Retrovirology | |
Evidence that the endosomal sorting complex required for transport-II (ESCRT-II) is required for efficient human immunodeficiency virus-1 (HIV-1) production | |
Andrew M L Lever1  Truus E M Abbink2  Liam J Prestwood1  Natasha C Y Ip1  Bo Meng1  | |
[1] Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge, UK;Centre for Childhood White Matter Disorders, VU University Medical Centre, Amsterdam, The Netherlands | |
关键词: Virus budding; Late domain; ESCRT; HIV; | |
Others : 1223834 DOI : 10.1186/s12977-015-0197-x |
|
received in 2015-06-11, accepted in 2015-07-31, 发布年份 2015 | |
【 摘 要 】
Background
Egress of a number of different virus species from infected cells depends on proteins of the endosomal sorting complexes required for transport (ESCRT) pathway. HIV has also hijacked this system to bud viruses outward from the cell surface. How ESCRT-I activates ESCRT-III in this process remains unclear with conflicting published evidence for the requirement of ESCRT-II which fulfils this role in other systems. We investigated the role of ESCRT-II using knockdown mediated by siRNA and shRNA, mutants which prevent ESCRT-I/ESCRT-II interaction and a CRISPR/Cas9 EAP45 knockout cell line.
Results
Depletion or elimination of ESCRT-II components from an HIV infected cell produces two distinct effects. The overall production of HIV-1 Gag is reduced leading to a diminished amount of intracellular virion protein. In addition depletion of ESCRT-II produces an effect similar to that seen when ESCRT-I and -III components are depleted, that of a delayed Gag p26 to p24 +p2 cleavage associated with a reduction in export of virion particles and a visible reduction in budding efficiency in virus producing cells. Mutants that interfere with ESCRT-I interacting with ESCRT-II similarly reduce virus export. The export defect is independent of the decrease in overall Gag production. Using a mutant virus which cannot use the ALIX mediated export pathway exacerbates the decrease in virus export seen when ESCRT-II is depleted. ESCRT-II knockdown does not lead to complete elimination of virus release suggesting that the late domain role of ESCRT-II is required for optimal efficiency of viral budding but that there are additional pathways that the virus can employ to facilitate this.
Conclusion
ESCRT-II contributes to efficient HIV virion production and export by more than one pathway; both by a transcriptional or post transcriptional mechanism and also by facilitating efficient virus export from the cell through interactions with other ESCRT components.
【 授权许可】
2015 Meng et al.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150905090204786.pdf | 2149KB | download | |
Fig.8. | 72KB | Image | download |
Fig.7. | 39KB | Image | download |
Fig.6. | 60KB | Image | download |
Fig.5. | 16KB | Image | download |
Fig.4. | 59KB | Image | download |
Fig.3. | 50KB | Image | download |
Fig.2. | 57KB | Image | download |
Fig.1. | 96KB | Image | download |
【 图 表 】
Fig.1.
Fig.2.
Fig.3.
Fig.4.
Fig.5.
Fig.6.
Fig.7.
Fig.8.
【 参考文献 】
- [1]Meng B, Lever AM. Wrapping up the bad news: HIV assembly and release. Retrovirology. 2013; 10:5. BioMed Central Full Text
- [2]Fisher RD, Chung HY, Zhai Q, Robinson H, Sundquist WI, Hill CP. Structural and biochemical studies of ALIX/AIP1 and its role in retrovirus budding. Cell. 2007; 128(5):841-852.
- [3]Martin-Serrano J, Bieniasz PD. A bipartite late-budding domain in human immunodeficiency virus type 1. J Virol. 2003; 77(22):12373-12377.
- [4]Fujii K, Munshi UM, Ablan SD, Demirov DG, Soheilian F, Nagashima K et al.. Functional role of Alix in HIV-1 replication. Virology. 2009; 391(2):284-292.
- [5]Babst M, Odorizzi G, Estepa EJ, Emr SD. Mammalian tumor susceptibility gene 101 (TSG101) and the yeast homologue, Vps23p, both function in late endosomal trafficking. Traffic. 2000; 1(3):248-258.
- [6]Hierro A, Sun J, Rusnak AS, Kim J, Prag G, Emr SD et al.. Structure of the ESCRT-II endosomal trafficking complex. Nature. 2004; 431(7005):221-225.
- [7]Im YJ, Hurley JH. Integrated structural model and membrane targeting mechanism of the human ESCRT-II complex. Dev Cell. 2008; 14(6):902-913.
- [8]Teo H, Perisic O, Gonzalez B, Williams RL. ESCRT-II, an endosome-associated complex required for protein sorting: crystal structure and interactions with ESCRT-III and membranes. Dev Cell. 2004; 7(4):559-569.
- [9]Gill DJ, Teo H, Sun J, Perisic O, Veprintsev DB, Emr SD et al.. Structural insight into the ESCRT-I/-II link and its role in MVB trafficking. EMBO J. 2007; 26(2):600-612.
- [10]Teo H, Gill DJ, Sun J, Perisic O, Veprintsev DB, Vallis Y et al.. ESCRT-I core and ESCRT-II GLUE domain structures reveal role for GLUE in linking to ESCRT-I and membranes. Cell. 2006; 125(1):99-111.
- [11]Wollert T, Hurley JH. Molecular mechanism of multivesicular body biogenesis by ESCRT complexes. Nature. 2010; 464(7290):864-869.
- [12]Im YJ, Wollert T, Boura E, Hurley JH. Structure and function of the ESCRT-II-III interface in multivesicular body biogenesis. Dev Cell. 2009; 17(2):234-243.
- [13]Teis D, Saksena S, Judson BL, Emr SD. ESCRT-II coordinates the assembly of ESCRT-III filaments for cargo sorting and multivesicular body vesicle formation. EMBO J. 2010; 29(5):871-883.
- [14]Langelier C, von Schwedler UK, Fisher RD, De Domenico I, White PL, Hill CP et al.. Human ESCRT-II complex and its role in human immunodeficiency virus type 1 release. J Virol. 2006; 80(19):9465-9480.
- [15]Pincetic A, Medina G, Carter C, Leis J. Avian sarcoma virus and human immunodeficiency virus, type 1 use different subsets of ESCRT proteins to facilitate the budding process. J Biol Chem. 2008; 283(44):29822-29830.
- [16]Carlson LA, Hurley JH. In vitro reconstitution of the ordered assembly of the endosomal sorting complex required for transport at membrane-bound HIV-1 Gag clusters. Proc Natl Acad Sci USA. 2012; 109(42):16928-16933.
- [17]Carlton JG, Martin-Serrano J. Parallels between cytokinesis and retroviral budding: a role for the ESCRT machinery. Science. 2007; 316(5833):1908-1912.
- [18]Goliand I, Nachmias D, Gershony O, Elia N. Inhibition of ESCRT-II-CHMP6 interactions impedes cytokinetic abscission and leads to cell death. Mol Biol Cell. 2014; 25(23):3740-3748.
- [19]Malerod L, Stuffers S, Brech A, Stenmark H. Vps22/EAP30 in ESCRT-II mediates endosomal sorting of growth factor and chemokine receptors destined for lysosomal degradation. Traffic. 2007; 8(11):1617-1629.
- [20]Bowers K, Piper SC, Edeling MA, Gray SR, Owen DJ, Lehner PJ et al.. Degradation of endocytosed epidermal growth factor and virally ubiquitinated major histocompatibility complex class I is independent of mammalian ESCRTII. J Biol Chem. 2006; 281(8):5094-5105.
- [21]Yedavalli VS, Neuveut C, Chi YH, Kleiman L, Jeang KT. Requirement of DDX3 DEAD box RNA helicase for HIV-1 Rev-RRE export function. Cell. 2004; 119(3):381-392.
- [22]Slagsvold T, Aasland R, Hirano S, Bache KG, Raiborg C, Trambaiolo D et al.. Eap45 in mammalian ESCRT-II binds ubiquitin via a phosphoinositide-interacting GLUE domain. J Biol Chem. 2005; 280(20):19600-19606.
- [23]Gottlinger HG, Dorfman T, Sodroski JG, Haseltine WA. Effect of mutations affecting the p6 gag protein on human immunodeficiency virus particle release. Proc Natl Acad Sci USA. 1991; 88(8):3195-3199.
- [24]von Schwedler UK, Stray KM, Garrus JE, Sundquist WI. Functional surfaces of the human immunodeficiency virus type 1 capsid protein. J Virol. 2003; 77(9):5439-5450.
- [25]Demirov DG, Ono A, Orenstein JM, Freed EO. Overexpression of the N-terminal domain of TSG101 inhibits HIV-1 budding by blocking late domain function. Proc Natl Acad Sci USA. 2002; 99(2):955-960.
- [26]Carlson LA, Briggs JA, Glass B, Riches JD, Simon MN, Johnson MC et al.. Three-dimensional analysis of budding sites and released virus suggests a revised model for HIV-1 morphogenesis. Cell Host Microbe. 2008; 4(6):592-599.
- [27]Dussupt V, Javid MP, Abou-Jaoude G, Jadwin JA, de La Cruz J, Nagashima K et al.. The nucleocapsid region of HIV-1 Gag cooperates with the PTAP and LYPXnL late domains to recruit the cellular machinery necessary for viral budding. PLoS Pathog. 2009; 5(3):e1000339.
- [28]Hurley JH, Hanson PI. Membrane budding and scission by the ESCRT machinery: it’s all in the neck. Nat Rev Mol Cell Biol. 2010; 11(8):556-566.
- [29]Babst M, Katzmann DJ, Snyder WB, Wendland B, Emr SD. Endosome-associated complex, ESCRT-II, recruits transport machinery for protein sorting at the multivesicular body. Dev Cell. 2002; 3(2):283-289.
- [30]Van Engelenburg SB, Shtengel G, Sengupta P, Waki K, Jarnik M, Ablan SD et al.. Distribution of ESCRT machinery at HIV assembly sites reveals virus scaffolding of ESCRT subunits. Science. 2014; 343(6171):653-656.
- [31]De Domenico I, Ward DM, Langelier C, Vaughn MB, Nemeth E, Sundquist WI et al.. The molecular mechanism of hepcidin-mediated ferroportin down-regulation. Mol Biol Cell. 2007; 18(7):2569-2578.
- [32]Freed EO. The HIV-TSG101 interface: recent advances in a budding field. Trends Microbiol. 2003; 11(2):56-59.
- [33]Fujii K, Hurley JH, Freed EO. Beyond Tsg101: the role of Alix in ‘ESCRTing’ HIV-1. Nat Rev Microbiol. 2007; 5(12):912-916.
- [34]Morita E, Sandrin V, McCullough J, Katsuyama A, Baci Hamilton I, Sundquist WI. ESCRT-III protein requirements for HIV-1 budding. Cell Host Microbe. 2011; 9(3):235-242.
- [35]Jouvenet N, Zhadina M, Bieniasz PD, Simon SM. Dynamics of ESCRT protein recruitment during retroviral assembly. Nat Cell Biol. 2011; 13(4):394-401.
- [36]McCullough J et al.. ALIX-CHMP4 interactions in the human ESCRT pathway. Proc Natl Acad Sci USA. 2008; 105(22):7687-7691.
- [37]Strack B, Calistri A, Craig S, Popova E, Gottlinger HG. AIP1/ALIX is a binding partner for HIV-1 p6 and EIAV p9 functioning in virus budding. Cell. 2003; 114(6):689-699.
- [38]Schmidt AE, Miller T, Schmidt SL, Shiekhattar R, Shilatifard A. Cloning and characterization of the EAP30 subunit of the ELL complex that confers derepression of transcription by RNA polymerase II. J Biol Chem. 1999; 274(31):21981-21985.
- [39]Jouvenet N, Bieniasz PD, Simon SM. Imaging the biogenesis of individual HIV-1 virions in live cells. Nature. 2008; 454(7201):236-240.
- [40]Ivanchenko S, Godinez WJ, Lampe M, Krausslich HG, Eils R, Rohr K et al.. Dynamics of HIV-1 assembly and release. PLoS Pathog. 2009; 5(11):e1000652.
- [41]Dussupt V, Sette P, Bello NF, Javid MP, Nagashima K, Bouamr F. Basic residues in the nucleocapsid domain of Gag are critical for late events of HIV-1 budding. J Virol. 2011; 85(5):2304-2315.
- [42]Tiwari RK, Kusari J, Sen GC. Functional equivalents of interferon-mediated signals needed for induction of an mRNA can be generated by double-stranded RNA and growth factors. EMBO J. 1987; 6(11):3373-3378.
- [43]Platt EJ, Wehrly K, Kuhmann SE, Chesebro B, Kabat D. Effects of CCR5 and CD4 cell surface concentrations on infections by macrophagetropic isolates of human immunodeficiency virus type 1. J Virol. 1998; 72(4):2855-2864.
- [44]Wei X, Decker JM, Liu H, Zhang Z, Arani RB, Kilby JM et al.. Emergence of resistant human immunodeficiency virus type 1 in patients receiving fusion inhibitor (T-20) monotherapy. Antimicrob Agents Chemother. 2002; 46(6):1896-1905.
- [45]Fisher AG, Collalti E, Ratner L, Gallo RC, Wong-Staal F. A molecular clone of HTLV-III with biological activity. Nature. 1985; 316(6025):262-265.
- [46]Richardson JH, Kaye JF, Child LA, Lever AM. Helper virus-free transfer of human immunodeficiency virus type 1 vectors. J Gen Virol. 1995; 76(Pt 3):691-696.
- [47]Demirov DG, Orenstein JM, Freed EO. The late domain of human immunodeficiency virus type 1 p6 promotes virus release in a cell type-dependent manner. J Virol. 2002; 76(1):105-117.
- [48]Peden K, Emerman M, Montagnier L. Changes in growth properties on passage in tissue culture of viruses derived from infectious molecular clones of HIV-1LAI, HIV-1MAL, and HIV-1ELI. Virology. 1991; 185(2):661-672.
- [49]van de Wetering M, Oving I, Muncan V, Pon Fong MT, Brantjes H, van Leenen D et al.. Specific inhibition of gene expression using a stably integrated, inducible small-interfering-RNA vector. EMBO Rep. 2003; 4(6):609-615.
- [50]Lee Y, Park EJ, Yu SS, Kim DK, Kim S. Improved expression of vascular endothelial growth factor by naked DNA in mouse skeletal muscles: implication for gene therapy of ischemic diseases. Biochem Biophys Res Commun. 2000; 272(1):230-235.
- [51]Abbink TE, Berkhout B. RNA structure modulates splicing efficiency at the human immunodeficiency virus type 1 major splice donor. J Virol. 2008; 82(6):3090-3098.
- [52]L’Hernault A, Weiss EU, Greatorex JS, Lever AM. HIV-2 genome dimerization is required for the correct processing of Gag: a second-site reversion in matrix can restore both processes in dimerization-impaired mutant viruses. J Virol. 2012; 86(10):5867-5876.