Proteome Science | |
Forced expression of S100A10 reduces sensitivity to oxaliplatin in colorectal cancer cells | |
Yusuke Tanigawara2  Sayo Suzuki1  | |
[1] Center for Pharmacy Practice, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan;Department of Clinical Pharmacokinetics and Pharmacodynamics, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan | |
关键词: Colorectal cancer; Annexin A2; Oxaliplatin; S100A10; | |
Others : 816457 DOI : 10.1186/1477-5956-12-26 |
|
received in 2013-06-19, accepted in 2014-04-30, 发布年份 2014 | |
【 摘 要 】
Background
Individual responses to oxaliplatin (L-OHP)-based chemotherapy remain unpredictable. Our recent proteomics studies have demonstrated that intracellular protein expression levels of S100A10 are significantly correlated with the sensitivity of colorectal cancer (CRC) cells to L-OHP, but not 5-FU, suggesting that S100A10 is a candidate predictive marker for the response to L-OHP. In this study, we investigated whether S100A10 is involved in L-OHP sensitivity or not.
Results
Forced expression of S100A10 in COLO-320 CRC cells significantly increased the 50% inhibitory concentration (IC50) for L-OHP (P = 0.003), but did not change that for 5-FU, indicating that S100A10 is more specific to L-OHP than 5-FU. Silencing of the S100A10 gene showed no apparent effect on sensitivity to L-OHP in HT29 cells. Silencing of the annexin A2 (a binding partner of S100A10) gene alone downregulated both annexin A2 and S100A10 protein levels, with no change in S100A10 gene expression. However, original levels of intact S100A10 protein in CRC cells positively correlated with S100A10 mRNA levels (P = 0.002, R = 0.91).
Conclusions
The present results have shown that protein expression of S100A10 was associated with resistance to L-OHP, but not 5-FU, supporting the hypothesis that S100A10 expression may predict L-OHP sensitivity. Thus, our present study provides basic findings to support that S100A10 expression can be used as a predictive marker for tumor sensitivity to L-OHP.
【 授权许可】
2014 Suzuki and Tanigawara; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20140710195623807.pdf | 466KB | download | |
Figure 3. | 79KB | Image | download |
Figure 2. | 99KB | Image | download |
Figure 1. | 62KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
【 参考文献 】
- [1]Grothey A, Sargent D, Goldberg RM, Schmoll H-J: Survival of patients with advanced colorectal cancer improves with the availability of fluorouracil-leucovorin, irinotecan, and oxaliplatin in the course of treatment. J Clin Oncol 2004, 22:1209-1214.
- [2]Goldberg RM, Sargent DJ, Morton RF, Fuchs CS, Ramanathan RK, Williamson SK, Findlay BP, Pitot HC, Alberts SR: A randomized controlled trial of fluorouracil plus leucovorin, irinotecan, and oxaliplatin combinations in patients with previously untreated metastatic colorectal cancer. J Clin Oncol 2004, 22:23-30.
- [3]de Gramont A, Figer A, Seymour M, Homerin M, Hmissi A, Cassidy J, Boni C, Cortes-Funes H, Cervantes A, Freyer G, Papamichael D, Le Bail N, Louvet C, Hendler D, de Braud F, Wilson C, Morvan F, Bonetti A: Leucovorin and fluorouracil with or without oxaliplatin as first-line treatment in advanced colorectal cancer. J Clin Oncol 2000, 18:2938-2947.
- [4]Rothenberg ML, Oza AM, Bigelow RH, Berlin JD, Marshall JL, Ramanathan RK, Hart LL, Gupta S, Garay CA, Burger BG, Le Bail N, Haller DG: Superiority of oxaliplatin and fluorouracil-leucovorin compared with either therapy alone in patients with progressive colorectal cancer after irinotecan and fluorouracil-leucovorin: interim results of a phase III trial. J Clin Oncol 2003, 21:2059-2069.
- [5]Kabbinavar FF, Hambleton J, Mass RD, Hurwitz HI, Bergsland E, Sarkar S: Combined analysis of efficacy: the addition of bevacizumab to fluorouracil/leucovorin improves survival for patients with metastatic colorectal cancer. J Clin Oncol 2005, 23:3706-3712.
- [6]Giantonio BJ, Catalano PJ, Meropol NJ, O’Dwyer PJ, Mitchell EP, Alberts SR, Schwartz MA, Benson AB 3rd, Eastern Cooperative Oncology Group Study E3200: Bevacizumab in combination with oxaliplatin, fluorouracil, and leucovorin (FOLFOX4) for previously treated metastatic colorectal cancer: results from the eastern cooperative oncology group study E3200. J Clin Oncol 2007, 25:1539-1544.
- [7]Bokemeyer C, Bondarenko I, Hartmann JT, de Braud F, Schuch G, Zubel A, Celik I, Schlichting M, Koralewski P: Efficacy according to biomarker status of cetuximab plus FOLFOX-4 as first-line treatment for metastatic colorectal cancer: the OPUS study. Ann Oncol 2011, 22:1535-1546.
- [8]Rabik CA, Dolan ME: Molecular mechanisms of resistance and toxicity associated with platinating agents. Cancer Treat Rev 2007, 33:9-23.
- [9]Braun MS, Richman SD, Quirke P, Daly C, Adlard JW, Elliott F, Barrett JH, Selby P, Meade AM, Stephens RJ, Parmar MK, Seymour MT: Predictive biomarkers of chemotherapy efficacy in colorectal cancer: results from the UK MRC FOCUS trial. J Clin Oncol 2008, 26:2690-2698.
- [10]Suzuki S, Yamayoshi Y, Nishimuta A, Tanigawara Y: S100A10 protein expression is associated with oxaliplatin sensitivity in human colorectal cancer cells. Proteome Sci 2011, 9:76. BioMed Central Full Text
- [11]Okuse K, Malik-Hall M, Baker MD, Poon WYL, Kong H, Chao MV, Wood JN: Annexin II light chain regulates sensory neuron-specific sodium channel expression. Nature 2002, 417:653-656.
- [12]Donier E, Rugiero F, Okuse K, Wood JN: Annexin II light chain p11 promotes functional expression of acid-sensing ion channel ASIC1a. J Biol Chem 2005, 280:38666-38672.
- [13]van de Graaf SF, Hoenderop JG, Gkika D, Lamers D, Prenen J, Rescher U, Gerke V, Staub O, Nilius B, Bindels RJ: Functional expression of the epithelial Ca(2+) channels (TRPV5 and TRPV6) requires association of the S100A10-annexin 2 complex. EMBO J 2003, 22:1478-1487.
- [14]Svenningsson P, Chergui K, Rachleff I, Flajolet M, Zhang X, Yacoubi ME, Vaugeois J-M, Nomikos GG, Greengard P: Alterations in 5-HT1B receptor function by p11 in depression-like states. Science 2006, 311:77-80.
- [15]El-Rifai W, Moskaluk CA, Abdrabbo MK, Harper J, Yoshida C, Riggins GJ, Frierson HF Jr, Powell SM: Gastric cancers overexpress S100A calcium-binding proteins. Cancer Res 2002, 62:6823-6826.
- [16]Zhi H, Zhang J, Hu G, Lu J, Wang X, Zhou C, Wu M, Liu Z: The deregulation of arachidonic acid metabolism-related genes in human esophageal squamous cell carcinoma. Int J Cancer 2003, 106:327-333.
- [17]Remmelink M, Mijatovic T, Gustin A, Mathieu A, Rombaut K, Kiss R, Salmon I, Decaestecker C: Identification by means of cDNA microarray analyses of gene expression modifications in squamous non-small cell lung cancers as compared to normal bronchial epithelial tissue. Int J Oncol 2005, 26:247-258.
- [18]Domoto T, Miyama Y, Suzuki H, Teratani T, Arai K, Sugiyama T, Takayama T, Mugiya S, Ozono S, Nozawa R: Evaluation of S100A10, annexin II and B-FABP expression as markers for renal cell carcinoma. Cancer Sci 2007, 98:77-82.
- [19]Kittaka N, Takemasa I, Takeda Y, Marubashi S, Nagano H, Umeshita K, Dono K, Matsubara K, Matsuura N, Monden M: Molecular mapping of human hepatocellular carcinoma provides deeper biological insight from genomic data. Eur J Cancer 2008, 44:885-897.
- [20]Sitek B, Sipos B, Alkatout I, Poschmann G, Stephan C, Schulenborg T, Marcus K, Lüttges J, Dittert D-D, Baretton G, Schmiegel W, Hahn SA, Klöppel G, Meyer HE, Stühler K: Analysis of the pancreatic tumor progression by a quantitative proteomic approach and immunhistochemical validation. J Proteome Res 2009, 8:1647-1656.
- [21]Fenouille N, Grosso S, Yunchao S, Mary D, Pontier-Bres R, Imbert V, Czerucka D, Caroli-Bosc FX, Peyron JF, Lagadec P: Calpain 2-dependent IκBα degradation mediates CPT-11 secondary resistance in colorectal cancer xenografts. J Pathol 2012, 227:118-129.
- [22]Phipps KD, Surette AP, O’Connell PA, Waisman DM: Plasminogen receptor S100A10 is essential for the migration of tumor-promoting macrophages into tumor sites. Cancer Res 2011, 71:6676-6683.
- [23]Johnsson N, Marriott G, Weber K: p36, the major cytoplasmic substrate of src tyrosine protein kinase, binds to its p11 regulatory subunit via a short amino-terminal amphiphatic helix. EMBO J 1988, 7:2435-2442.
- [24]Kube E, Becker T, Weber K, Gerke V: Protein-protein interaction studied by site-directed mutagenesis. Characterization of the annexin II-binding site on p11, a member of the S100 protein family. J Biol Chem 1992, 267:14175-14182.
- [25]Rety S, Sopkova J, Renouard M, Osterloh D, Gerke V, Tabaries S, Russo-Marie F, Lewit-Bentley A: The crystal structure of a complex of p11 with the annexin II N-terminal peptide. Nat Struct Mol Biol 1999, 6:89-95.
- [26]Keutzer JC, Hirschhorn RR: The growth-regulated gene 1B6 is identified as the heavy chain of calpactin I. Exp Cell Res 1990, 188:153-159.
- [27]Vishwanatha JK, Kumble S: Involvement of annexin II in DNA replication: evidence from cell-free extracts of Xenopus eggs. J Cell Sci 1993, 105:533-540.
- [28]Chiang Y, Rizzino A, Sibenaller ZA, Wold MS, Vishwanatha JK: Specific down-regulation of annexin II expression in human cells interferes with cell proliferation. Mol Cell Biochem 1999, 199:139-147.
- [29]Gerke V, Creutz CE, Moss SE: Annexins: linking Ca2+ signalling to membrane dynamics. Nat Rev Mol Cell Biol 2005, 6:449-461.
- [30]Ludwig JA, Weinstein JN: Biomarkers in cancer staging, prognosis and treatment selection. Nat Rev Cancer 2005, 5:845-856.
- [31]Culy CR, Clemett D, Wiseman LR: Oxaliplatin. A review of its pharmacological properties and clinical efficacy in metastatic colorectal cancer and its potential in other malignancies. Drugs 2000, 60:895-924.
- [32]Raymond E, Lawrence R, Izbicka E, Faivre S, Von Hoff DD: Activity of oxaliplatin against human tumor colony-forming units. Clin Cancer Res 1998, 4:1021-1029.
- [33]Kornmann M, Fakler H, Butzer U, Beger HG, Link KH: Oxaliplatin exerts potent in vitro cytotoxicity in colorectal and pancreatic cancer cell lines and liver metastases. Anticancer Res 2000, 20:3259-3264.
- [34]Graham MA, Lockwood GF, Greenslade D, Brienza S, Bayssas M, Gamelin E: Clinical pharmacokinetics of oxaliplatin: a critical review. Clin Cancer Res 2000, 6:1205-1218.
- [35]Burz C, Berindan-Neagoe IB, Balacescu O, Tanaselia C, Ursu M, Gog A, Vlase L, Chintoanu M, Balacescu L, Leucuta SE, Irimie A, Cristea V: Clinical and pharmacokinetics study of oxaliplatin in colon cancer patients. J Gastrointestin Liver Dis 2009, 18:39-43.
- [36]Hsu SY, Kaipia A, Zhu L, Hsueh AJW: Interference of BAD (Bcl-xL/Bcl-2-associated death promoter)-induced apoptosis in mammalian cells by 14-3-3 isoforms and P11. Mol Endocrinol 1997, 11:1858-1867.
- [37]Masiakowski P, Shooter EM: Changes in PC12 cell morphology induced by transfection with 42C cDNA, coding for a member of the S-100 protein family. J Neurosci Res 1990, 27:264-269.
- [38]Li J, Riau AK, Setiawan M, Mehta JS, Ti SE, Tong L, Tan DT, Beuerman RW: S100A expression in normal corneal-limbal epithelial cells and ocular surface squamous cell carcinoma tissue. Mol Vis 2011, 17:2263-2271.
- [39]Li Q, Laumonnier Y, Syrovets T, Simmet T: Plasmin triggers cytokine induction in human monocyte-derived macrophages. Arterioscler Thromb Vasc Biol 2007, 27:1383-1389.
- [40]Wu JT, Kral JG: The NF-kappaB/IkappaB signaling system: a molecular target in breast cancer therapy. J Surg Res 2005, 123:158-169.
- [41]Sonis ST: The biologic role for nuclear factor-kappab in disease and its potential involvement in mucosal injury associated with anti-neoplastic therapy. Critical Rev Oral Biol Med 2002, 13:380-389.
- [42]Huang X-l, Pawliczak R, Yao X-l, Cowan MJ, Gladwin MT, Walter MJ, Holtzman MJ, Madara P, Logun C, Shelhamer JH: Interferon-gamma induces p11 Gene and protein expression in human epithelial cells through interferon-gamma -activated sequences in the p11 promoter. J Biol Chem 2003, 278:9298-9308.
- [43]Aota K, Azuma M, Yamashita T, Tamatani T, Motegi K, Ishimaru N, Hayashi Y, Sato M: 5-Fluorouracil induces apoptosis through the suppression of NF-kappaB activity in human salivary gland cancer cells. Biochem Biophys Res Commun 2000, 273:1168-1174.
- [44]Azuma M, Yamashita T, Aota K, Tamatani T, Sato M: 5-Fluorouracil suppression of NF-KappaB is mediated by the inhibition of IKappab kinase activity in human salivary gland cancer cells. Biochem Biophys Res Commun 2001, 282:292-296.
- [45]Rakitina TV, Vasilevskaya IA, O’Dwyer PJ: Additive interaction of oxaliplatin and 17-allylamino-17-demethoxygeldanamycin in colon cancer cell lines results from inhibition of nuclear factor kappaB signaling. Cancer Res 2003, 63:8600-8605.
- [46]Kaltschmidt B, Kaltschmidt C, Hofmann TG, Hehner SP, Droge W, Schmitz ML: The pro- or anti-apoptotic function of NF-kappaB is determined by the nature of the apoptotic stimulus. Eur J Biochem 2000, 267:3828-3835.
- [47]Kwon M, MacLeod TJ, Zhang Y, Waisman DM: S100A10, annexin A2, and annexin a2 heterotetramer as candidate plasminogen receptors. Front Biosci 2005, 10:300-325.
- [48]Miles LA, Parmer RJ: S100A10: a complex inflammatory role. Blood 2010, 116:1022-1024.
- [49]Madureira PA, Surette AP, Phipps KD, Taboski MA, Miller VA, Waisman DM: The role of the annexin A2 heterotetramer in vascular fibrinolysis. Blood 2011, 118:4789-4797.
- [50]Lokman NA, Ween MP, Oehler MK, Ricciardelli C: The role of annexin A2 in tumorigenesis and cancer progression. Cancer Microenviron 2011, 4:199-208.
- [51]Deora AB, Kreitzer G, Jacovina AT, Hajjar KA: An annexin 2 phosphorylation switch mediates p11-dependent translocation of annexin 2 to the cell surface. J Biol Chem 2004, 279:43411-43418.
- [52]Wang CY, Chen CL, Tseng YL, Fang YT, Lin YS, Su WC, Chen CC, Chang KC, Wang YC, Lin CF: Annexin A2 silencing induces G2 arrest of non-small cell lung cancer cells through p53-dependent and -independent mechanisms. J Biol Chem 2012, 287:32512-32524.
- [53]Baker DE: Oxaliplatin: a new drug for the treatment of metastatic carcinoma of the colon or rectum. Rev Gastroenterol Disord 2003, 3:31-38.
- [54]Puisieux A, Ji J, Ozturk M: Annexin II up-regulates cellular levels of p11 protein by a post-translational mechanisms. Biochem J 1996, 313:51-55.
- [55]Benaud C, Gentil BJ, Assard N, Court M, Garin J, Delphin C, Baudier J: AHNAK interaction with the annexin 2/S100A10 complex regulates cell membrane cytoarchitecture. J Cell Biol 2004, 164:133-144.
- [56]He K-L, Deora AB, Xiong H, Ling Q, Weksler BB, Niesvizky R, Hajjar KA: Endothelial cell annexin A2 regulates polyubiquitination and degradation of its binding partner S100A10/p11. J Biol Chem 2008, 283:19192-19200.
- [57]Yang X, Popescu NC, Zimonjic DB: DLC1 interaction with S100A10 mediates inhibition of in vitro cell invasion and tumorigenicity of lung cancer cells through a RhoGAP-independent mechanism. Cancer Res 2011, 71:2916-2925.
- [58]Zhang J, Guo B, Zhang Y, Cao J, Chen T: Silencing of the annexin II gene down-regulates the levels of S100A10, c-Myc, and plasmin and inhibits breast cancer cell proliferation and invasion. Saudi Med J 2010, 31:374-381.
- [59]Zhai H, Acharya S, Gravanis I, Mehmood S, Seidman RJ, Shroyer KR, Hajjar KA, Tsirka SE: Annexin A2 promotes glioma cell invasion and tumor progression. J Neurosci 2011, 31:14346-14360.
- [60]Schneider MR, Hoeflich A, Fischer JGR, Wolf E, Sordat B, Lahm H: Interleukin-6 stimulates clonogenic growth of primary and metastatic human colon carcinoma cells. Cancer Lett 2000, 151:31-38.
- [61]Becker C, Fantini MC, Schramm C, Lehr HA, Wirtz S, Nikolaev A, Burg JG, Strand S, Kiesslich R, Huber S, Ito H, Nishimoto N, Yoshizaki K, Kishimoto T, Galle PR, Blessing M, Rose-John S, Neurath MF: TGF-[beta] suppresses tumor progression in colon cancer by inhibition of IL-6 trans-signaling. Immunity 2004, 21:491-501.
- [62]Lavie Y, Fiucci G, Liscovitch M: Up-regulation of caveolae and caveolar constituents in multidrug-resistant cancer cells. J Biol Chem 1998, 273:32380-32383.
- [63]Pang A, Au WY, Kwong YL: Caveolin-1 gene is coordinately regulated with the multidrug resistance 1 gene in normal and leukemic bone marrow. Leuk Res 2004, 28:973-977.
- [64]Cavallo-Medved D, Mai J, Dosescu J, Sameni M, Sloane BF: Caveolin-1 mediates the expression and localization of cathepsin B, pro-urokinase plasminogen activator and their cell-surface receptors in human colorectal carcinoma cells. J Cell Sci 2005, 118:1493-1503.
- [65]Sergent C, Franco N, Chapusot C, Lizard-Nacol S, Isambert N, Correia M, Chauffert B: Human colon cancer cells surviving high doses of cisplatin or oxaliplatin in vitro are not defective in DNA mismatch repair proteins. Cancer Chemother Pharmacol 2002, 49:445-452.