期刊论文详细信息
Movement Ecology
A path reconstruction method integrating dead-reckoning and position fixes applied to humpback whales
Patrick J. O. Miller2  Len Thomas1  Paul J. Wensveen2 
[1] Centre for Research into Ecological and Environmental Modelling, University of St Andrews, St Andrews, Fife KY16 9LZ, UK;Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, St Andrews, Fife KY16 8LB, UK
关键词: Focal follow;    Archival tag;    Track reconstruction;    Bio-logging;    State-space model;    Fine-scale movement;    Positioning;    Marine mammal;    Megaptera novaeangliae;   
Others  :  1227033
DOI  :  10.1186/s40462-015-0061-6
 received in 2015-02-03, accepted in 2015-09-06,  发布年份 2015
【 摘 要 】

Background

Detailed information about animal location and movement is often crucial in studies of natural behaviour and how animals respond to anthropogenic activities. Dead-reckoning can be used to infer such detailed information, but without additional positional data this method results in uncertainty that grows with time. Combining dead-reckoning with new Fastloc-GPS technology should provide good opportunities for reconstructing georeferenced fine-scale tracks, and should be particularly useful for marine animals that spend most of their time under water.

We developed a computationally efficient, Bayesian state-space modelling technique to estimate humpback whale locations through time, integrating dead-reckoning using on-animal sensors with measurements of whale locations using on-animal Fastloc-GPS and visual observations. Positional observation models were based upon error measurements made during calibrations.

Results

High-resolution 3-dimensional movement tracks were produced for 13 whales using a simple process model in which errors caused by water current movements, non-location sensor errors, and other dead-reckoning errors were accumulated into a combined error term. Positional uncertainty quantified by the track reconstruction model was much greater for tracks with visual positions and few or no GPS positions, indicating a strong benefit to using Fastloc-GPS for track reconstruction. Compared to tracks derived only from position fixes, the inclusion of dead-reckoning data greatly improved the level of detail in the reconstructed tracks of humpback whales. Using cross-validation, a clear improvement in the predictability of out-of-set Fastloc-GPS data was observed compared to more conventional track reconstruction methods. Fastloc-GPS observation errors during calibrations were found to vary by number of GPS satellites received and by orthogonal dimension analysed; visual observation errors varied most by distance to the whale. 

Conclusions

By systematically accounting for the observation errors in the position fixes, our model provides a quantitative estimate of location uncertainty that can be appropriately incorporated into analyses of animal movement. This generic method has potential application for a wide range of marine animal species and data recording systems.

【 授权许可】

   
2015 Wensveen et al.

附件列表
Files Size Format View
Fig. 4. 100KB Image download
Fig. 3. 89KB Image download
Fig. 2. 30KB Image download
Fig. 1. 50KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

【 参考文献 】
  • [1]Bowditch N. The American Practical Navigator. National Imagery and Mapping Agency, Bethesda, MD; 2002.
  • [2]Groves PD. Principles of GNSS, Inertial, and Multisensor Integrated Navigation Systems. 2nd ed. Artech House, Boston, MA; 2013.
  • [3]Bramanti M, Dall’Antonia L, Papi F. A new technique to monitor the flight paths of birds. J Exp Biol. 1988; 134:467-472.
  • [4]Wilson RP, Wilson MP. Dead reckoning: a new technique for determining penguin movements at sea. Meeresforschung. 1988; 32:155-158.
  • [5]Wilson RP, Liebsch N, Davies IM, Quintana F, Weimerskirch H, Storch S et al.. All at sea with animal tracks; methodological and analytical solutions for the resolution of movement. Deep Sea Res II. 2007; 54:193-210.
  • [6]Johnson M, Aguilar de Soto N, Madsen PT. Studying the behaviour and sensory ecology of marine mammals using acoustic recording tags: a review. Mar Ecol Prog Ser. 2009; 395:55-73.
  • [7]Davis RW, Fuiman LA, Williams TM, Collier SO, Hagey WP, Kanatous SB et al.. Hunting behavior of a marine mammal beneath the Antarctic fast ice. Science. 1999; 283:993-996.
  • [8]Mitani Y, Andrews RD, Sato K, Kato A, Naito Y, Costa DP. Three-dimensional resting behaviour of northern elephant seals: drifting like a falling leaf. Biol Lett. 2010; 6:163-166.
  • [9]Matsumura M, Watanabe YY, Robinson PW, Miller PJO, Costa DP, Miyazaki N. Underwater and surface behavior of homing juvenile northern elephant seals. J Exp Biol. 2011; 214:629-636.
  • [10]Benoit-Bird K, Battaile B, Nordstrom C, Trites A. Foraging behavior of northern fur seals closely matches the hierarchical patch scales of prey. Mar Ecol Prog Ser. 2013; 479:283-302.
  • [11]Narazaki T, Sato K, Abernathy KJ, Marshall GJ, Miyazaki N. Sea turtles compensate deflection of heading at the sea surface during directional travel. J Exp Biol. 2009; 212:4019-4026.
  • [12]Shiomi K, Sato K, Mitamura H, Arai N, Naito Y, Ponganis PJ. Effect of ocean current on the dead-reckoning estimation of 3-D dive paths of emperor penguins. Aquat Biol. 2008; 3:265-270.
  • [13]Wilson RP, Shepard ELC, Liebsch N. Prying into the intimate details of animal lives: use of a daily diary on animals. Endanger Species Res. 2008; 4:123-137.
  • [14]Aoki K, Amano M, Mori K, Kourogi A, Kubodera T, Miyazaki N. Active hunting by deep-diving sperm whales: 3D dive profiles and maneuvers during bursts of speed. Mar Ecol Prog Ser. 2012; 444:289-301.
  • [15]Friedlaender AS, Hazen EL, Nowacek DP, Halpin PN, Ware C, Weinrich MT et al.. Diel changes in humpback whale Megaptera novaeangliae feeding behavior in response to sand lance Ammodytes spp. behavior and distribution. Mar Ecol Prog Ser. 2009; 395:91-100.
  • [16]Goldbogen JA, Calambokidis J, Friedlaender AS, Francis J, DeRuiter SL, Stimpert AK et al.. Underwater acrobatics by the world’s largest predator: 360° rolling manoeuvres by lunge-feeding blue whales. Biol Lett. 2013; 9:20120986.
  • [17]Johnson M, Hickmott LS, Aguilar Soto N, Madsen PT. Echolocation behaviour adapted to prey in foraging Blainville’s beaked whale (Mesoplodon densirostris). Proc R Soc B. 2008; 275:133-139.
  • [18]Schmidt V, Weber TC, Wiley DN, Johnson MP. Underwater tracking of humpback whales (Megaptera novaeangliae) with high-frequency pingers and acoustic recording tags. IEEE J Ocean Eng. 2010; 35:821-836.
  • [19]Stimpert AK, Wiley DN, Au WWL, Johnson MP, Arsenault R. “Megapclicks”: acoustic click trains and buzzes produced during night-time foraging of humpback whales (Megaptera novaeangliae). Biol Lett. 2007; 3:467-470.
  • [20]Wiley D, Ware C, Bocconcelli A, Cholewiak D, Friedlaender A, Thompson M et al.. Underwater components of humpback whale bubble-net feeding behaviour. Behaviour. 2011; 148:575-602.
  • [21]Ware C, Friedlaender AS, Nowacek DP. Shallow and deep lunge feeding of humpback whales in fjords of the West Antarctic Peninsula. Mar Mammal Sci. 2011; 27:587-605.
  • [22]Zimmer WM, Johnson MP, Madsen PT, Tyack PL. Echolocation clicks of free-ranging Cuvier’s beaked whales (Ziphius cavirostris). J Acoust Soc Am. 2005; 117:3919-3927.
  • [23]Dunlop RA, Noad MJ, Cato DH, Kniest E, Miller PJO, Smith JN et al.. Multivariate analysis of behavioural response experiments in humpback whales (Megaptera novaeangliae). J Exp Biol. 2013; 216:759-770.
  • [24]Miller PJO, Johnson MP, Madsen PT, Biassoni N, Quero M, Tyack PL. Using at-sea experiments to study the effects of airguns on the foraging behavior of sperm whales in the Gulf of Mexico. Deep Sea Res I. 2009; 56:1168-1181.
  • [25]Miller PJO, Kvadsheim PH, Lam FPA, Wensveen PJ, Antunes R, Alves AC et al.. The severity of behavioral changes observed during experimental exposures of killer (Orcinus orca), long-finned pilot (Globicephala melas), and sperm (Physeter macrocephalus) whales to naval sonar. Aquat Mamm. 2012; 38:362-401.
  • [26]Miller PJO, Kvadsheim PH, Lam FPA, Tyack PL, Curé C, DeRuiter SL et al.. First indications that northern bottlenose whales are sensitive to behavioural disturbance from anthropogenic noise. R Soc open sci. 2015; 2:140484.
  • [27]Tyack PL, Zimmer WMX, Moretti D, Southall BL, Claridge DE, Durban JW et al.. Beaked whales respond to simulated and actual navy sonar. PLoS One. 2011; 6:e17009.
  • [28]Curé C, Doksaeter Sivle L, Visser F, Wensveen PJ, Isojunno S, Harris CM et al.. Predator sound playbacks reveal strong avoidance responses in a fight strategist baleen whale. Mar Ecol Prog Ser. 2015; 526:267-282.
  • [29]Baumgartner MF, Freitag L, Partan J, Ball KR, Prada KE. Tracking large marine predators in three dimensions: the real-time acoustic tracking system. IEEE J Ocean Eng. 2008; 33:146-157.
  • [30]Von Benda-Beckmann AM, Beerens SP, van IJsselmuide SP. Effect of towed array stability on instantaneous localization of marine mammals. J Acoust Soc Am. 2013; 134:2409-2417.
  • [31]Laplanche C. Bayesian three-dimensional reconstruction of toothed whale trajectories: passive acoustics assisted with visual and tagging measurements. J Acoust Soc Am. 2012; 132:3225-3233.
  • [32]Mellinger DK, Stafford KM, Moore SE, Dziak RP, Matsumoto H. An overview of fixed passive acoustic observation methods for cetaceans. Oceanography. 2007; 20:37-45.
  • [33]Wartzok D, Sayegh S, Stone H, Barchak J, Barnes W. Acoustic tracking system for monitoring under-ice movements of polar seals. J Acoust Soc Am. 1992; 92:682-687.
  • [34]Elkaim GH, Decker EB, Oliver G, Wright B. Marine Mammal Marker (MAMMARK) dead reckoning sensor for in-situ environmental monitoring. Proceedings of the IEEE/ION Position, Location, And Navigation Symposium. IEEE. 2006.976-987.
  • [35]Johnson MP, Tyack PL. A digital acoustic recording tag for measuring the response of wild marine mammals to sound. IEEE J Ocean Eng. 2003; 28:3-12.
  • [36]Muramoto H, Ogawa M, Suzuki M, Naito Y. Little Leonardo digital data logger: its past, present and future roll in bio-logging science. Mem Natl Inst Polar Res, Spec Issue. 2004; 58:196-202.
  • [37]Mate B. The implimentation of acoustic dosimeters with recoverable month-long GPS/TDR tags to interpret controlled exposure experiments for large whales. Adv Exp Med Biol. 2012; 730:203-205.
  • [38]Burgess WC, Tyack PL, Le Boeuf BJ, Costa DP. A programmable acoustic recording tag and first results from free-ranging northern elephant seals. Deep Res II. 1998; 45:1327-1351.
  • [39]Miller PJO, Johnson MP, Tyack PL, Terray EA. Swimming gaits, passive drag and buoyancy of diving sperm whales Physeter macrocephalus. J Exp Biol. 2004; 207:1953-1967.
  • [40]Goldbogen JA, Calambokidis J, Shadwick RE, Oleson EM, McDonald MA, Hildebrand JA. Kinematics of foraging dives and lunge-feeding in fin whales. J Exp Biol. 2006; 209:1231-1244.
  • [41]Bidder OR, Soresina M, Shepard ELC, Halsey LG, Quintana F, Gómez-Laich A et al.. The need for speed: testing acceleration for estimating animal travel rates in terrestrial dead-reckoning systems. Zoology (Jena). 2012; 115:58-64.
  • [42]Witteveen BH, Foy RJ, Wynne KM, Tremblay Y. Investigation of foraging habits and prey selection by humpback whales (Megaptera novaeangliae) using acoustic tags and concurrent fish surveys. Mar Mammal Sci. 2008; 24:516-534.
  • [43]Miller PJO, Antunes RN, Wensveen PJ, Samarra FIP, Catarina Alves A, Tyack PL et al.. Dose–response relationships for the onset of avoidance of sonar by free-ranging killer whales. J Acoust Soc Am. 2014; 135:975-993.
  • [44]Hastie GD, Gillespie DM, Gordon JCD, Macaulay JDJ, McConnell BJ, Sparling CE. Tracking technologies for quantifying marine mammal interactions with tidal turbines: pitfalls and possibilities. In: Marine Renewable Energy Technology and Environmental Interactions. Shields MA, Payne AIL, editors. Springer, The Netherlands, Dordrecht; 2014: p.127-139.
  • [45]Stanistreet JE, Risch D, Van Parijs SM. Passive acoustic tracking of singing humpback whales (Megaptera novaeangliae) on a northwest Atlantic feeding ground. PLoS One. 2013; 8:e61263.
  • [46]Lisovski S, Hewson CM, Klaassen RHG, Korner-Nievergelt F, Kristensen MW, Hahn S. Geolocation by light: Accuracy and precision affected by environmental factors. Methods Ecol Evol. 2012; 3:603-612.
  • [47]Tomkiewicz SM, Fuller MR, Kie JG, Bates KK. Global positioning system and associated technologies in animal behaviour and ecological research. Philos Trans R Soc Lond B Biol Sci. 2010; 365:2163-2176.
  • [48]Bryant E. 2D Location Accuracy Statistics for Fastloc® Cores Running Firmware Versions 2.2 & 2.3. 2007. Technical Report TR01
  • [49]Schofield G, Bishop CM, MacLean G, Brown P, Baker M, Katselidis KA et al.. Novel GPS tracking of sea turtles as a tool for conservation management. J Exp Mar Bio Ecol. 2007; 347:58-68.
  • [50]Dujon AM, Lindstrom RT, Hays GC. The accuracy of Fastloc-GPS locations and implications for animal tracking. Methods Ecol Evol. 2014; 5:1162-1169.
  • [51]Costa DP, Breed GA, Robinson PW. New insights into pelagic migrations: implications for ecology and conservation. Annu Rev Ecol Evol Syst. 2012; 43:73-96.
  • [52]Kuhn CE, Johnson DS, Ream RR, Gelatt TS. Advances in the tracking of marine species: Using GPS locations to evaluate satellite track data and a continuous-time movement model. Mar Ecol Prog Ser. 2009; 393:97-109.
  • [53]McConnell B, Beaton R, Bryant E, Hunter C, Lovell P, Hall A. Phoning home-a new GSM mobile phone telemetry system to collect mark-recapture data. Mar Mammal Sci. 2004; 20:274-283.
  • [54]Costa DP, Robinson PW, Arnould JP, Harrison AL, Simmons SE, Hassrick JL et al.. Accuracy of ARGOS locations of Pinnipeds at-sea estimated using Fastloc GPS. PLoS One. 2010; 5:e8677.
  • [55]Hazel J. Evaluation of fast-acquisition GPS in stationary tests and fine-scale tracking of green turtles. J Exp Mar Biol Ecol. 2009; 374:58-68.
  • [56]Winship AJ, Jorgensen SJ, Shaffer SA, Jonsen ID, Robinson PW, Costa DP et al.. State-space framework for estimating measurement error from double-tagging telemetry experiments. Methods Ecol Evol. 2012; 3:291-302.
  • [57]Brown DD, Kays R, Wikelski M, Wilson R, Klimley AP. Observing the unwatchable through acceleration logging of animal behavior. Anim Biotelemetry. 2013; 1:20.
  • [58]Patterson TA, Thomas L, Wilcox C, Ovaskainen O, Matthiopoulos J. State-space models of individual animal movement. Trends Ecol Evol. 2008; 23:87-94.
  • [59]Anderson-Sprecher R, Ledolter J. State-space analysis of wildlife telemetry data. J Am Stat Assoc. 1991; 86:596-602.
  • [60]Anderson-Sprecher R. Robust estimates of wildlife location using telemetry data. Biometrics. 1994; 50:406-416.
  • [61]Johnson DS, London JM, Lea MA, Durban JW. Continuous-time correlated random walk model for animal telemetry data. Ecology. 2008; 89:1208-1215.
  • [62]Patterson TA, McConnell BJ, Fedak MA, Bravington MV, Hindell MA. Using GPS data to evaluate the accuracy of state-space methods for correction of Argos satellite telemetry error. Ecology. 2010; 91:273-285.
  • [63]Nielsen A, Bigelow KA, Musyl MK, Sibert JR. Improving light-based geolocation by including sea surface temperature. Fish Oceanogr. 2006; 15:314-325.
  • [64]Breed GA, Costa DP, Jonsen ID, Robinson PW, Mills-Flemming J. State-space methods for more completely capturing behavioral dynamics from animal tracks. Ecol Modell. 2012; 235–236:49-58.
  • [65]Jonsen ID, Flenming JM, Myers RA. Robust state-space modeling of animal movement data. Ecology. 2005; 86:2874-2880.
  • [66]McClintock BT, King R, Thomas L, Matthiopoulos J, McConnell BJ, Morales JM. A general discrete-time modeling framework for animal movement using multistate random walks. Ecol Monogr. 2012; 82:335-349.
  • [67]Sumner MD, Wotherspoon SJ, Hindell MA. Bayesian estimation of animal movement from archival and satellite tags. PLoS One. 2009; 4:e7324.
  • [68]McClintock BT, London JM, Cameron MF, Boveng PL. Modelling animal movement using the Argos satellite telemetry location error ellipse. Methods Ecol Evol. 2015; 6:266-277.
  • [69]Ward J, Morrissey R, Moretti D, DiMarzio N, Jarvis S, Johnson M et al.. Passive acoustic detection and localization of Mesoplodon densirostris (Blainville’s beaked whale) vocalizations using bottom-mounted hydrophones in conjuction with a Digital Tag (DTag) recording. Can Acous. 2008; 36:60-66.
  • [70]Tyack P, Gordon J, Thompson D. Controlled-exposure experiments to determine the effects of noise on marine mammals. Mar Technol Soc J. 2003; 37:39-51.
  • [71]Kvadsheim P, Lam F-P, Miller P, Doksaeter L, Visser F, Kleivane L et al.. Behavioural response studies of cetaceans to naval sonar signals in Norwegain waters - 3S-2011 cruise report. 2011. FFI-rapport 2011/01289
  • [72]Kvadsheim P, Lam F-P, Miller P, Wensveen P, Visser F, Sivle L et al.. Behavioural responses of cetaceans to naval sonar signals in Norwegian waters – the 3S-2012 cruise report. 2012. FFI-rapport 2012/02058
  • [73]Sivle L, Kvadsheim PH, Curé C, Isojuuno S, Wensveen PJ, Lam FPA, Visser F, Kleivane L, Tyack PL, Miller PJO. Severity of expert-identified behavioural responses of humpback whale, minke whale and northern bottlenose whale to naval sonar. Aquat Mamm 2015, in press.
  • [74]Von Benda-Beckmann AM, Wensveen PJ, Kvadsheim PH, Lam FPA, Miller PJO, Tyack PL et al.. Modeling effectiveness of gradual increases in source level to mitigate effects of sonar on marine mammals. Conserv Biol. 2014; 28:119-128.
  • [75]Moore MJ, Miller CA, Morss MS, Arthur R, Lange WA, Prada KG et al.. Ultrasonic measurement of blubber thickness in right whales. J Cetacean Res Manag Spec Iss. 2001; 2:301-309.
  • [76]Lerczak JA, Hobbs RC. Calculating sighting distances from angular readings during shipboard, aerial, and shore-based marine mammal surveys. Mar Mammal Sci. 1998; 14:590-599.
  • [77]Fastloc 2 User Guide. 2012.
  • [78]Witt MJ, Åkesson S, Broderick AC, Coyne MS, Ellick J, Formia A et al.. Assessing accuracy and utility of satellite-tracking data using Argos-linked Fastloc-GPS. Anim Behav. 2010; 80:571-581.
  • [79]Hoenner X, Whiting SD, Hindell MA, McMahon CR. Enhancing the use of Argos satellite data for home range and long distance migration studies of marine animals. PLoS One. 2012; 7:e40713.
  • [80]Shimada T, Jones R, Limpus C, Hamann M. Improving data retention and home range estimates by data-driven screening. Mar Ecol Prog Ser. 2012; 457:171-180.
  • [81]Venables WN, Ripley BD. Modern Applied Statistics with S. 4th ed. Springer, New York; 2002.
  • [82]R: A language and environment for statistical computing. 2013.
  • [83]Williams R, Leaper R, Zerbini AN, Hammond PS. Methods for investigating measurement error in cetacean line-transect surveys. J Mar Biol Ass UK. 2007; 87:313-320.
  • [84]Agostinelli C, Lund U. R package “circular”: circular statistics. 2013.
  • [85]McClintock BT, Johnson DS, Hooten MB, Ver Hoef JM, Morales JM. When to be discrete: the importance of time formulation in understanding animal movement. Mov Ecol. 2014; 2:21.
  • [86]Haddle GP, Skudrzyk EJ. The physics of flow noise. J Acous Soc Am. 1969; 46:130-157.
  • [87]Simon M, Johnson M, Madsen PT. Keeping momentum with a mouthful of water: behavior and kinematics of humpback whale lunge feeding. J Exp Biol. 2012; 215:3786-3798.
  • [88]Goldbogen JA, Calambokidis J, Croll DA, Harvey JT, Newton KM, Oleson EM et al.. Foraging behavior of humpback whales: kinematic and respiratory patterns suggest a high cost for a lunge. J Exp Biol. 2008; 211:3712-3719.
  • [89]Plummer M. JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling. In Proceedings of the 3rd International Workshop on Distributed Statistical Computing (DSC 2003), March 20–22. Vienna, Austria: Technische Universität Wien; 2003:1–10.
  • [90]Gelman A, Carlin JB, Stern HS, Rubin DB. Bayesian Data Analysis. Chapman & Hall, London, UK; 1998.
  • [91]Fielding AH, Bell JF. A review of methods for the assessment of prediction errors in conservation presence / absence models. Environ Conserv. 1997; 24:38-49.
  • [92]Nathan R, Getz WM, Revilla E, Holyoak M, Kadmon R, Saltz D et al.. A movement ecology paradigm for unifying organismal movement research. Proc Natl Acad Sci U S A. 2008; 105:19052-19059.
  • [93]Samarra FIP, Miller PJO. Prey-induced behavioural plasticity of herring-eating killer whales. Mar Biol. 2015; 162:809-821.
  • [94]Aoki K, Amano M, Kubodera T, Mori K, Okamoto R, Sato K. Visual and behavioral evidence indicates active hunting by sperm whales. Mar Ecol Prog Ser. 2015; 523:233-241.
  • [95]Parks SE, Cusano DA, Stimpert AK, Weinrich MT, Friedlaender AS, Wiley DN. Evidence for acoustic communication among bottom foraging humpback whales. Sci Rep. 2014; 4:7508.
  • [96]Isojunno S, Miller PJO. Sperm whale response to tag boat presence: biologically informed hidden state models quantify lost feeding opportunities. Ecosphere. 2015; 6:6.
  • [97]Friedlaender A, Tyson R, Stimpert A, Read A, Nowacek D. Extreme diel variation in the feeding behavior of humpback whales along the western Antarctic Peninsula during autumn. Mar Ecol Prog Ser. 2013; 494:281-289.
  • [98]Wensveen PJ, von Benda-Beckmann AM, Ainslie MA, Lam FPA, Kvadsheim PH, Tyack PL et al.. How effectively do horizontal and vertical response strategies of long-finned pilot whales reduce sound exposure from naval sonar? Mar Environ Res. 2015; 106:68-81.
  • [99]Antunes R, Kvadsheim PH, Lam FPA, Tyack PL, Thomas L, Wensveen PJ et al.. High thresholds for avoidance of sonar by free-ranging long-finned pilot whales (Globicephala melas). Mar Pollut Bull. 2014; 83:165-180.
  • [100]Macfarlane NBW, Howland JC, Jensen FH, Tyack PL. A 3D stereo camera system for precisely positioning animals in space and time. Behav Ecol Sociobiol. 2015; 69:685-693.
  • [101]Leaper R, Burt L, Gillespie D, Macleod K. Comparisons of measured and estimated distances and angles from sightings surveys. J Cetacean Res Manag. 2010; 11:229-237.
  • [102]Baird RW, Burkhart SM. Bias and variabiliy in distance estimation on the water: implications for the management of whale watching. 2000.
  • [103]Marques TA. Predicting and correcting bias caused by error measurement in line transect sampling using multiplicative error models. Biometrics. 2004; 60:757-763.
  • [104]Vincent C, McConnell BJ, Ridoux V, Fedak MA. Assessment of ARGOS location accuracy from satellite tags deployed on captive gray seals. Mar Mammal Sci. 2002; 18:156-166.
  • [105]McConnell BJ, Chambers C, Fedak MA. Foraging ecology of southern elephant seals in relation to the bathymetry and productivity of the Southern Ocean. Antarct Sci. 1992; 4:393-398.
  • [106]Tremblay Y, Shaffer SA, Fowler SL, Kuhn CE, McDonald BI, Weise MJ et al.. Interpolation of animal tracking data in a fluid environment. J Exp Biol. 2006; 209:128-140.
  • [107]Laplanche C, Marques TA, Thomas L. Tracking marine mammals in 3D using electronic tag data. Methods Ecol Evol 2015; doi:10.1111/2041-210X.12373.
  • [108]Zidek J, Liu Y, Trites A. Characterizing uncertainty in the bio-logged paths of sea mammals. In Abstracts of the 5th International Bio-logging Science Symposium, 22–27 September. Strasbourg, France: Université de Strasbourg; 2014:160.
  • [109]Jackson JE. A User's Guide to Principal Components. John Wiley and Sons, New York, NY; 1991.
  文献评价指标  
  下载次数:34次 浏览次数:23次