期刊论文详细信息
Orphanet Journal of Rare Diseases
Friedreich ataxia in Norway – an epidemiological, molecular and clinical study
Chantal ME Tallaksen1  Tone Berge3  Per Morten Knappskog2  Torunn Fiskerstrand2  Kaja Kristine Selmer1  Sandra Pilar Henriksen3  Mette Kroken4  Iselin Marie Wedding3 
[1] University of Oslo, Faculty of Medicine, Oslo, Norway;Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway;Department of Neurology, Oslo University Hospital, Ullevaal 0407, Oslo, Norway;Department of Medical Genetics, Oslo University Hospital, Ullevaal 0407, Oslo, Norway
关键词: Norway;    Autosomal recessive;    Ataxia;    Frataxin;    FRDA;    Friedreich ataxia;   
Others  :  1224096
DOI  :  10.1186/s13023-015-0328-4
 received in 2015-07-06, accepted in 2015-08-25,  发布年份 2015
PDF
【 摘 要 】

Background

Friedreich ataxia is an autosomal recessive hereditary spinocerebellar disorder, characterized by progressive limb and gait ataxia due to proprioceptive loss, often complicated by cardiomyopathy, diabetes and skeletal deformities. Friedreich ataxia is the most common hereditary ataxia, with a reported prevalence of 1:20 000 – 1:50 000 in Central Europe. Previous reports from south Norway have found a prevalence varying from 1:100 000 – 1:1 350 000; no studies are previously done in the rest of the country.

Methods

In this cross-sectional study, Friedreich ataxia patients were identified through colleagues in neurological, pediatric and genetic departments, hospital archives searches, patients’ associations, and National Centre for Rare Disorders. All included patients, carriers and controls were investigated clinically and molecularly with genotype characterization including size determination of GAA repeat expansions and frataxin measurements. 1376 healthy blood donors were tested for GAA repeat expansion for carrier frequency analysis.

Results

Twenty-nine Friedreich ataxia patients were identified in Norway, of which 23 were ethnic Norwegian, corresponding to a prevalence of 1:176 000 and 1:191 000, respectively. The highest prevalence was seen in the north. Carrier frequency of 1:196 (95 % CI = [1:752–1:112]) was found. Homozygous GAA repeat expansions in the FXN gene were found in 27/29, while two patients were compound heterozygous with c.467 T < C, L157P and the deletion (g.120032_122808del) including exon 5a. Two additional patients were heterozygous for GAA repeat expansions only. Significant differences in the level of frataxin were found between the included patients (N = 27), carriers (N = 37) and controls (N = 27).

Conclusions

In this first thorough study of a complete national cohort of Friedreich ataxia patients, and first nation-wide study of Friedreich ataxia in Norway, the prevalence of Friedreich ataxia in Norway is lower than in Central Europe, but higher than in the last Norwegian report, and as expected from migration studies. A south–north prevalence gradient is present. Based on Hardy Weinberg’s equilibrium, the carrier frequency of 1:196 is consistent with the observed prevalence. All genotypes, and typical and atypical phenotypes were present in the Norwegian population. The patients were phenotypically similar to European cohorts. Frataxin was useful in the diagnostic work-up of heterozygous symptomatic cases.

【 授权许可】

   
2015 Wedding et al.

【 预 览 】
附件列表
Files Size Format View
20150908041541972.pdf 1266KB PDF download
Fig. 4. 24KB Image download
Fig. 3. 51KB Image download
Fig. 2. 42KB Image download
Fig. 1. 62KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

【 参考文献 】
  • [1]Bidichandani SI, Delatycki MB. Friedreich Ataxia. Pagon R, Adam M, HH A, editors. Seattle, USA: University of Washington, Seattle; 1998 (Updated 2014 Jul 24).
  • [2]Pandolfo M. Friedreich ataxia: the clinical picture. J Neurol. 2009; 256 Suppl 1:3-8.
  • [3]Durr A, Cossee M, Agid Y, Campuzano V, Mignard C, Penet C et al.. Clinical and genetic abnormalities in patients with Friedreich’s ataxia. N Engl J Med. 1996; 335(16):1169-75.
  • [4]Parkinson MH, Boesch S, Nachbauer W, Mariotti C, Giunti P. Clinical features of Friedreich’s ataxia: classical and atypical phenotypes. J Neurochem. 2013; 126 Suppl 1:103-17.
  • [5]Koeppen AH, Mazurkiewicz JE. Friedreich ataxia: neuropathology revised. J Neuropathol Exp Neurol. 2013; 72(2):78-90.
  • [6]Harding AE. Friedreich’s ataxia: a clinical and genetic study of 90 families with an analysis of early diagnostic criteria and intrafamilial clustering of clinical features. Brain. 1981; 104(3):589-620.
  • [7]Labuda M, Labuda D, Miranda C, Poirier J, Soong BW, Barucha NE et al.. Unique origin and specific ethnic distribution of the Friedreich ataxia GAA expansion. Neurology. 2000; 54(12):2322-4.
  • [8]Skre H. Friedreich’s ataxia in Western Norway. Clin Genet. 1975; 7(4):287-98.
  • [9]Koht J, Tallaksen CM. Cerebellar ataxia in the eastern and southern parts of Norway. Acta Neurol Scand Suppl. 2007; 187:76-9.
  • [10]Erichsen AK, Koht J, Stray-Pedersen A, Abdelnoor M, Tallaksen CM. Prevalence of hereditary ataxia and spastic paraplegia in southeast Norway: a population-based study. Brain. 2009; 132(Pt 6):1577-88.
  • [11]Campuzano V, Montermini L, Molto MD, Pianese L, Cossee M, Cavalcanti F et al.. Friedreich’s ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science. 1996; 271(5254):1423-7.
  • [12]Tzoulis C, Engelsen BA, Telstad W, Aasly J, Zeviani M, Winterthun S et al.. The spectrum of clinical disease caused by the A467T and W748S POLG mutations: a study of 26 cases. Brain. 2006; 129(Pt 7):1685-92.
  • [13]Vankan P. Prevalence gradients of Friedreich’s ataxia and R1b haplotype in Europe co-localize, suggesting a common Palaeolithic origin in the Franco-Cantabrian ice age refuge. J Neurochem. 2013; 126 Suppl 1:11-20.
  • [14]Lamont PJ, Davis MB, Wood NW. Identification and sizing of the GAA trinucleotide repeat expansion of Friedreich’s ataxia in 56 patients. Clinical and genetic correlates. Brain. 1997; 120(Pt 4):673-80.
  • [15]Cossee M, Durr A, Schmitt M, Dahl N, Trouillas P, Allinson P et al.. Friedreich’s ataxia: point mutations and clinical presentation of compound heterozygotes. Ann Neurol. 1999; 45(2):200-6.
  • [16]Zuhlke CH, Dalski A, Habeck M, Straube K, Hedrich K, Hoeltzenbein M et al.. Extension of the mutation spectrum in Friedreich’s ataxia: detection of an exon deletion and novel missense mutations. Eur J Hum Genet. 2004; 12(11):979-82.
  • [17]Anheim M, Mariani LL, Calvas P, Cheuret E, Zagnoli F, Odent S et al.. Exonic deletions of FXN and early-onset Friedreich ataxia. Arch Neurol. 2012; 69(7):912-6.
  • [18]Pastore A, Puccio H. Frataxin: a protein in search for a function. J Neurochem. 2013; 126 Suppl 1:43-52.
  • [19]Matilla-Duenas A, Ashizawa T, Brice A, Magri S, McFarland KN, Pandolfo M et al.. Consensus paper: pathological mechanisms underlying neurodegeneration in spinocerebellar ataxias. Cerebellum (London, England). 2014; 13(2):269-302.
  • [20]Nachbauer W, Wanschitz J, Steinkellner H, Eigentler A, Sturm B, Hufler K et al.. Correlation of frataxin content in blood and skeletal muscle endorses frataxin as a biomarker in Friedreich ataxia. Mov Disord. 2011; 26(10):1935-8.
  • [21]Deutsch EC, Santani AB, Perlman SL, Farmer JM, Stolle CA, Marusich MF et al.. A rapid, noninvasive immunoassay for frataxin: utility in assessment of Friedreich ataxia. Mol Genet Metab. 2010; 101(2–3):238-45.
  • [22]Deutsch EC, Oglesbee D, Greeley NR, Lynch DR. Usefulness of frataxin immunoassays for the diagnosis of Friedreich ataxia. J Neurol Neurosurg Psychiatry. 2014; 85(9):994-1002.
  • [23]Pandolfo M. Molecular basis of Friedreich ataxia. Mov Disord. 2001; 16(5):815-21.
  • [24]Pandolfo M. Friedreich ataxia. Handb Clin Neurol. 2012; 103:275-94.
  • [25]Montermini L, Richter A, Morgan K, Justice CM, Julien D, Castellotti B et al.. Phenotypic variability in Friedreich ataxia: role of the associated GAA triplet repeat expansion. Ann Neurol. 1997; 41(5):675-82.
  • [26]Cossee M, Schmitt M, Campuzano V, Reutenauer L, Moutou C, Mandel JL et al.. Evolution of the Friedreich’s ataxia trinucleotide repeat expansion: founder effect and premutations. Proc Natl Acad Sci U S A. 1997; 94(14):7452-7.
  • [27]Montermini L, Andermann E, Labuda M, Richter A, Pandolfo M, Cavalcanti F et al.. The Friedreich ataxia GAA triplet repeat: premutation and normal alleles. Hum Mol Genet. 1997; 6(8):1261-6.
  • [28]Statistics Norway. www.ssb.no. Accessed 30 November 2014.
  • [29]Tallaksen CME, Dürr A. SPATAX- European Network for Hereditary Spinocerebellar Degenerative Disorders. Acta Neurol Scand. 2003; 107(6):432-3.
  • [30]SPATAX Network. https://spatax.wordpress.com. Accessed 01 January 2013.
  • [31]Schmitz-Hubsch T, du Montcel S, Baliko L, Berciano J, Boesch S, Depondt C. Scale for the assessment and rating of ataxia: development of a new clinical scale. Neurology. 2006; 66:1717-20.
  • [32]Ciotti P, Di Maria E, Bellone E, Ajmar F, Mandich P. Triplet repeat primed PCR (TP PCR) in molecular diagnostic testing for Friedreich ataxia. J Mol Diagn. 2004; 6(4):285-9.
  • [33]Pandolfo M. Friedreich ataxia: Detection of GAA repeat expansions and frataxin point mutations. Methods Mol Med. 2006; 126:197-216.
  • [34]Schols L, Amoiridis G, Przuntek H, Frank G, Epplen JT, Epplen C. Friedreich’s ataxia. Revision of the phenotype according to molecular genetics. Brain. 1997; 120(Pt 12):2131-40.
  • [35]Willis JH, Isaya G, Gakh O, Capaldi RA, Marusich MF. Lateral-flow immunoassay for the frataxin protein in Friedreich’s ataxia patients and carriers. Mol Genet Metab. 2008; 94(4):491-7.
  • [36]Yu-Wai-Man P, Griffiths PG, Gorman GS, Lourenco CM, Wright AF, Auer-Grumbach M et al.. Multi-system neurological disease is common in patients with OPA1 mutations. Brain. 2010; 133(Pt 3):771-86.
  • [37]Filla A, DeMichele G, Caruso G, Marconi R, Campanella G. Genetic data and natural history of Friedreich’s disease: a study of 80 Italian patients. J Neurol. 1990; 237(6):345-51.
  • [38]Delatycki MB, Paris DB, Gardner RJ, Nicholson GA, Nassif N, Storey E et al.. Clinical and genetic study of Friedreich ataxia in an Australian population. Am J Med Genet. 1999; 87(2):168-74.
  • [39]McCabe DJ, Ryan F, Moore DP, McQuaid S, King MD, Kelly A et al.. Typical Friedreich’s ataxia without GAA expansions and GAA expansion without typical Friedreich’s ataxia. J Neurol. 2000; 247(5):346-55.
  • [40]Salehi MH, Houshmand M, Aryani O, Kamalidehghan B, Khalili E. Molecular and clinical investigation of Iranian patients with Friedreich ataxia. Iran Biomed J. 2014; 18(1):28-33.
  • [41]Reetz K, Dogan I, Costa AS, Dafotakis M, Fedosov K, Giunti P et al.. Biological and clinical characteristics of the European Friedreich’s Ataxia Consortium for Translational Studies (EFACTS) cohort: a cross-sectional analysis of baseline data. Lancet Neurol. 2015; 14(2):174-82.
  • [42]Jonasson J, Juvonen V, Sistonen P, Ignatius J, Johansson D, Bjorck EJ et al.. Evidence for a common Spinocerebellar ataxia type 7 (SCA7) founder mutation in Scandinavia. Eur J Hum Genet. 2000; 8(12):918-22.
  • [43]Juvonen V, Kulmala SM, Ignatius J, Penttinen M, Savontaus ML. Dissecting the epidemiology of a trinucleotide repeat disease - example of FRDA in Finland. Hum Genet. 2002; 110(1):36-40.
  • [44]Dupuy BM, Stenersen M, Lu TT, Olaisen B. Geographical heterogeneity of Y-chromosomal lineages in Norway. Forensic Sci Int. 2006; 164(1):10-9.
  • [45]Gedde-Dahl T. Population structure in Norway. Inbreeding, distance and kinship. Hereditas. 1973; 73(2):211-32.
  • [46]Saugstad LF. Inbreeding in Norway. Ann Hum Genet. 1977; 40(4):481-91.
  • [47]Surén P, Grjibovski A, Stoltenberg C. Inngifte i Norge. Omfang og medisinske konsekvenser. Norwegian Institute of Public Health, Oslo; 2007.
  • [48]Saugstad LF. The relationship between inbreeding, migration and population density in Norway. Ann Hum Genet. 1977; 40(3):331-41.
  • [49]Burk K, Malzig U, Wolf S, Heck S, Dimitriadis K, Schmitz-Hubsch T et al.. Comparison of three clinical rating scales in Friedreich ataxia (FRDA). Mov Disord. 2009; 24(12):1779-84.
  • [50]Silva CB, Yasuda CL, D'Abreu A, Cendes F, Lopes-Cendes I, Franca MC. Neuroanatomical correlates of depression in Friedreich’s ataxia: a voxel-based morphometry study. Cerebellum. 2013; 12(3):429-36.
  • [51]Lagedrost SJ, Sutton MS, Cohen MS, Satou GM, Kaufman BD, Perlman SL et al.. Idebenone in Friedreich ataxia cardiomyopathy-results from a 6-month phase III study (IONIA). Am Heart J. 2011; 161(3):639-45.e1.
  • [52]Meier T, Perlman SL, Rummey C, Coppard NJ, Lynch DR. Assessment of neurological efficacy of idebenone in pediatric patients with Friedreich’s ataxia: data from a 6-month controlled study followed by a 12-month open-label extension study. J Neurol. 2012; 259(2):284-91.
  • [53]Tsou AY, Paulsen EK, Lagedrost SJ, Perlman SL, Mathews KD, Wilmot GR et al.. Mortality in Friedreich ataxia. J Neurol Sci. 2011; 307(1–2):46-9.
  • [54]Wilson CL, Fahey MC, Corben LA, Collins VR, Churchyard AJ, Lamont PJ et al.. Quality of life in Friedreich ataxia: what clinical, social and demographic factors are important? Eur J Neurol. 2007; 14(9):1040-7.
  • [55]Coppola G, De Michele G, Cavalcanti F, Pianese L, Perretti A, Santoro L et al.. Why do some Friedreich’s ataxia patients retain tendon reflexes? A clinical, neurophysiological and molecular study. J Neurol. 1999; 246(5):353-7.
  • [56]Filla A, De Michele G, Cavalcanti F, Pianese L, Monticelli A, Campanella G et al.. The relationship between trinucleotide (GAA) repeat length and clinical features in Friedreich ataxia. Am J Hum Genet. 1996; 59(3):554-60.
  • [57]Ohshima K, Sakamoto N, Labuda M, Poirier J, Moseley ML, Montermini L et al.. A nonpathogenic GAAGGA repeat in the Friedreich gene: implications for pathogenesis. Neurology. 1999; 53(8):1854-7.
  • [58]Sacca F, Puorro G, Antenora A, Marsili A, Denaro A, Piro R et al.. A combined nucleic acid and protein analysis in Friedreich ataxia: implications for diagnosis, pathogenesis and clinical trial design. PLoS One. 2011; 6(3): Article ID e17627
  • [59]Xia H, Cao Y, Dai X, Marelja Z, Zhou D, Mo R et al.. Novel frataxin isoforms may contribute to the pathological mechanism of Friedreich ataxia. PLoS One. 2012; 7(10): Article ID e47847
  • [60]De Michele G, Filla A. Movement disorders: Friedreich ataxia today-preparing for the final battle. Nat Rev Neurol. 2015; 11(4):188-90.
  • [61]Boehm T, Scheiber-Mojdehkar B, Kluge B, Goldenberg H, Laccone F, Sturm B. Variations of frataxin protein levels in normal individuals. Neurol Sci. 2011; 32(2):327-30.
  • [62]Sacca F, Marsili A, Puorro G, Antenora A, Pane C, Tessa A et al.. Clinical use of frataxin measurement in a patient with a novel deletion in the FXN gene. J Neurol. 2013; 260(4):1116-21.
  • [63]Werdelin L, Keiding N. Hereditary ataxias: epidemiological aspects. Neuroepidemiology. 1990; 9(6):321-31.
  • [64]Gudmundsson KR. Prevalence and occurrence of some rare neurological diseases in Iceland. Acta Neurol Scand. 1969; 45(1):114-8.
  • [65]Marino TC, Zaldivar YG, Mesa JM, Mederos LA, Rodriguez RA, Gotay DA et al.. Low predisposition to instability of the Friedreich ataxia gene in Cuban population. Clin Genet. 2010; 77(6):598-600.
  • [66]Singh I, Faruq M, Mukherjee O, Jain S, Pal PK, Srivastav MV et al.. North and South Indian populations share a common ancestral origin of Friedreich’s ataxia but vary in age of GAA repeat expansion. Ann Hum Genet. 2010; 74(3):202-10.
  • [67]Monticelli A, Giacchetti M, De Biase I, Pianese L, Turano M, Pandolfo M et al.. New clues on the origin of the Friedreich ataxia expanded alleles from the analysis of new polymorphisms closely linked to the mutation. Hum Genet. 2004; 114(5):458-63.
  文献评价指标  
  下载次数:13次 浏览次数:3次