamazaki H, Neufer PD: Induction of endogenous uncoupling protein 3 suppresses mitochondrial oxidant emission during fatty acid-supported respiration. J Biol Chem 2007, 282:31257-31266.
  • [57]Reddy PH, McWeeney S, Park BS, Manczak M, Gutala RV, Partovi D, Jung Y, Yau V, Searles R, Mori M, Quinn J: Gene expression profiles of transcripts in amyloid precursor protein transgenic mice: up-regulation of mitochondrial metabolism and apoptotic genes is an early cellular change in Alzheimer’s disease. Hum Mol Genet 2004, 13:1225-1240.
  • [58]Crack PJ, Cimdins K, Ali U, Hertzog PJ, Iannello RC: Lack of glutathione peroxidase-1 exacerbates αβ-mediated neurotoxicity in cortical neurons. J Neural Transm 2006, 113:645-657.
  • [59]Barkats M, Millecamps S, Abrioux P, Geoffroy MC, Mallet J: Overexpression of glutathione peroxidase increases the resistance of neuronal cells to Abeta-mediated neurotoxicity. J Neurochem 2000, 75:1438-1446.
  • [60]Lubos E, Loscalzo J, Handy DE: Glutathione peroxidase-1 in health and disease: from molecular mechanisms to therapeutic opportunities. Antioxid Redox Signal 2011, 15:1957-1997.
  • [61]Fujiwara N, Nakano M, Kato S, Yoshihara D, Ookawara T, Eguchi H, Taniguchi N, Suzuki K: Oxidative modification to cysteine sulfonic acid of Cys111 in human copper-zinc superoxide dismutase. J Biol Chem 2007, 282:35933-35944.
  • [62]Murakami K, Murata N, Noda Y, Tahara S, Kaneko T, Kinoshita N, Hatsuta H, Murayama S, Barnham KJ, Irie K, Shirasawa T, Shimizu T: SOD1 (copper/zinc superoxide dismutase) deficiency drives amyloid β protein oligomerization and memory loss in mouse model of Alzheimer disease. J Biol Chem 2011, 286:44557-44568.
  • [63]Nunomura A, Tamaoki T, Motohashi N, Nakamura M, McKeel DW Jr, Tabaton M, Lee HG, Smith MA, Perry G, Zhu X: The earliest stage of cognitive impairment in transition from normal aging to Alzheimer disease is marked by prominent RNA oxidation in vulnerable neurons. J Neuropathol Exp Neurol 2012, 71:233-241.
  • [64]Singh M, Nam DT, Arseneault M, Ramassamy C: Role of by-products of lipid oxidation in Alzheimer’s disease brain: a focus on acrolein. J Alzheimers Dis 2010, 21:741-756.
  • [65]Dang TN, Arseneault M, Murthy V, Ramassamy C: Potential role of acrolein in neurodegeneration and in Alzheimer’s disease. Curr Mol Pharmacol 2010, 3:66-78.
  • [66]Shi R, Zhang Y, Shi Y, Shi S, Jiang L: Inhibition of peroxisomal β-oxidation by thioridazine increases the amount of VLCFAs and Aβ generation in the rat brain. Neurosci Lett 2012, 528:6-10.
  • [67]Clark J, Simon DK: Transcribe to survive: transcriptional control of antioxidant defense programs for neuroprotection in Parkinson’s disease. Antioxid Redox Signal 2009, 11:509-528.
  • [68]Wenz T: Mitochondria and PGC-1α in aging and Age-associated diseases. J Aging Res 2011, 2011:1-12.
  • [69]Zhang C, Rodriguez C, Spaulding J, Aw TY, Feng J: Age-dependent and tissue-related glutathione redox status in a mouse model of Alzheimer’s disease. J Alzheimers Dis 2012, 28:655-666.
  • [70]Casado A, Encarnación López-Fernández M, Concepción Casado M, de La Torre R: Lipid peroxidation and antioxidant enzyme activities in vascular and Alzheimer dementias. Neurochem Res 2008, 33:450-458.
  • [71]Massaad CA, Washington TM, Pautler RG, Klann E: Overexpression of SOD-2 reduces hippocampal superoxide and prevents memory deficits in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci USA 2009, 106:13576-13581.
  • [72]Amenta F, Bronzetti E, Sabbatini M, Vega JA: Astrocyte changes in aging cerebral cortex and hippocampus: a quantitative immunohistochemical study. Microsc Res Tech 1998, 43:29-33.
  • [73]Mandrekar-Colucci S, Landreth GE: Microglia and inflammation in Alzheimer’s disease. CNS Neurol Disord Drug Targets 2010, 9:156-167.
  • [74]Li C, Zhao R, Gao K, Wei Z, Yin MY, Lau LT, Chui D, Hoi Yu AC: Astrocytes: implications for neuroinflammatory pathogenesis of Alzheimer’s disease. Curr Alzheimer Res 2011, 8:67-80.
  • [75]Arnold G, Holtzman E: Microperoxisomes in the central nervous system of the postnatal rat. Brain Res 1978, 155:1-17.
  • [76]Cimini A, Moreno S, Giorgi M, Serafini B, Cerú MP: Purification of peroxisomal fraction from rat brain. Neurochem Int 1993, 23:249-260.
  • [77]Cimini A, Singh I, Farioli-Vecchioli S, Cristiano L, Cerú MP: Presence of heterogeneous peroxisomal populations in the rat nervous tissue. Biochim Biophys Acta 1998, 1425:13-26.
  • [78]Gemma C, Vila J, Bachstetter A, Bickford PC: Oxidative stress and the aging brain: from theory to prevention. In Brain aging: models, methods, and mechanisms. Edited by Riddle DR. Boca Raton (FL): CRC Press; 2007:Chapter 15. Frontiers in Neuroscience
  • [79]Filomeni G, Bolaños JP, Mastroberardino PG: Redox status and bioenergetics liaison in cancer and neurodegeneration. Int J Cell Bio 2012, 2012:659645.
  • [80]Röhl C, Armbrust E, Kolbe K, Lucius R, Maser E, Venz S, Gülden M: Activated microglia modulate astroglial enzymes involved in oxidative and inflammatory stress and increase the resistance of astrocytes to oxidative stress in vitro. Glia 2008, 56:1114-1126.
  • [81]Cuajungco MP, Goldstein LE, Nunomura A, Smith MA, Lim JT, Atwood CS, Huang X, Farrag YW, Perry G, Bush AI: Evidence that the beta-amyloid plaques of Alzheimer’s disease represent the redox-silencing and entombment of abeta by zinc. J Biol Chem 2000, 275:19439-19442.
  • [82]Weidner AM, Bradley MA, Beckett TL, Niedowicz DM, Dowling AL, Matveev SV, LeVine H 3rd, Lovell MA, Murphy MP: RNA oxidation adducts 8-OHG and 8-OHA change with Aβ42 levels in late-stage Alzheimer’s disease. PLoS One 2011, 6:1-6.
  • [83]Moreno S, Nardacci R, Cimini A, Cerù MP: Immunocytochemical localization of D-amino acid oxidase in rat brain. J Neurocytol 1999, 28:169-185.
  • [84]Farioli-Vecchioli S, Moreno S, Cerù MP: Immunocytochemical localization of acyl-CoA oxidase in the rat central nervous system. J Neurocytol 2001, 30:21-33.
  • [85]Callaway E: Alzheimer’s drugs take a new tack. Nature 2012, 489:13-14.
  • [86]Selkoe DJ: Preventing Alzheimer’s disease. Science 2012, 337:1488-1492.
  • [87]Bradford MM: Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976, 72:248-254.
  文献评价指标  
  下载次数:25次 浏览次数:29次