期刊论文详细信息
Molecular Pain
Anoctamin-1 Cl − channels in nociception: activation by an N-aroylaminothiazole and capsaicin and inhibition by T16A[inh]-A01
Bret F. Bessac1  Farah Deba1 
[1] Department of Pharmaceutical Sciences, I. L. Rangel College of Pharmacy, Texas A&M Health Science Center, 1010 West Avenue B MSC 131, Kingsville 78363, TX, USA
关键词: Pain;    TRPV1;    DRG neuron;    Nociception;    Aroylaminothiazole;    T16Ainh-A01;    TMEM16A;    ANO1;    Anoctamin;   
Others  :  1228797
DOI  :  10.1186/s12990-015-0061-y
 received in 2015-03-11, accepted in 2015-09-07,  发布年份 2015
PDF
【 摘 要 】

Background

Anoctamin 1 (ANO1 or TMEM16A) Ca 2+ -gated Cl channels of nociceptor neurons are emerging as important molecular components of peripheral pain transduction. At physiological intracellular Cl concentrations ([Cl ] i ) sensory neuronal Cl channels are excitatory. The ability of sensory neuronal ANO1 to trigger action potentials and subsequent nocifensive (pain) responses were examined by direct activation with an N-aroylaminothiazole. ANO1 channels are also activated by intracellular Ca 2+([Ca 2+ ] i ) from sensory neuronal TRPV1 (transient-receptor-potential vallinoid 1) ion channels and other noxicant receptors. Thus, sensory neuronal ANO1 can facilitate TRPV1 triggering of action potentials, resulting in enhanced nociception. This was investigated by reducing ANO1 facilitation of TRPV1 effects with: (1) T16A[inh]-A01 ANO1-inhibitor reagent at physiological [Cl ] iand (2) by lowering sensory neuronal [Cl ] ito switch ANO1 to be inhibitory.

Results

ANO1 effects on action potential firing of mouse dorsal root ganglia (DRG) neurons in vitro and mouse nocifensive behaviors in vivo were examined with an N-aroylaminothiazole ANO1-activator (E-act), a TRPV1-activator (capsaicin) and an ANO1-inhibitor (T16A[inh]-A01). At physiological [Cl ] i(40 mM), E-act (10 µM) increased current sizes (in voltage-clamp) and action potential firing (in current-clamp) recorded in DRG neurons using whole-cell electrophysiology. To not disrupt TRPV1 carried-Ca 2+activation of ANO1 in DRG neurons, ANO1 modulation of capsaicin-induced action potentials was measured by perforated-patch (Amphotericin–B) current-clamp technique. Subsequently, at physiological [Cl ] i , capsaicin (15 µM)-induced action potential firing was diminished by co-application with T16A[inh]-A01 (20 µM). Under conditions of low [Cl ] i(10 mM), ANO1 actions were reversed. Specifically, E-act did not trigger action potentials; however, capsaicin-induced action potential firing was inhibited by co-application of E-act, but was unaffected by co-application of T16A[inh]-A01. Nocifensive responses of mice hind paws were dramatically induced by subcutaneous injections of E-act (5 mM) or capsaicin (50 µM). The nocifensive responses were attenuated by co-injection with T16A[inh]-A01 (1.3 mM).

Conclusions

An ANO1-activator (E-act) induced [Cl ] i -dependent sensory neuronal action potentials and mouse nocifensive behaviors; thus, direct ANO1 activation can induce pain perception. ANO1-inhibition attenuated capsaicin-triggering of action potentials and capsaicin-induced nocifensive behaviors. These results indicate ANO1 channels are involved with TRPV1 actions in sensory neurons and inhibition of ANO1 could be a novel means of inducing analgesia.

【 授权许可】

   
2015 Deba and Bessac.

【 预 览 】
附件列表
Files Size Format View
20151019041820256.pdf 2437KB PDF download
Fig.5. 66KB Image download
Fig.4. 71KB Image download
Fig.3. 72KB Image download
Fig.2. 65KB Image download
Fig.1. 67KB Image download
【 图 表 】

Fig.1.

Fig.2.

Fig.3.

Fig.4.

Fig.5.

【 参考文献 】
  • [1]English M. 10 Most Common Reasons for an ER Visit. 2013.
  • [2]Bartholow M. Top 200 drugs of 2010. Pharmacy Times. 2011.. http://www.pharmacytimes.com/publications/issue/2011/May2011/Top-200-Drugs-of-2010 webcite
  • [3]Education IoMUSCoAPRCa. Relieving pain in America : a blueprint for transforming prevention, care, education, and research. Washington D.C.: National Academies Press; 2011. p. 364.
  • [4]Bessac BF, Jordt SE: Sensory detection and responses to toxic gases: mechanisms, health effects, and countermeasures. Proc Am Thorac Soc. 2010, 7(4):269-277.
  • [5]Treede RD, Meyer RA, Raja SN, Campbell JN: Peripheral and central mechanisms of cutaneous hyperalgesia. Prog Neurobiol 1992, 38(4):397-421.
  • [6]Liu B, Linley JE, Du X, Zhang X, Ooi L, Zhang H, et al.: The acute nociceptive signals induced by bradykinin in rat sensory neurons are mediated by inhibition of M-type K + channels and activation of Ca2 + -activated Cl- channels. J Clin Invest. 2010, 120(4):1240-1252.
  • [7]Jin X, Shah S, Liu Y, Zhang H, Lees M, Fu Z et al. Activation of the Cl- channel ANO1 by localized calcium signals in nociceptive sensory neurons requires coupling with the IP3 receptor. Sci Signal. 2013;6(290):ra73. doi:10.1126/scisignal.2004184.
  • [8]Cho H, Yang YD, Lee J, Lee B, Kim T, Jang Y, et al.: The calcium-activated chloride channel anoctamin 1 acts as a heat sensor in nociceptive neurons. Nat Neurosci 2012, 15(7):1015-1021.
  • [9]Lee B, Cho H, Jung J, Yang YD, Yang DJ, Oh U: Anoctamin 1 contributes to inflammatory and nerve-injury induced hypersensitivity. Mol Pain. 2014, 10(1):5. BioMed Central Full Text
  • [10]Schroeder BC, Cheng T, Jan YN, Jan LY: Expression cloning of TMEM16A as a calcium-activated chloride channel subunit. Cell 2008, 134(6):1019-1029.
  • [11]Caputo A, Caci E, Ferrera L, Pedemonte N, Barsanti C, Sondo E, et al.: TMEM16A, a membrane protein associated with calcium-dependent chloride channel activity. Science 2008, 322(5901):590-594.
  • [12]Sheridan JT, Worthington EN, Yu K, Gabriel SE, Hartzell HC, Tarran R: Characterization of the oligomeric structure of the Ca(2 +)-activated Cl- channel Ano1/TMEM16A. J Biol Chem 2011, 286(2):1381-1388.
  • [13]Ohshiro J, Yamamura H, Saeki T, Suzuki Y, Imaizumi Y: The multiple expression of Ca(2)(+)-activated Cl(-) channels via homo- and hetero-dimer formation of TMEM16A splicing variants in murine portal vein. Biochemical and biophysical research communications. 2014, 443(2):518-523.
  • [14]Huang F, Wong X, Jan LY: International Union of Basic and Clinical Pharmacology. LXXXV: calcium-activated chloride channels. Pharmacol Rev 2012, 64(1):1-15.
  • [15]Andre S, Boukhaddaoui H, Campo B, Al-Jumaily M, Mayeux V, Greuet D, et al.: Axotomy-induced expression of calcium-activated chloride current in subpopulations of mouse dorsal root ganglion neurons. J Neurophysiol 2003, 90(6):3764-3773.
  • [16]Caceres AI, Brackmann M, Elia MD, Bessac BF, del Camino D, D’Amours M, et al.: A sensory neuronal ion channel essential for airway inflammation and hyperreactivity in asthma. Proc Natl Acad Sci USA 2009, 106(22):9099-9104.
  • [17]Yang YD, Cho H, Koo JY, Tak MH, Cho Y, Shim WS, et al.: TMEM16A confers receptor-activated calcium-dependent chloride conductance. Nature 2008, 455(7217):1210-1215.
  • [18]Namkung W, Yao Z, Finkbeiner WE, Verkman AS: Small-molecule activators of TMEM16A, a calcium-activated chloride channel, stimulate epithelial chloride secretion and intestinal contraction. FASEB journal : official publication of the Federation of American Societies for Experimental Biology. 2011, 25(11):4048-4062.
  • [19]Chabwine JN, Talavera K, Verbert L, Eggermont J, Vanderwinden JM, De Smedt H, et al.: Differential contribution of the Na(+)-K(+)-2Cl(-) cotransporter NKCC1 to chloride handling in rat embryonic dorsal root ganglion neurons and motor neurons. FASEB journal : official publication of the Federation of American Societies for Experimental Biology. 2009, 23(4):1168-1176.
  • [20]Schepers RJ, Ringkamp M: Thermoreceptors and thermosensitive afferents. Neurosci Biobehav Rev 2010, 34(2):177-184.
  • [21]Palkar R, Lippoldt EK, McKemy DD: The molecular and cellular basis of thermosensation in mammals. Curr Opin Neurobiol 2015, 34C:14-19.
  • [22]Sousa-Valente J, Andreou AP, Urban L, Nagy I: Transient receptor potential ion channels in primary sensory neurons as targets for novel analgesics. Br J Pharmacol 2014, 171(10):2508-2527.
  • [23]Cho H, Oh U: Anoctamin 1 mediates thermal pain as a heat sensor. Curr Neuropharmacol 2013, 11(6):641-651.
  • [24]Kanazawa T, Matsumoto S: Expression of transient receptor potential vanilloid 1 and anoctamin 1 in rat trigeminal ganglion neurons innervating the tongue. Brain Res Bull 2014, 106:17-20.
  • [25]Caterina MJ, Leffler A, Malmberg AB, Martin WJ, Trafton J, Petersen-Zeitz KR, et al.: Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science 2000, 288(5464):306-313.
  • [26]Caterina MJ, Rosen TA, Tominaga M, Brake AJ, Julius D: A capsaicin-receptor homologue with a high threshold for noxious heat. Nature 1999, 398(6726):436-441.
  • [27]Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D: The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 1997, 389(6653):816-824.
  • [28]Boillat A, Alijevic O, Kellenberger S: Calcium entry via TRPV1 but not ASICs induces neuropeptide release from sensory neurons. Molecular and cellular neurosciences. 2014, 61:13-22.
  • [29]Kassmann M, Harteneck C, Zhu Z, Nurnberg B, Tepel M, Gollasch M: Transient receptor potential vanilloid 1 (TRPV1), TRPV4, and the kidney. Acta Physiol 2013, 207(3):546-564.
  • [30]Li S, Wang X, Ye H, Gao W, Pu X, Yang Z: Distribution profiles of transient receptor potential melastatin- and vanilloid-related channels in rat spermatogenic cells and sperm. Mol Biol Rep 2010, 37(3):1287-1293.
  • [31]Yu K, Zhu J, Qu Z, Cui YY, Hartzell HC: Activation of the Ano1 (TMEM16A) chloride channel by calcium is not mediated by calmodulin. The Journal of general physiology. 2014, 143(2):253-267.
  • [32]Takayama Y, Uta D, Furue H, Tominaga M: Pain-enhancing mechanism through interaction between TRPV1 and anoctamin 1 in sensory neurons. Proc Natl Acad Sci USA 2015, 112(16):5213-5218.
  • [33]Takayama Y, Shibasaki K, Suzuki Y, Yamanaka A, Tominaga M: Modulation of water efflux through functional interaction between TRPV4 and TMEM16A/anoctamin 1. FASEB journal : official publication of the Federation of American Societies for Experimental Biology. 2014, 28(5):2238-2248.
  • [34]Tominaga M, Takayama Y. Interaction between TRP and Ca -activated chloride channels. Channels (Austin). 2014;8(3).
  • [35]Namkung W, Phuan PW, Verkman AS: TMEM16A inhibitors reveal TMEM16A as a minor component of calcium-activated chloride channel conductance in airway and intestinal epithelial cells. J Biol Chem 2011, 286(3):2365-2374.
  • [36]Davis AJ, Shi J, Pritchard HA, Chadha PS, Leblanc N, Vasilikostas G, et al.: Potent vasorelaxant activity of the TMEM16A inhibitor T16A(inh)-A01. Br J Pharmacol 2013, 168(3):773-784.
  • [37]Mroz MS, Keely SJ: Epidermal growth factor chronically upregulates Ca (2+) -dependent Cl (-) conductance and TMEM16A expression in intestinal epithelial cells. J Physiol 2012, 590(Pt 8):1907-1920.
  • [38]Liu Y, Zhang H, Huang D, Qi J, Xu J, Gao H, et al.: Characterization of the effects of Cl channel modulators on TMEM16A and bestrophin-1 Ca activated Cl channels. Pflugers Arch 2014.
  • [39]Xiao Q, Yu K, Perez-Cornejo P, Cui Y, Arreola J, Hartzell HC: Voltage- and calcium-dependent gating of TMEM16A/Ano1 chloride channels are physically coupled by the first intracellular loop. Proc Natl Acad Sci USA 2011, 108(21):8891-8896.
  • [40]Schobel N, Radtke D, Lubbert M, Gisselmann G, Lehmann R, Cichy A, et al.: Trigeminal ganglion neurons of mice show intracellular chloride accumulation and chloride-dependent amplification of capsaicin-induced responses. PLoS ONE 2012, 7(11):e48005.
  • [41]Cummins TR, Rush AM, Estacion M, Dib-Hajj SD, Waxman SG: Voltage-clamp and current-clamp recordings from mammalian DRG neurons. Nat Protoc 2009, 4(8):1103-1112.
  • [42]Bourinet E, Altier C, Hildebrand ME, Trang T, Salter MW, Zamponi GW: Calcium-permeable ion channels in pain signaling. Physiol Rev 2014, 94(1):81-140.
  • [43]Chatrchyan S, Khachatryan V, Sirunyan AM, Tumasyan A, Adam W, Aguilo E, et al.: Observation of sequential Upsilon suppression in PbPb collisions. Phys Rev Lett 2012, 109(22):222301.
  • [44]McNamara CR, Mandel-Brehm J, Bautista DM, Siemens J, Deranian KL, Zhao M, et al.: TRPA1 mediates formalin-induced pain. Proc Natl Acad Sci USA 2007, 104(33):13525-13530.
  • [45]Macpherson LJ, Xiao B, Kwan KY, Petrus MJ, Dubin AE, Hwang S, et al.: An ion channel essential for sensing chemical damage. The Journal of neuroscience : the official journal of the Society for Neuroscience. 2007, 27(42):11412-11415.
  • [46]Chen Y, Kanju P, Fang Q, Lee SH, Parekh PK, Lee W, et al.: TRPV4 is necessary for trigeminal irritant pain and functions as a cellular formalin receptor. Pain 2014, 155(12):2662-2672.
  • [47]Rohacs T, Thyagarajan B, Lukacs V: Phospholipase C mediated modulation of TRPV1 channels. Mol Neurobiol 2008, 37(2–3):153-163.
  • [48]Lukacs V, Rives JM, Sun X, Zakharian E, Rohacs T: Promiscuous activation of transient receptor potential vanilloid 1 (TRPV1) channels by negatively charged intracellular lipids: the key role of endogenous phosphoinositides in maintaining channel activity. J Biol Chem 2013, 288(49):35003-35013.
  • [49]DeLeo JA, Yezierski RP: The role of neuroinflammation and neuroimmune activation in persistent pain. Pain 2001, 90(1–2):1-6.
  • [50]Julius D, Basbaum AI: Molecular mechanisms of nociception. Nature 2001, 413(6852):203-210.
  • [51]Wilson SR, The L, Batia LM, Beattie K, Katibah GE, McClain SP, et al.: The epithelial cell-derived atopic dermatitis cytokine TSLP activates neurons to induce itch. Cell 2013, 155(2):285-295.
  • [52]Zhang A, Yan X, Li H, Gu Z, Zhang P, Zhang H, et al.: TMEM16A protein attenuates lipopolysaccharide-mediated inflammatory response of human lung epithelial cell line A549. Exp Lung Res 2014, 40(5):237-250.
  • [53]Funk K, Woitecki A, Franjic-Wurtz C, Gensch T, Mohrlen F, Frings S: Modulation of chloride homeostasis by inflammatory mediators in dorsal root ganglion neurons. Mol Pain. 2008, 4:32. BioMed Central Full Text
  • [54]Price TJ, Cervero F, Gold MS, Hammond DL, Prescott SA: Chloride regulation in the pain pathway. Brain Res Rev 2009, 60(1):149-170.
  • [55]Cordero-Erausquin M, Coull JA, Boudreau D, Rolland M, De Koninck Y: Differential maturation of GABA action and anion reversal potential in spinal lamina I neurons: impact of chloride extrusion capacity. The Journal of neuroscience : the official journal of the Society for Neuroscience. 2005, 25(42):9613-9623.
  • [56]Bessac BF, Sivula M, von Hehn CA, Escalera J, Cohn L, Jordt SE: TRPA1 is a major oxidant sensor in murine airway sensory neurons. J Clin Invest. 2008, 118(5):1899-1910.
  • [57]Bessac BF, Sivula M, von Hehn CA, Caceres AI, Escalera J, Jordt SE: Transient receptor potential ankyrin 1 antagonists block the noxious effects of toxic industrial isocyanates and tear gases. FASEB journal : official publication of the Federation of American Societies for Experimental Biology. 2009, 23(4):1102-1114.
  文献评价指标  
  下载次数:18次 浏览次数:7次