期刊论文详细信息
Radiation Oncology
A dosimetric phantom study of dose accuracy and build-up effects using IMRT and RapidArc in stereotactic irradiation of lung tumours
Heikki Minn3  Pekka Mali2  Jarmo Kulmala2  Sami Suilamo2  Jan Seppala1 
[1] Cancer Center, Kuopio University Hospital, POB 1777, 70211, Kuopio, Finland;Department of Oncology and Radiotherapy, Turku University Hospital, POB 52, 20521, Turku, Finland;Turku PET Centre, Turku University Hospital, POB 52, 20521, Turku, Finland
关键词: Surface dose;    Heterogeneity;    IMRT;    Lung cancer;    Stereotactic body radiotherapy;   
Others  :  1160837
DOI  :  10.1186/1748-717X-7-79
 received in 2012-02-07, accepted in 2012-05-31,  发布年份 2012
PDF
【 摘 要 】

Background and purpose

Stereotactic lung radiotherapy (SLRT) has emerged as a curative treatment for medically inoperable patients with early-stage non-small cell lung cancer (NSCLC) and the use of intensity-modulated radiotherapy (IMRT) and volumetric modulated arc treatments (VMAT) have been proposed as the best practical approaches for the delivery of SLRT. However, a large number of narrow field shapes are needed in the dose delivery of intensity-modulated techniques and the probability of underdosing the tumour periphery increases as the effective field size is decreased. The purpose of this study was to evaluate small lung tumour doses irradiated by intensity-modulated techniques to understand the risk for dose calculation errors in precision radiotherapy such as SLRT.

Materials and methods

The study was executed with two heterogeneous phantoms with targets of Ø1.5 and Ø4.0 cm. Dose distributions in the simulated tumours delivered by small sliding window apertures (SWAs), IMRT and RapidArc treatment plans were measured with radiochromic film. Calculation algorithms of pencil beam convolution (PBC) and anisotropic analytic algorithm (AAA) were used to calculate the corresponding dose distributions.

Results

Peripheral doses of the tumours were decreased as SWA decreased, which was not modelled by the calculation algorithms. The smallest SWA studied was 2 mm, which reduced the 90% isodose line width by 4.2 mm with the Ø4.0 cm tumour as compared to open field irradiation. PBC was not able to predict the dose accurately as the gamma evaluation failed to meet the criteria of ±3%/±1 mm on average in 61% of the defined volume with the smaller tumour. With AAA the corresponding value was 16%. The dosimetric inaccuracy of AAA was within ±3% with the optimized treatment plans of IMRT and RapidArc. The exception was the clinical RapidArc plan with dose overestimation of 4%.

Conclusions

Overall, the peripheral doses of the simulated lung tumours were decreased by decreasing the SWA. To achieve adequate surface dose coverage to small lung tumours with a difference less than 1 mm in the isodose line radius between the open and modulated field, a larger than 6 mm SWA should be used in the dose delivery of SLRT.

【 授权许可】

   
2012 Seppala et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150411081511805.pdf 5106KB PDF download
Figure 6. 143KB Image download
Figure 5. 70KB Image download
Figure 4. 98KB Image download
Figure 3. 94KB Image download
Figure 2. 50KB Image download
Figure 1. 53KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Baumann P, Nyman J, Hoyer M, Wennberg B, Gagliardi G, Lax I, Drugge N, Ekberg L, Friesland S, Johansson KA, Lund JA, Morhed E, Nilsson K, Levin N, Paludan M, Sederholm C, Traberg A, Wittgren L, Lewensohn R: Outcome in a prospective phase II trial of medically inoperable stage I non-small-cell lung cancer patients treated with stereotactic body radiotherapy. J Clin Oncol 2009, 27:3290-3296.
  • [2]De Ruysscher D, Faivre-Finn C, Nestle U, Hurkmans CW, Le Péchoux C, Price A, Senan S: European Organisation for Research and Treatment of Cancer recommendations for planning and delivery of high-dose, high-precision radiotherapy for lung cancer. J Clin Oncol 2010, 28:5301-5310.
  • [3]Zimmermann FB, Geinitz H, Schill S, Grosu A, Schratzenstaller U, Molls M, Jeremic B: Stereotactic hypofractionated radiation therapy for stage I non-small cell lung cancer. Lung Cancer 2005, 48:107-114.
  • [4]Fakiris AJ, McGarry RC, Yiannoutsos CT, Papiez L, Williams M, Henderson MA, Timmerman R: Stereotactic body radiation therapy for early stage non-small cell lung carcinoma: Four-year results of a prospective phase II study. Int J Radiat Oncol Biol Phys 2009, 75:677-682.
  • [5]Nguyen NP, Garland L, Welsh J, Hamilton R, Cohen D, Vinh-Hung V: Can stereotactic fractionated radiation therapy become the standard of care for early stage non-small cell lung carcinoma. Cancer Treat Rev 2008, 34:719-727.
  • [6]Grills IS, Mangona VS, Welsh R, Chmielewski G, McInerney E, Martin S, Wloch J, Ye H, Kestin LL: Outcomes after stereotactic lung radiotherapy or wedge resection for stage I non-small-cell lung cancer. J Clin Oncol 2010, 28:928-935.
  • [7]McGrath SD, Matuszak MM, Yan D, Kestin LL, Martinez AA, Grills IS: Volumetric modulated arc therapy for delivery of hypofractionated stereotactic lung radiotherapy: A dosimetric and treatment efficiency analysis. Radiother Oncol 2010, 95:153-157.
  • [8]Videtic GM, Stephans K, Reddy C, Gajdos S, Kolar M, Clouser E, Djemil T: Intensity-modulated radiotherapy-based stereotactic body radiotherapy for medically inoperable early-stage lung cancer: excellent local control. Int J Radiat Oncol Biol Phys 2010, 77:344-349.
  • [9]Verbakel WF, Senan S, Cuijpers JP, Slotman BJ, Lagerwaard FJ: Rapid delivery of stereotactic radiotherapy for peripheral lung tumours using volumetric intensity-modulated arcs. Radiother Oncol 2009, 93:122-124.
  • [10]Ahnesjö A, Aspradakis MM: Dose calculations for external photon beams in radiotherapy. Phys Med Biol 1999, 44:R99-R155.
  • [11]Tomé WA, Fowler JF: On cold spots in tumour subvolumes. Med Phys 2002, 29:1590-1598.
  • [12]Dobler B, Walter C, Knopf A, Fabri D, Loeschel R, Polednik M, Schneider F, Wenz F, Lohr F: Optimization of extracranial stereotactic radiation therapy of small lung lesions using accurate dose calculation algorithms. Radiat Oncol 2006, 1:45. BioMed Central Full Text
  • [13]Jones AO, Das IJ: Comparison of inhomogeneity correction algorithms in small photon fields. Med Phys 2005, 32:766-776.
  • [14]Aarup LR, Nahum AE, Zacharatou C, Juhler-Nøttrup T, Knöös T, Nyström H, Specht L, Wieslander E, Korreman SS: The effect of different lung densities on the accuracy of various radiotherapy dose calculation methods: implications for tumour coverage. Radiother Oncol 2009, 91:405-414.
  • [15]Carrasco P, Jornet N, Duch MA, Weber L, Ginjaume M, Eudaldo T, Jurado D, Ruiz A, Ribas M: Comparison of dose calculation algorithms in phantoms with lung equivalent heterogeneities under conditions of lateral electronic disequilibrium. Med Phys 2004, 31:2899-2911.
  • [16]Fogliata A, Vanetti E, Albers D, Brink C, Clivio A, Knöös T, Nicolini G, Cozzi L: On the dosimetric behaviour of photon dose calculation algorithms in the presence of simple geometric heterogeneities: comparison with Monte Carlo calculations. Phys Med Biol 2007, 52:1363-1385.
  • [17]Lobo J, Popescu IA: Two new DOSXYZnrc sources for 4D Monte Carlo simulations of continuously variable beam configurations, with applications to RapidArc, VMAT, TomoTherapy and CyberKnife. Phys Med Biol 2010, 55:4431-4443.
  • [18]Sikora M, Muzik J, Söhn M, Weinmann M M, Alber M: Monte Carlo vs. pencil beam based optimization of stereotactic lung IMRT. Radiat Oncol 2009, 4:64. BioMed Central Full Text
  • [19]Panettieri V, Wennberg B, Gagliardi G, Duch MA, Ginjaume M, Lax I: SBRT of lung tumours: Monte Carlo simulation with PENELOPE of dose distributions including respiratory motion and comparison with different treatment planning systems. Phys Med Biol 2007, 52:4265-4281.
  • [20]Schuring D, Hurkmans CW: Developing and evaluating stereotactic lung RT trials: what we should know about the influence of inhomogeneity corrections on dose. Radiat Oncol 2008, 3:21. BioMed Central Full Text
  • [21]Traberg Hansen A, Petersen JB, Høyer M, Christensen JJ: Comparison of two dose calculation methods applied to extracranial stereotactic radiotherapy treatment planning. Radiother Oncol 2005, 77:96-98.
  • [22]Ong C, Verbakel WF, Cuijpers JP, Slotman BJ, Senan S: Dosimetric impact of interplay effect on RapidArc lung stereotactic treatment delivery. Int J Radiat Oncol Biol Phys 2011, 79:305-311.
  • [23]Wang L, Yorke E, Desobry G, Chui CS: Dosimetric advantage of using 6 MV over 15 MV photons in conformal therapy of lung cancer: Monte Carlo studies in patient geometries. J Appl Clin Med Phys 2002, 3:51-59.
  • [24]Paelinck L, Reynaert N, Thierens H, De Wagter C, De Neve W: The value of radiochromic film dosimetry around air cavities: experimental results and Monte Carlo simulations. Phys Med Biol 2003, 48:1895-1905.
  • [25]Richley L, John AC, Coomber H, Fletcher S: Evaluation and optimization of the new EBT2 radiochromic film dosimetry system for patient dose verification in radiotherapy. Phys Med Biol 2010, 55:2601-2617.
  • [26]Chi A, Liao Z, Nguyen NP, Xu J, Stea B, Komaki R: Systemic review of the patterns of failure following stereotactic body radiation therapy in early-stage non-small-cell lung cancer: clinical implications. Radiother Oncol 2010, 94:1-11.
  • [27]Van Der Voort Van Zyp NC, Hoogeman MS, Van De Water S, Levendag PC, Van Der Holt B, Heijmen BJM, Nuyttens JJ: Clinical introduction of Monte Carlo treatment planning: a different prescription dose for non-small cell lung cancer according to tumour location and size. Radiother Oncol 2010, 96:55-60.
  • [28]Van Esch A, Tillikainen L, Pyykkönen J, Tenhunen M, Helminen H, Siljamäki S, Alakuijala J, Paiusco M, Lori M, Huyskens DP: Testing of the analytical anisotropic algorithm for photon dose calculation. Med Phys 2006, 33:4130-4148.
  • [29]Chang Z, Wang Z, Wu QJ, Yan H, Bowsher J, Zhang J, Yin FF: Dosimetric characteristics of Novalis Tx system with high definition multileaf collimator. Med Phys 2008, 35:4460-4463.
  • [30]Fog LS, Rasmussen JF, Aznar M, Kjær-Kristoffersen F, Vogelius IR, Engelholm SA, Bangsgaard JP: A closer look at RapidArc® radiosurgery plans using very small fields. Phys Med Biol 2011, 56:1853-1863.
  • [31]Admiraal MA, Schuring D, Hurkmans CW: Dose calculations accounting for breathing motion in stereotactic lung radiotherapy based on 4D-CT and the internal target volume. Radiother Oncol 2008, 86:55-60.
  文献评价指标  
  下载次数:15次 浏览次数:24次