期刊论文详细信息
Retrovirology
Identification of a highly conserved valine-glycine-phenylalanine amino acid triplet required for HIV-1 Nef function
Bruno Verhasselt3  Oliver T Fackler6  Kevin K Arien1  Guido Vanham4  Matthias Geyer2  Kalle Saksela5  Evelien Naessens3  Jolien Vermeire3  Veronica Iannucci3  Bettina Stolp6  Pieter J Meuwissen3 
[1] Present Address: Department of Biomedical Sciences , Virology Unit, Institute of Tropical Medicine, Antwerp, Belgium;Max Planck Institute for Molecular Physiology, Dortmund, (D-44227), Germany;Department of Clinical Chemistry, Microbiology, and Immunology, Ghent University, Ghent, (B-9000), Belgium;Department of Biomedical Sciences, Virology Unit, Institute of Tropical Medicine, Antwerp, (B-2000), Belgium;Department of Virology, Haartman Institute, University of Helsinki and Helsinki University Central Hospital, Helsinki, (FIN-00014), Finland;Department of Infectious Diseases, Virology, University Hospital Heidelberg, INF 324, Heidelberg, (D-69120), Germany
关键词: Replication;    Infectivity;    Receptor downregulation;    Lck;    Cytoskeleton;    SH3 domain binding;    Sequence motifs;    Nef;    HIV;   
Others  :  1209311
DOI  :  10.1186/1742-4690-9-34
 received in 2011-12-16, accepted in 2012-04-27,  发布年份 2012
PDF
【 摘 要 】

Background

The Nef protein of HIV facilitates virus replication and disease progression in infected patients. This role as pathogenesis factor depends on several genetically separable Nef functions that are mediated by interactions of highly conserved protein-protein interaction motifs with different host cell proteins. By studying the functionality of a series of nef alleles from clinical isolates, we identified a dysfunctional HIV group O Nef in which a highly conserved valine-glycine-phenylalanine (VGF) region, which links a preceding acidic cluster with the following proline-rich motif into an amphipathic surface was deleted. In this study, we aimed to study the functional importance of this VGF region.

Results

The dysfunctional HIV group O8 nef allele was restored to the consensus sequence, and mutants of canonical (NL4.3, NA-7, SF2) and non-canonical (B2 and C1422) HIV-1 group M nef alleles were generated in which the amino acids of the VGF region were changed into alanines (VGF→AAA) and tested for their capacity to interfere with surface receptor trafficking, signal transduction and enhancement of viral replication and infectivity. We found the VGF motif, and each individual amino acid of this motif, to be critical for downregulation of MHC-I and CXCR4. Moreover, Nef’s association with the cellular p21-activated kinase 2 (PAK2), the resulting deregulation of cofilin and inhibition of host cell actin remodeling, and targeting of Lck kinase to the trans-golgi-network (TGN) were affected as well. Of particular interest, VGF integrity was essential for Nef-mediated enhancement of HIV virion infectivity and HIV replication in peripheral blood lymphocytes. For targeting of Lck kinase to the TGN and viral infectivity, especially the phenylalanine of the triplet was essential. At the molecular level, the VGF motif was required for the physical interaction of the adjacent proline-rich motif with Hck.

Conclusion

Based on these findings, we propose that this highly conserved three amino acid VGF motif together with the acidic cluster and the proline-rich motif form a previously unrecognized amphipathic surface on Nef. This surface appears to be essential for the majority of Nef functions and thus represents a prime target for the pharmacological inhibition of Nef.

【 授权许可】

   
2012 Meuwissen et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150602094809807.pdf 3382KB PDF download
Figure 7. 50KB Image download
Figure 6. 65KB Image download
Figure 5. 108KB Image download
Figure 4. 108KB Image download
Figure 3. 68KB Image download
Figure 2. 74KB Image download
Figure 1. 125KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

【 参考文献 】
  • [1]Daniel MD, Kirchhoff F, Czajak SC, Sehgal PK, Desrosiers RC: Protective effects of a live attenuated SIV vaccine with a deletion in the nef gene. Science 1992, 258:1938-1941.
  • [2]Kestler HW, Ringler DJ, Mori K, Panicali DL, Sehgal PK, Daniel MD, Desrosiers RC: Importance of the Nef Gene for Maintenance of High Virus Loads and for Development of Aids. Cell 1991, 65:651-662.
  • [3]Sawai ET, Hamza MS, Ye M, Shaw KES, Luciw PA: Pathogenic Conversion of Live Attenuated Simian Immunodeficiency Virus Vaccines Is Associated with Expression of Truncated Nef. J Virol 2000, 74:2038-2045.
  • [4]Simard MC, Chrobak P, Kay DG, Hanna Z, Jothy S, Jolicoeur P: Expression of simian immunodeficiency virus nef in immune cells of transgenic mice leads to a severe AIDS-like disease. J Virol 2002, 76:3981-3995.
  • [5]Hanna Z, Kay DG, Rebai N, Guimond A, Jothy S, Jolicoeur P: Nef harbors a major determinant of pathogenicity for an AIDS-like disease induced by HIV-1 in transgenic mice. Cell 1998, 95:163-175.
  • [6]Schwartz O, Marechal V, Le Gall S, Lemonnier F, Heard JM: Endocytosis of major histocompatibility complex class I molecules is induced by the HIV-1 Nef protein. Nat Med 1996, 2:338-342.
  • [7]Landi A, Iannucci V, Van Nuffel A, Meuwissen PJ, Verhasselt B: One protein to rule them all: modulation of cell surface receptors and molecules by HIV Nef. Curr HIV Res 2011, 9:496-504.
  • [8]Collins KL, Chen BK, Kalams SA, Walker BD, Baltimore D: HIV-1 Nef protein protects infected primary cells against killing by cytotoxic T lymphocytes. Nature 1998, 391:397-401.
  • [9]Vermeire J, Vanbillemont G, Witkowski W, Verhasselt B: The Nef-infectivity enigma: mechanisms of enhanced lentiviral infection. Curr HIV Res 2011, 9:474-489.
  • [10]Arhel NJ, Kirchhoff F: Implications of Nef: Host Cell Interactions in Viral Persistence and Progression to AIDS. In HIV Interactions with Host Cell Proteins. Current Topics in Microbiology and Immunology. Edited by Spearman P, Freed EO. Springer-Verlag Berlin, Berlin; 2009:147-175.
  • [11]Geyer M, Fackler OT, Peterlin BM: Structure-function relationships in HIV-1 Nef. EMBO 2001, 2:580-585.
  • [12]Foster J, Denial S, Temple B, Garcia J: Mechanisms of HIV-1 Nef Function and Intracellular Signaling. J Neuroimm Pharmacol 2011, 6:230-246.
  • [13]Specht A, DeGottardi MQ, Schindler M, Hahn B, Evans DT, Kirchhoff F: Selective downmodulation of HLA-A and -B by Nef alleles from different groups of primate lentiviruses. Virology 2008, 373:229-237.
  • [14]Schindler M, Würfl S, Benaroch P, Greenough TC, Daniels R, Easterbrook P, Brenner M, Münch J, Kirchhoff F: Down-Modulation of Mature Major Histocompatibility Complex Class II and Up-Regulation of Invariant Chain Cell Surface Expression Are Well-Conserved Functions of Human and Simian Immunodeficiency Virus nef Alleles. J Virol 2003, 77:10548-10556.
  • [15]Hrecka K, Swigut T, Schindler M, Kirchhoff F, Skowronski J: Nef Proteins from Diverse Groups of Primate Lentiviruses Downmodulate CXCR4 To Inhibit Migration to the Chemokine Stromal Derived Factor 1. J Virol 2005, 79:10650-10659.
  • [16]Arien KK, Abraha A, Quinones-Mateu ME, Kestens L, Vanham G, Arts EJ: The replicative fitness of primary human immunodeficiency virus type 1 (HIV-1) group M, HIV-1 group O, and HIV-2 isolates. J Virol 2005, 79:8979-8990.
  • [17]Verhasselt B, Naessens E, Verhofstede C, De Smedt M, Schollen S, Kerre T, Vanhecke D, Plum J: Human immunodeficiency virus nef gene expression affects generation and function of human T cells, but not dendritic cells. Blood 1999, 94:2809-2818.
  • [18]Michel N, Ganter K, Venzke S, Bitzegeio J, Fackler OT, Keppler OT: The nef protein of human immunodeficiency virus is a broad-spectrum modulator of chemokine receptor cell surface levels that acts independently of classical motifs for receptor endocytosis and G alpha(i) signaling. Mol Biol Cell 2006, 17:3578-3590.
  • [19]Venzke S, Michel N, Allespach I, Fackler OT, Keppler OT: Expression of Nef downregulates CXCR4, the major coreceptor of human immunodeficiency virus, from the surfaces of target cells and thereby enhances resistance to superinfection. J Virol 2006, 80:11141-11152.
  • [20]Mangasarian A, Piguet V, Wang J-K, Chen Y-L, Trono D: Nef-Induced CD4 and Major Histocompatibility Complex Class I (MHC-I) Down-Regulation Are Governed by Distinct Determinants: N-Terminal Alpha Helix and Proline Repeat of Nef Selectively Regulate MHC-I Trafficking. J Virol 1999, 73:1964-1973.
  • [21]O'Neill E, Kuo LS, Krisko JF, Tomchick DR, Garcia JV, Foster JL: Dynamic Evolution of the Human Immunodeficiency Virus Type 1 Pathogenic Factor, Nef. J Virol 2006, 80:1311-1320.
  • [22]HIV sequence database. 2011. [http:// HIV.lanl.gov webcite], consulted December 15th
  • [23]Breuer S, Schievink SI, Schulte A, Blankenfeldt W, Fackler OT, Geyer M: Molecular Design, Functional Characterization and Structural Basis of a Protein Inhibitor Against the HIV-1 Pathogenicity Factor Nef. PLoS One 2011, 6:e20033.
  • [24]Manninen A, Hiipakka M, Vihinen M, Lu W, Mayer BJ, Saksela K: SH3-Domain Binding Function of HIV-1 Nef Is Required for Association with a PAK-Related Kinase. Virology 1998, 250:273-282.
  • [25]Fackler OT, Luo W, Geyer M, Alberts AS, Peterlin BM: Activation of Vav by Nef Induces Cytoskeletal Rearrangements and Downstream Effector Functions. Mol Cell 1999, 3:729-739.
  • [26]Stolp B, Abraham L, Rudolph JM, Fackler OT: Lentiviral Nef Proteins Utilize PAK2-Mediated Deregulation of Cofilin as a General Strategy To Interfere with Actin Remodeling. J Virol 2010, 84:3935-3948.
  • [27]Sawai ET, Khan IH, Montbriand PM, Peterlin BM, Cheng-Mayer C, Luciw PA: Activation of PAK by HIV and SIV Nef: importance for AIDS in rhesus macaques. Curr Biol 1997, 6:1519-1527.
  • [28]Rudolph JM, Eickel N, Haller C, Schindler M, Fackler OT: Inhibition of T-Cell Receptor-Induced Actin Remodeling and Relocalization of Lck Are Evolutionarily Conserved Activities of Lentiviral Nef Proteins. J Virol 2009, 83:11528-11539.
  • [29]Stolp B, Reichman-Fried M, Abraham L, Pan X, Giese SI, Hannemann S, Goulimari P, Raz E, Grosse R, Fackler OT: HIV-1 Nef Interferes with Host Cell Motility by Deregulation of Cofilin. Cell Host & Microbe 2009, 6:174-186.
  • [30]Haller C, Rauch S, Fackler OT: HIV-1 Nef Employs Two Distinct Mechanisms to Modulate Lck Subcellular Localization and TCR Induced Actin Remodeling. PLoS One 2007, 2:e1212.
  • [31]Haller C, Rauch S, Michel N, Hannemann S, Lehmann MJ, Keppler OT, Fackler OT: The HIV-1 Pathogenicity Factor Nef Interferes with Maturation of Stimulatory T-lymphocyte Contacts by Modulation of N-Wasp Activity. J Biol Chem 2006, 281:19618-19630.
  • [32]Baugh LL, Garcia JV, Foster JL: Functional Characterization of the Human Immunodeficiency Virus Type 1 Nef Acidic Domain. J Virol 2008, 82:9657-9667.
  • [33]Pan X, Rudolph JM, Abraham L, Habermann A, Haller C, Krijnse-Locker J, Fackler OT: HIV-1 Nef compensates for disorganization of the immunological synapse by inducing TGN-associated Lck signaling. Blood 2011, 119:786-797.
  • [34]Thoulouze MI, Sol-Foulon N, Blanchet F, Dautry-Varsat A, Schwartz O, Alcover A: Human Immunodeficiency Virus Type-1 Infection Impairs the Formation of the Immunological Synapse. Immunity 2006, 24:547-561.
  • [35]Saksela K, Cheng G, Baltimore D: Proline-rich (PxxP) motifs in HIV-1 Nef bind to SH3 domains of a subset of Src kinases and are required for the enhanced growth of Nef + viruses but not for down-regulation of CD4. EMBO 1995, 14:484-491.
  • [36]Hammes SR, Dixon EP, Malim MH, Cullen BR, Greene WC: Nef protein of human immunodeficiency virus type 1: evidence against its role as a transcriptional inhibitor. Proc Nat Acad Sci 1989, 86:9549-9553.
  • [37]Kim S, Ikeuchi K, Byrn R, Groopman J, Baltimore D: Lack of a negative influence on viral growth by the nef gene of human immunodeficiency virus type 1. Proc Nat Acad Sci 1989, 86:9544-9548.
  • [38]Spina CA, Kwoh TJ, Chowers MY, Guatelli JC, Richman DD: The importance of nef in the induction of human immunodeficiency virus type 1 replication from primary quiescent CD4 lymphocytes. J Exp Med 1994, 179:115-123.
  • [39]Homann S, Tibroni N, Baumann I, Sertel S, Keppler O, Fackler O: Determinants in HIV-1 Nef for enhancement of virus replication and depletion of CD4+ T lymphocytes in human lymphoid tissue ex vivo. Retrovirology 2009, 6:6. BioMed Central Full Text
  • [40]Imbeault Ml, Lodge R, Ouellet M, Tremblay MJ: Efficient magnetic bead-based separation of HIV-1-infected cells using an improved reporter virus system reveals that p53 up-regulation occurs exclusively in the virus-expressing cell population. Virology 2009, 393:160-167.
  • [41]Fackler OT, Moris A, Tibroni N, Giese SI, Glass Br, Schwartz O, Krausslich H-G: Functional characterization of HIV-1 Nef mutants in the context of viral infection. Virology 2006, 351:322-339.
  • [42]Rücker E, Münch J, Wildum S, Brenner M, Eisemann J, Margolis L, Kirchhoff F: A Naturally Occurring Variation in the Proline-Rich Region Does Not Attenuate Human Immunodeficiency Virus Type 1 Nef Function. J Virol 2004, 78:10197-10201.
  • [43]Münch J, Rajan D, Schindler M, Specht A, Rücker E, Novembre FJ, Nerrienet E, Müller-Trutwin MC, Peeters M, Hahn BH, Kirchhoff F: Nef-Mediated Enhancement of Virion Infectivity and Stimulation of Viral Replication Are Fundamental Properties of Primate Lentiviruses. J Virol 2007, 81:13852-13864.
  • [44]Fackler OT, Wolf D, Weber HO, Laffert B, D'Aloja P, Schuler-Thurner B, Geffin R, Saksela K, Geyer M, Peterlin BM, et al.: A natural variability in the proline-rich motif of Nef modulates HIV-1 replication in primary T cells. Curr Biol 2001, 11:1294-1299.
  • [45]Brown A, Moghaddam S, Kawano T, Cheng-Mayer C: Multiple human immunodeficiency virus type 1 Nef functions contribute to efficient replication in primary human macrophages. J Gen Virol 2004, 85:1463-1469.
  • [46]Geyer M, Peterlin BM: Domain assembly, surface accessibility and sequence conservation in full length HIV-1 Nef. FEBS 2001, 496:91-95.
  • [47]Saksela K: Interactions of HIV/SIV pathogenicity factor nef with SH3 domain containing host cell proteins. Curr HIV Res 2011, 9:S31-S42.
  • [48]Greenberg ME, Iafrate AJ, Skowronski J: The SH3 domain-binding surface and an acidic motif in HIV-1 Nef regulate trafficking of class I MHC complexes. EMBO 1998, 17:2777-2789.
  • [49]Mangino G, Percario ZA, Fiorucci G, Vaccari G, Acconcia F, Chiarabelli C, Leone S, Noto A, Horenkamp FA, Manrique S, et al.: HIV-1 Nef Induces Proinflammatory State in Macrophages through Its Acidic Cluster Domain: Involvement of TNF Alpha Receptor Associated Factor 2. PLoS One 2011, 6:e22982.
  • [50]Blagoveshchenskaya AD, Thomas L, Feliciangeli SF, Hung C-H, Thomas G: HIV-1 Nef Downregulates MHC-I by a PACS-1- and PI3K-Regulated ARF6 Endocytic Pathway. Cell 2002, 111:853-866.
  • [51]Atkins KM, Thomas L, Youker RT, Harriff MJ, Pissani F, You H, Thomas G: HIV-1 Nef Binds PACS-2 to Assemble a Multikinase Cascade That Triggers Major Histocompatibility Complex Class I (MHC-I) Down-regulation. J Biol Chem 2008, 283:11772-11784.
  • [52]Schaefer MR, Wonderlich ER, Roeth JF, Leonard JA, Collins KL: HIV-1 Nef Targets MHC-I and CD4 for Degradation Via a Final Common beta-COP-Dependent Pathway in T Cells. PLoS Pathog 2008, 4:e1000131.
  • [53]Singh RK, Lau D, Noviello CM, Ghosh P, Guatelli JC: An MHC-I Cytoplasmic Domain/HIV-1 Nef Fusion Protein Binds Directly to the mu Subunit of the AP-1 Endosomal Coat Complex. PLoS One 2009, 4:e8364.
  • [54]Ball LJ, Jarchau T, Oschkinat H, Walter U: EVH1 domains: structure, function and interactions. FEBS Lett 2002, 513(1):45-52.
  • [55]Shelton MN, Huang MB, Ali SA, Powell MD, Bond VC: Secretion modification region-derived peptide disrupts HIV-1 Nef's interaction with mortalin and blocks virus and nef exsosome release. J Virol 2012, 86(1):406-19.
  • [56]Stevenson M: HIV-1 pathogenesis. Nat Med 2003, 9:853-860.
  • [57]Arhel N, Lehmann M, Clauss K, Nienhaus GU, Piguet V, Kirchhoff F: The inability to disrupt the immunological synapse between infected human T cells and APCs distinguishes HIV-1 from most other primate lentiviruses. J Clin Invest 2009, 119:2965-2975.
  • [58]Simmons A, Aluvihare V, McMichael A: Nef Triggers a Transcriptional Program in T Cells Imitating Single-Signal T Cell Activation and Inducing HIV Virulence Mediators. Immunity 2001, 14:763-777.
  • [59]Fenard D, Yonemoto W, de Noronha C, Cavrois M, Williams SA, Greene WC: Nef Is Physically Recruited into the Immunological Synapse and Potentiates T Cell Activation Early after TCR Engagement. J Immunol 2005, 175:6050-6057.
  • [60]Lundquist CA, Tobiume M, Zhou J, Unutmaz D, Aiken C: Nef-Mediated Downregulation of CD4 Enhances Human Immunodeficiency Virus Type 1 Replication in Primary T Lymphocytes. J Virol 2002, 76:4625-4633.
  • [61]Madrid R, Janvier K, Hitchin D, Day J, Coleman S, Noviello C, Bouchet J, Benmerah A, Guatelli J, Benichou S: Nef-induced Alteration of the Early/Recycling Endosomal Compartment Correlates with Enhancement of HIV-1 Infectivity. J Biol Chem 2005, 280:5032-5044.
  • [62]Goldsmith MA, Warmerdam MT, Atchison RE, Miller MD, Greene WC: Dissociation of the CD4 downregulation and viral infectivity enhancement functions of human immunodeficiency virus type 1 Nef. J Virol 1995, 69:4112-4121.
  • [63]Chutiwitoonchai N, Hiyoshi M, Mwimanzi P, Ueno T, Adachi A, Ode H, Sato H, Fackler OT, Okada S, Suzu S: The Identification of a Small Molecule Compound That Reduces HIV-1 Nef-Mediated Viral Infectivity Enhancement. PLoS One 2011, 6:e27696.
  • [64]Stove V, Naessens E, Stove C, Swigut T, Plum J, Verhasselt B: Signaling but not trafficking function of HIV-1 protein Nef is essential for Nef-induced defects in human intrathymic T-cell development. Blood 2003, 102:2925-2932.
  • [65]Tamura K, Dudley J, Nei M, Kumar S: MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 2007, 24:1596-1599.
  • [66]Levy DN, Aldrovandi GM, Kutsch O, Shaw GM: Dynamics of HIV-1 recombination in its natural target cells. Proc Nat Acad Sci 2004, 101:4204-4209.
  • [67]Brummelkamp TR, Bernards R, Agami R: A system for stable expression of short interfering RNAs in mammalian cells. Science 2002, 296:550-553.
  • [68]Tanaka M, Gupta R, Mayer BJ: Differential inhibition of signaling pathways by dominant-negative SH2/SH3 adapter proteins. Mol Cell Biol 1995, 15:6829-6837.
  • [69]Smits K, Iannucci V, Stove V, Van Hauwe P, Naessens EL, Meuwissen PJ, Arien KK, Bentahir M, Plum J, Verhasselt B: Rho GTPase Cdc42 is essential for human T-cell development. Haematologica 2010, 95:367-375.
  • [70]Deng H, Liu R, Ellmeier W, Choe S, Unutmaz D, Burkhart M, Marzio PD, Marmon S, Sutton RE, Hill CM, et al.: Identification of a major co-receptor for primary isolates of HIV-1. Nature 1996, 381:661-666.
  文献评价指标  
  下载次数:128次 浏览次数:19次