期刊论文详细信息
Retrovirology
LEDGINs inhibit late stage HIV-1 replication by modulating integrase multimerization in the virions
Zeger Debyser1  Frauke Christ1  Rik Gijsbers1  Norbert Bannert3  Jelle Hendrix2  Jan De Rijck1  Johan Hofkens2  Barbara Van Remoortel1  Sofie Vets1  Wannes Thys1  Caroline Weydert1  Doortje Borrenberghs2  Jonas Demeulemeester1  Rik Schrijvers1  Belete Ayele Desimmie1 
[1] Department of Pharmaceutical and Pharmacological Sciences, Laboratory for Molecular Virology and Gene Therapy, KU Leuven, Kapucijnenvoer 33, Leuven, Flanders, 3000, Belgium;Laboratory for Photochemistry and Spectroscopy, KU Leuven, Celestijnenlaan 200F, Heverlee, Flanders, 3001, Belgium;Robert Koch Institute, Centre for HIV and Retrovirology, Nordufer 20, Berlin, 13353, Germany
关键词: LEDGINs;    Integrase multimerization;    Integrase;    HIV replication;    Antivirals;   
Others  :  1209120
DOI  :  10.1186/1742-4690-10-57
 received in 2013-03-15, accepted in 2013-05-07,  发布年份 2013
PDF
【 摘 要 】

Background

LEDGINs are novel allosteric HIV integrase (IN) inhibitors that target the lens epithelium-derived growth factor (LEDGF)/p75 binding pocket of IN. They block HIV-1 integration by abrogating the interaction between LEDGF/p75 and IN as well as by allosterically inhibiting the catalytic activity of IN.

Results

Here we demonstrate that LEDGINs reduce the replication capacity of HIV particles produced in their presence. We systematically studied the molecular basis of this late effect of LEDGINs and demonstrate that HIV virions produced in their presence display a severe replication defect. Both the late effect and the previously described, early effect on integration contribute to LEDGIN antiviral activity as shown by time-of-addition, qPCR and infectivity assays. The late effect phenotype requires binding of LEDGINs to integrase without influencing proteolytic cleavage or production of viral particles. LEDGINs augment IN multimerization during virion assembly or in the released viral particles and severely hamper the infectivity of progeny virions. About 70% of the particles produced in LEDGIN-treated cells do not form a core or display aberrant empty cores with a mislocalized electron-dense ribonucleoprotein. The LEDGIN-treated virus displays defective reverse transcription and nuclear import steps in the target cells. The LEDGIN effect is possibly exerted at the level of the Pol precursor polyprotein.

Conclusion

Our results suggest that LEDGINs modulate IN multimerization in progeny virions and impair the formation of regular cores during the maturation step, resulting in a decreased infectivity of the viral particles in the target cells. LEDGINs thus profile as unique antivirals with combined early (integration) and late (IN assembly) effects on the HIV replication cycle.

【 授权许可】

   
2013 Desimmie et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150602083156168.pdf 3513KB PDF download
Figure 6. 55KB Image download
Figure 5. 68KB Image download
Figure 4. 72KB Image download
Figure 3. 80KB Image download
Figure 2. 71KB Image download
Figure 1. 90KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Li M, Mizuuchi M, Burke TR Jr, Craigie R: Retroviral DNA integration: reaction pathway and critical intermediates. EMBO J 2006, 25:1295-1304.
  • [2]Deprez E, Tauc P, Leh H, Mouscadet JF, Auclair C, Brochon JC: Oligomeric states of the HIV-1 integrase as measured by time-resolved fluorescence anisotropy. Biochemistry 2000, 39:9275-9284.
  • [3]Faure A, Calmels C, Desjobert C, Castroviejo M, Caumont-Sarcos A, Tarrago-Litvak L, Litvak S, Parissi V: HIV-1 integrase crosslinked oligomers are active in vitro. Nucleic Acids Res 2005, 33:977-986.
  • [4]Hayouka Z, Rosenbluh J, Levin A, Loya S, Lebendiker M, Veprintsev D, Kotler M, Hizi A, Loyter A, Friedler A: Inhibiting HIV-1 integrase by shifting its oligomerization equilibrium. Proc Natl Acad Sci USA 2007, 104:8316-8321.
  • [5]Cherepanov P, Maertens G, Proost P, Devreese B, Van Beeumen J, Engelborghs Y, De Clercq E, Debyser Z: HIV-1 integrase forms stable tetramers and associates with LEDGF/p75 protein in human cells. J Biol Chem 2003, 278:372-381.
  • [6]Maertens G, Cherepanov P, Pluymers W, Busschots K, De Clercq E, Debyser Z, Engelborghs Y: LEDGF/p75 is essential for nuclear and chromosomal targeting of HIV-1 integrase in human cells. J Biol Chem 2003, 278:33528-33539.
  • [7]McNeely M, Hendrix J, Busschots K, Boons E, Deleersnijder A, Gerard M, Christ F, Debyser Z: In vitro DNA tethering of HIV-1 integrase by the transcriptional coactivator LEDGF/p75. J Mol Biol 2011, 410:811-830.
  • [8]Schrijvers R, De Rijck J, Demeulemeester J, Adachi N, Vets S, Ronen K, Christ F, Bushman FD, Debyser Z, Gijsbers R: LEDGF/p75-Independent HIV-1 Replication Demonstrates a Role for HRP-2 and Remains Sensitive to Inhibition by LEDGINs. PLoS Pathog 2012, 8:e1002558.
  • [9]Llano M, Saenz DT, Meehan A, Wongthida P, Peretz M, Walker WH, Teo W, Poeschla EM: An essential role for LEDGF/p75 in HIV integration. Science 2006, 314:461-464.
  • [10]Ciuffi A, Llano M, Poeschla E, Hoffmann C, Leipzig J, Shinn P, Ecker JR, Bushman F: A role for LEDGF/p75 in targeting HIV DNA integration. Nat Med 2005, 11:1287-1289.
  • [11]Quashie PK, Sloan RD, Wainberg MA: Novel therapeutic strategies targeting HIV integrase. BMC Med 2012, 10:34. BioMed Central Full Text
  • [12]Christ F, Voet A, Marchand A, Nicolet S, Desimmie BA, Marchand D, Bardiot D, Van der Veken NJ, Van Remoortel B, Strelkov SV: Rational design of small-molecule inhibitors of the LEDGF/p75-integrase interaction and HIV replication. Nat Chem Biol 2010, 6:442-448.
  • [13]Christ F, Debyser Z: The LEDGF/p75 integrase interaction, a novel target for anti-HIV therapy. Virology 2013, 435:102-109.
  • [14]Kessl JJ, Jena N, Koh Y, Taskent-Sezgin H, Slaughter A, Feng L, de Silva S, Wu L, Le Grice SF, Engelman A: Multimode, cooperative mechanism of action of allosteric HIV-1 integrase inhibitors. J Biol Chem 2012, 287:16801-16811.
  • [15]Al-Mawsawi LQ, Neamati N: Allosteric inhibitor development targeting HIV-1 integrase. ChemMedChem 2011, 6:228-241.
  • [16]Christ F, Shaw S, Demeulemeester J, Desimmie BA, Marchand A, Butler S, Smets W, Chaltin P, Westby M, Debyser Z, Pickford C: Small-Molecule Inhibitors of the LEDGF/p75 Binding Site of Integrase Block HIV Replication and Modulate Integrase Multimerization. Antimicrob Agents Chemother 2012, 56:4365-4374.
  • [17]Tsiang M, Jones GS, Niedziela-Majka A, Kan E, Lansdon EB, Huang W, Hung M, Samuel D, Novikov N, Xu Y: New Class of HIV-1 Integrase (IN) Inhibitors with a Dual Mode of Action. J Biol Chem 2012, 287:21189-21203.
  • [18]Butler SL, Hansen MS, Bushman FD: A quantitative assay for HIV DNA integration in vivo. Nat Med 2001, 7:631-634.
  • [19]Van Acker K, Lodewij K, Van Acker K, Lodewij k, August, BUNKENS L, Elisabeth, Louis, DAMS G, Karel, Julia, HERTOGS K, IVENS T, Pauline, Eduard, NIJS E, Jos, Amandus: Time-of-addition assay for identifying anti-viral compounds. : World Intellectual Property Organization; 2005. WO/2005/028669
  • [20]Hazuda DJ, Felock P, Witmer M, Wolfe A, Stillmock K, Grobler JA, Espeseth A, Gabryelski L, Schleif W, Blau C, Miller MD: Inhibitors of strand transfer that prevent integration and inhibit HIV-1 replication in cells. Science 2000, 287:646-650.
  • [21]Kim SY, Byrn R, Groopman J, Baltimore D: Temporal aspects of DNA and RNA synthesis during human immunodeficiency virus infection: evidence for differential gene expression. J Virol 1989, 63:3708-3713.
  • [22]Murray JM, Kelleher AD, Cooper DA: Timing of the components of the HIV life cycle in productively infected CD4+ T cells in a population of HIV-infected individuals. J Virol 2011, 85:10798-10805.
  • [23]Arts EJ, Hazuda DJ: HIV-1 Antiretroviral Drug Therapy. Cold Spring Harbor perspectives in medicine 2012, 2:a007161.
  • [24]Bartonova V, Igonet S, Sticht J, Glass B, Habermann A, Vaney MC, Sehr P, Lewis J, Rey FA, Krausslich HG: Residues in the HIV-1 capsid assembly inhibitor binding site are essential for maintaining the assembly-competent quaternary structure of the capsid protein. J Biol Chem 2008, 283:32024-32033.
  • [25]Christ F, Thys W, De Rijck J, Gijsbers R, Albanese A, Arosio D, Emiliani S, Rain JC, Benarous R, Cereseto A, Debyser Z: Transportin-SR2 imports HIV into the nucleus. Current biology: CB 2008, 18:1192-1202.
  • [26]Ikeda T, Nishitsuji H, Zhou X, Nara N, Ohashi T, Kannagi M, Masuda T: Evaluation of the functional involvement of human immunodeficiency virus type 1 integrase in nuclear import of viral cDNA during acute infection. J Virol 2004, 78:11563-11573.
  • [27]Albanese A, Arosio D, Terreni M, Cereseto A: HIV-1 pre-integration complexes selectively target d econdensed chromatin in the nuclear periphery. PLoS One 2008, 3:e2413.
  • [28]Demeulemeester J, Tintori C, Botta M, Debyser Z, Christ F: Development of an AlphaScreen-based HIV-1 integrase dimerization assay for discovery of novel allosteric inhibitors. J Biomol Screen 2012, 17:618-628.
  • [29]Desimmie BA, Humbert M, Lescrinier E, Hendrix J, Vets S, Gijsbers R, Ruprecht RM, Dietrich U, Debyser Z, Christ F: Phage display-directed discovery of LEDGF/p75 binding cyclic peptide inhibitors of HIV replication. Molecular therapy: the journal of the American Society of Gene Therapy 2012, 20:2064-2075.
  • [30]Wiskerchen M, Muesing MA: Human immunodeficiency virus type 1 integrase: effects of mutations on viral ability to integrate, direct viral gene expression from unintegrated viral DNA templates, and sustain viral propagation in primary cells. J Virol 1995, 69:376-386.
  • [31]Yant S, Tsai L, O’Sullivan C, Cihlar T, Balakrishnan M: Non-Catalytic Site Integrase Inhibitors Target the Integrase Domain during Virus Production and Induce a Reverse Transcription Block. 2013. http://www.retroconference.org/2013b/Abstracts/46625.htm webcite
  • [32]Engelman A, Englund G, Orenstein JM, Martin MA, Craigie R: Multiple effects of mutations in human immunodeficiency virus type 1 integrase on viral replication. J Virol 1995, 69:2729-2736.
  • [33]Meehan AM, Saenz DT, Morrison J, Hu C, Peretz M, Poeschla EM: LEDGF dominant interference proteins demonstrate prenuclear exposure of HIV-1 integrase and synergize with LEDGF depletion to destroy viral infectivity. J Virol 2011, 85:3570-3583.
  • [34]Llano M, Delgado S, Vanegas M, Poeschla EM: Lens epithelium-derived growth factor/p75 prevents proteasomal degradation of HIV-1 integrase. J Biol Chem 2004, 279:55570-55577.
  • [35]Gerard A, Soler N, Segeral E, Belshan M, Emiliani S: Identification of low molecular weight nuclear complexes containing integrase during the early stages of HIV-1 infection. Retrovirology 2013, 10:13. BioMed Central Full Text
  • [36]Shen L, Rabi SA, Sedaghat AR, Shan L, Lai J, Xing S, Siliciano RF: A critical subset model provides a conceptual basis for the high antiviral activity of major HIV drugs. Sci Transl Med 2011, 3:63-91.
  • [37]Shen L, Peterson S, Sedaghat AR, McMahon MA, Callender M, Zhang H, Zhou Y, Pitt E, Anderson KS, Acosta EP, Siliciano RF: Dose–response curve slope sets class-specific limits on inhibitory potential of anti-HIV drugs. Nat Med 2008, 14:762-766.
  • [38]Figueiredo A, Moore KL, Mak J, Sluis-Cremer N, de Bethune MP, Tachedjian G: Potent nonnucleoside reverse transcriptase inhibitors target HIV-1 Gag-Pol. PLoS Pathog 2006, 2:e119.
  • [39]Muller B, Anders M, Akiyama H, Welsch S, Glass B, Nikovics K, Clavel F, Tervo HM, Keppler OT, Krausslich HG: HIV-1 Gag processing intermediates trans-dominantly interfere with HIV-1 infectivity. J Biol Chem 2009, 284:29692-29703.
  • [40]Stefanidou M, Herrera C, Armanasco N, Shattock RJ: Saquinavir inhibits early events associated with establishment of HIV-1 infection: potential role for protease inhibitors in prevention. Antimicrob Agents Chemother 2012, 56:4381-4390.
  • [41]Busschots K, Voet A, De Maeyer M, Rain JC, Emiliani S, Benarous R, Desender L, Debyser Z, Christ F: Identification of the LEDGF/p75 binding site in HIV-1 integrase. J Mol Biol 2007, 365:1480-1492.
  • [42]Geraerts M, Michiels M, Baekelandt V, Debyser Z, Gijsbers R: Upscaling of lentiviral vector production by tangential flow filtration. J Gene Med 2005, 7:1299-1310.
  • [43]Van Maele B, De Rijck J, De Clercq E, Debyser Z: Impact of the central polypurine tract on the kinetics of human immunodeficiency virus type 1 vector transduction. J Virol 2003, 77:4685-4694.
  • [44]Wagner R, Graf M, Bieler K, Wolf H, Grunwald T, Foley P, Uberla K: Rev-independent expression of synthetic gag-pol genes of human immunodeficiency virus type 1 and simian immunodeficiency virus: implications for the safety of lentiviral vectors. Hum Gene Ther 2000, 11:2403-2413.
  • [45]Chiu J, March PE, Lee R, Tillett D: Site-directed, Ligase-Independent Mutagenesis (SLIM): a single-tube methodology approaching 100% efficiency in 4 h. Nucleic Acids Res 2004, 32:e174.
  • [46]Busso D, Delagoutte-Busso B, Moras D: Construction of a set Gateway-based destination vectors for high-throughput cloning and expression screening in Escherichia coli. Anal Biochem 2005, 343:313-321.
  文献评价指标  
  下载次数:5次 浏览次数:2次