Nutrition Journal | |
Milk is not just food but most likely a genetic transfection system activating mTORC1 signaling for postnatal growth | |
Gerd Schmitz2  Swen Malte John1  Bodo C Melnik1  | |
[1] Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, Sedanstrasse 115, D-49090, Osnabrück, Germany;Institute of Clinical Chemistry and Laboratory Medicine, University Clinics of Regensburg, Josef-Strauss-Allee 11, D-93053, Regensburg, Germany | |
关键词: Tryptophan; Postnatal growth; mTORC1; Milk; MicroRNA-21; Leucine; Exosomal microRNA; Glucagon-like peptide-1; Glucose-dependent insulinotropic polypeptide; Diseases of civilization; Branched-chain amino acids; | |
Others : 806128 DOI : 10.1186/1475-2891-12-103 |
|
received in 2013-05-05, accepted in 2013-07-23, 发布年份 2013 | |
【 摘 要 】
Milk has been recognized to represent a functionally active nutrient system promoting neonatal growth of mammals. Cell growth is regulated by the nutrient-sensitive kinase mechanistic target of rapamycin complex 1 (mTORC1). There is still a lack of information on the mechanisms of mTORC1 up-regulation by milk consumption. This review presents milk as a materno-neonatal relay system functioning by transfer of preferential amino acids, which increase plasma levels of glucose-dependent insulinotropic polypeptide (GIP), glucagon-like peptide-1 (GLP-1), insulin, growth hormone (GH) and insulin-like growth factor-1 (IGF-1) for mTORC1 activation. Importantly, milk exosomes, which regularly contain microRNA-21, most likely represent a genetic transfection system enhancing mTORC1-driven metabolic processes. Whereas human breast milk is the ideal food for infants allowing appropriate postnatal growth and species-specific metabolic programming, persistent high milk signaling during adolescence and adulthood by continued cow´s milk consumption may promote mTORC1-driven diseases of civilization.
【 授权许可】
2013 Melnik et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20140708090600575.pdf | 835KB | download | |
Figure 2. | 98KB | Image | download |
Figure 1. | 50KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
【 参考文献 】
- [1]Ip S, Chung M, Raman G, Chew P, Magula N, DeVine D, Trikalinos T, Lau J: Breastfeeding and maternal and infant health outcomes in developed countries. Evid RepTechnol Assess (Full Rep) 2007, 153:1-186.
- [2]Wiley AS: Cow milk consumption, insulin-like growth factor-I, and human biology: a life history approach. Am J Hum Biol 2012, 24:130-138.
- [3]Dodd KM, Tee AR: Leucine and mTORC1: a complex relationship. Am J Physiol Endocrinol Metab 2012, 302:E1329-E1342.
- [4]Bakan I, Laplante M: Connecting mTORC1 signalling to SREBP-1 activation. Curr Opin Lipidol 2012, 23:226-234.
- [5]Foster KG, Fingar DC: Mammalian target of rapamycin (mTOR): conducting the cellular signalling symphony. J Biol Chem 2010, 285:14071-14077.
- [6]Wu G: Amino acids: metabolism, functions, and nutrition. Amino Acids 2009, 37:1-17.
- [7]Markus CR: Dietary amino acids and brain serotonin function; implications for stress-related affective changes. Neuromol Med 2008, 10:247-258.
- [8]Lancranjan I, Wirz-Justice A, Pühringer W, del Pozo E: Effect of 1–5 hydroxytryptophan infusion on growth hormone and prolactin secretion in man. J Clin Endocrinol Metab 1977, 45:588-593.
- [9]Rich-Edwards JW, Ganmaa D, Pollak MN, Nakamoto EK, Kleinman K, Tserendolgor U, Willet WC, Frazier AL: Milk consumption and the prepubertal somatotropic axis. Nutr J 2007, 6:28. BioMed Central Full Text
- [10]Hoppe C, Mølgaard C, Dalum C, Vaag A, Michaelsen KF: Differential effects of casein versus whey on fasting plasma levels of insulin, IGF-1 and IGF-1/IGFBP-3: results from a randomized 7-day supplementation study in prepubertal boys. Eur J Clin Nutr 2009, 63:1076-1083.
- [11]Norat T, Dossus L, Rinaldi S, Overvad K, Grønbaek H, Tjønneland A, Olsen A, Clavel-Chapelon F, Boutron-Ruault MC, Boeing H, Lahmann PH, Linseisen J, Nagel G, Trichopoulou A, Trichopoulos D, Kalapothaki V, Sieri S, Palli D, Panico S, Tumino R, Sacerdote C, Bueno-de-Mesquita HB, Peeters PH, van Gils CH, Agudo A, Amiano P, Ardanoz E, Martinez C, Quirós R, Tormo MJ, et al.: Diet, serum insulin-like growth factor-I and IGF-binding protein-3 in European women. Eur J Clin Nutr 2007, 61:91-98.
- [12]Crowe FL, Key TJ, Allen NE, Appleby PN, Roddam A, Overvad K, Grønbaek H, Tjønneland A, Halkjaer J, Dossus L, Boeing H, Kröger J, Trichopoulou A, Dilis V, Trichopoulos D, Boutron-Ruault MC, De Lauzon B, Clavel-Chapelon F, Palli D, Berrino F, Panico S, Tumino R, Sacerdote C, Bueno-de-Mesquita HB, Vrieling A, van Gils CH, Peeters PH, Gram IT, Skeie G, Lund E, et al.: The association between diet and serum concentrations of IGF-I, IGFBP-1, IGFBP-2, and IGFBP-3 in the European Prospective Investigation into Cancer and Nutrition. Cancer Epidemiol Biomarkers Prev 2009, 18:1333-1340.
- [13]Qin LQ, He K, Xu JY: Milk consumption and circulating insulin-like growth factor-I level: a systematic literature review. Int J Food Sci Nutr 2009, 60(Suppl 7):330-340.
- [14]Socha P, Grote V, Gruszfeld D, Janas R, Demmelmair H, Closa-Monasterolo R, Subías JE, Scaglioni S, Verduci E, Dain E, Langhendries JP, Perrin E, Koletzko B, European Childhood Obesity Trial Study Group: Milk protein intake, the metabolic-endocrine response, and growth in infancy: data from a randomized clinical trial. Am J Clin Nutr 2011, 94(Suppl 6):1776S-1784S.
- [15]Nilsson M, Stenberg M, Frid AH, Holst JJ, Björck IM: Glycemia and insulinemia in healthy subjects after lactose-equivalent meals of milk and other food proteins: the role of plasma amino acids and incretins. Am J Clin Nutr 2004, 80:1246-1253.
- [16]Salehi A, Gunnerud U, Muhammed SJ, Ostman E, Holst JJ, Björck I, Rorsman P: The insulinogenic effects of whey protein is partially mediated by a direct effect of amino acids and GIP on β-cells. Nutr Metab (Lond) 2012, 9:48. BioMed Central Full Text
- [17]Hoppe C, Mølgaard C, Vaag A, Barkholt V, Michaelsen KF: High intakes of milk, but not meat, increases s-insulin and insulin resistance in 8-year- old boys. Eur J Clin Nutr 2005, 59:393-398.
- [18]Chen Q, Reimer RA: Dairy protein and leucine alter GLP-1 release and mRNA of genes involved in intestinal lipid metabolism in vitro. Nutrition 2009, 25:340-349.
- [19]Sener A, Malaisse WJ: L-leucine and a nonmetabolized analogue activate pancreatic islet glutamate dehydrogenase. Nature 1980, 288:187-189.
- [20]Malaisse WJ: Branched-chain amino and keto acid metabolism in pancreatic islets. Adv Enzyme Regul 1986, 25:203-217.
- [21]Fahien LA, MacDonald MJ, Kmiotek EH, Mertz RJ, Fahien CM: Regulation of insulin release by factors that also modify glutamate dehydrogenase. J Biol Chem 1988, 263:13610-13614.
- [22]Xu G, Kwon G, Cruz WS, Marshall CA, McDaniel MK: Metabolic regulation by leucine of translation initiation through the mTOR-signaling pathway by pancreatic β-cells. Diabetes 2001, 50:353-360.
- [23]McDaniel ML, Marshall CA, Pappan KL, Kwon G: Metabolic and autocrine regulation of the mammalian target of rapamycin by pancreatic β-cells. Diabetes 2002, 51:2877-2885.
- [24]Yang J, Chi Y, Burkhardt BR, Guan Y, Wolf BA: Leucine metabolism in regulation of insulin secretion from pancreatic beta cells. Nutr Rev 2010, 68:270-279.
- [25]Le Bacquer O, Queniat G, Gmyr V, Kerr-Conte J, Lefebvre B, Pattou F: mTORC1 and mTORC2 regulate insulin secretion through Akt in INS-1 cells. J Endocrinol 2013, 216:21-29.
- [26]Li X, Wang X, Liu R, Ma Y, Guo H, Hao L, Yao P, Liu L, Sun X, He K, Cao W, Yang X: Chronic leucine supplementation increases body weight and insulin sensitivity in rats on high-fat diet likely by promoting insulin signalling in insulin-target tissues. Mol Nutr Food Res 2013, 57:1067-1079.
- [27]Farnfield MM, Carey KA, Gran P, Trenerry MK, Cameron-Smith D: Whey protein ingestion activates mTOR-dependent signalling after resistance exercise in young men: a double-blinded randomized controlled trial. Nutrients 2009, 1:263-275.
- [28]Ponter AA, Cortamira NO, Sève B, Salter DN, Morgan LM: The effects of energy source and tryptophan on the rate of protein synthesis and on hormones of the entero-insular axis in the piglet. Br J Nutr 1994, 71:661-674.
- [29]Ponter AA, Sève B, Morgan LM: Intragastric tryptophan reduces glycemia after glucose, possibly via glucose-mediated insulinotropic polypeptide in early-weaned piglets. J Nutr 1994, 124:259-267.
- [30]Gunnarsson TP, Sörhed Winzell M, Deacon CF, Larson MO, Jelic K, Carr RD, Ahrén B: Glucose-induced incretin hormone release and inactivation are differently modulated by oral fat and protein in mice. Endocrinology 2006, 147:3173-3180.
- [31]Occhi G, Losa M, Albiger N, Trivellin G, Regazzo D, Scanarini M, Monteserin- Garcia JL, Fröhlich B, Ferasin S, Terreni MR, Fassina A, Vitiello L, Stalla G, Mantero F, Scaroni C: The glucose-dependent insulinotropic polypeptide receptor is overexpressed amongst GNAS1 mutation-negative somatotropinomas and drives growth hormone (GH)-promoter activity in GH3 cells. J Neuroendocrinol 2011, 23:641-649.
- [32]Harp JB, Goldstein S, Phillips LS: Nutrition and somatomedin. XXIII. Molecular regulation of IGF-1 by amino acid availability in cultured hepatocytes. Diabetes 1991, 40:95-101.
- [33]Wheelhouse NM, Stubbs AK, Lomax MA, MacRae JC, Hazlerigg DG: Growth hormone and amino acid supply interact synergistically to control insulin-like growth factor-I production and gene expression in cultured ovine hepatocytes. J Endocrinol 1999, 163:353-361.
- [34]Thissen JP, Pucilowska JB, Underwood LE: Differential regulation of insulin-like growth factor I (IGF-I) and IGF binding protein-1 messenger ribonucleic acids by amino acid availability and growth hormone in rat hepatocyte primary culture. Endocrinology 1994, 134:1570-1576.
- [35]Thissen JP, Ketelslegers JM, Underwood LE: Nutritional regulation of the insulin-like growth factors. Endocr Rev 1994, 15:80-101.
- [36]Foster EB, Fisher G, Sartin JL, Elsasser TH, Wu G, Cowan W, Pascoe DD: Acute regulation of IGF-1 by alterations in post-exercise macronutrients. Amino Acids 2012, 42:1405-1416.
- [37]Patel S, Lochhead PA, Rena G, Fumagalli S, Pende M, Kozma SC, Thomas G, Sutherland C: Insulin regulation of insulin-like growth factor-binding protein-1 gene expression is dependent on the mammalian target of rapamycin, but independent of ribosomal S6 kinase activity. J Biol Chem 2002, 277:9889-9895.
- [38]Lee PDK, Conover CA, Powell DR: Regulation and function of insulin-like growth factor-binding protein-1. Proc Soc Exp Biol Med 1993, 204:4-29.
- [39]Frost RA, Lang CH: Differential effects of insulin-like growth factor-1 (IGF- I) and IGF-binding protein-1 on protein metabolism in human skeletal muscle cells. Endocr Soc 1999, 140:3962-3970.
- [40]Smith WJ, Underwood LE, Clemmons DR: Effects of caloric or protein restriction on insulin-like growth factor-I (IGF-I) and IGF-binding proteins in children and adults. J Clin Endocrinol Metab 1995, 80:443-449.
- [41]Rivero LGF, Martin MA, Arahuetes R, Hernandez ER, Pascual-Leone AM: Effects of refeeding of undernourished and insulin treatment of diabetic neonatal rats on IGF and IGFBP. Am J Physiol 1996, 271:E223-E231.
- [42]Millward DJ, Layman DK, Tomé D, Schaafsma G: Protein quality assessment: impact of expanding understanding of protein and amino acid needs for optimal health. Am J Clin Nutr 2008, 87:1576S-1581S.
- [43]Melnik BC, John SW, Schmitz G: Over-stimulation of insulin/IGF-1 signalling by Western diet may promote diseases of civilization: lessons learnt from Laron syndrome. Nutr Metab (Lond) 2011, 8:41. BioMed Central Full Text
- [44]Liang H, Huang L, Cao J, Zen K, Chen X, Zhang CY: Regulation of mammalian gene expression by exogenous microRNAs. WIREs RNA 2012, 3:733-742.
- [45]Chen X, Liang H, Zhang J, Zen K, Zhang CY: Secreted microRNAs: a new form of intercellular communication. Trends Cell Biol 2012, 22:125-132.
- [46]Ambros V: The functions of animal microRNAs. Nature 2004, 431:350-355.
- [47]Chen X, Liang H, Zhang J, Zen K, Zhang CY: Horizontal transfer of microRNAs: molecular mechanisms and clinical applications. Protein Cell 2012, 3:28-37.
- [48]Weber JA, Baxter DH, Zhang S, Huang DY, Huang KH, Lee MJ, Galas DJ, Wang K: The mircoRNA spectrum in 12 body fluids. Clin Chem 2010, 56:1733-1741.
- [49]Hata T, Murakami K, Nakatani H, Yamamoto Y, Matsuda T, Aoki N: Isolation of bovine milk-derived microvesicles carrying mRNA and microRNAs. Biochem Biophys Res Commun 2010, 396:528-533.
- [50]Chen X, Gao C, Li H, Huang L, Sun Q, Dong Y, Tian C, Gao S, Dong H, Guan D, Hu X, Zhao S, Li L, Zhu L, Yan Q, Zhang J, Zen K, Zhang CY: Identification and characterization of microRNAs in raw milk during different periods of lactation, commercial fluid, and powdered milk products. Cell Res 2010, 20:1128-1137.
- [51]Izumi H, Kosaka N, Shimizu T, Sekine K, Ochiya T, Takase M: Bovine milk contains microRNA and messenger RNA that are stable under degradative conditions. J Dairy Sci 2012, 95:4831-4841.
- [52]Reinhardt TA, Lippolis JD, Nonnecke BJ, Sacco RE: Bovine milk exosome proteome. J Proteomics 2012, 75:1486-1492.
- [53]Izumi H, Kosala N, Shimizu T, Sekine K, Ochiya T, Takase M: Purification of RNA from milk whey. Methods Mol Biol 2013, 1024:191-201.
- [54]Sun Q, Chen X, Yu J, Ken K, Zhang CY, Li L: Immune modulatory function of abundant immune-related microRNAs in microvesicles from bovine colostrum. Protein Cell 2013, 4:197-210.
- [55]Kosaka N, Izumi H, Sekine K, Ochiya T: microRNA as a new immune- regulatory agent in breast milk. Silence 2010, 1:7. BioMed Central Full Text
- [56]Zhou Q, Li M, Wang X, Li Q, Wang T, Zhu Q, Zhou X, Wang X, Gao X, Li X: Immune-related microRNAs are abundant in breast milk exosomes. Int J Biol Sci 2012, 8:118-123.
- [57]Van Niel G, Raposo G, Candahl C, Boussac M, Hershberg R, Cerf-Bensussan N, Heyman M: Intestinal epithelial cells secrete exosome-like vesicles. Gastroenterology 2001, 121:337-349.
- [58]Caby MP, Lankar D, Vincendeau-Scherrer C, Raposo G, Bonnerot C: Exosomal-like vesicles are present in human blood plasma. Int Immunol 2005, 17:879-887.
- [59]Ludwig AK, Giebel B: Exosomes: small vesicles participating in intercellular communication. Int J Biochem Cell Biol 2012, 44:11-15.
- [60]Corrado C, Raimondo S, Chiesi A, Ciccia F, De Leo G, Alessandro R: Exosomes as intercellular signalling organelles involved in health and disease: basic science and clinical applications. Int J Mol Sci 2013, 14:5338-5366.
- [61]Olivieri F, Spazzafumo L, Santini G, Lazzarini R, Albertini MC, Rippo MR, Galeazzi R, Abbatecola AM, Marchesellli F, Monti D, Ostan R, Cevenini E, Antonicelli R, Franceschi C, Procopio AD: Age-related differences in the expression of circulating microRNAs: miR-21 as a new circulating marker of inflammaging. Mech Ageing Dev 2012, 133:675-685.
- [62]Zhang L, Hou D, Chen X, Li D, Zhu L, Zhang Y, Li J, Bian Z, Liang X, Cai X, Yin Y, Wang C, Zhang T, Zhu D, Zhang D, Xu J, Chen Q, Ba Y, Liu J, Wang Q, Chen J, Wang J, Wang M, Zhang Q, Zhang J, Zen K, Zhang CY: Exogenous plant MIR168a specifically targets mammalian LDLRAP1: evidence of cross-kingdom regulation by microRNA. Cell Res 2012, 22:107-126.
- [63]Meng F, Henson R, Wehbe-Janek H, Ghoshal K, Jacob ST, Patel T: MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology 2007, 133:647-658.
- [64]Han M, Liu M, Wang Y, Chen X, Xu J, Sun Y, Zhao L, Qu H, Fan Y, Wu C: Antagonism of miR-21 reverses epithelial-mesenchymal transition and cancer stem cell phenotype through AKT/ERK1/2 incactivation by targeting PTEN. PLoS One 2012, 7:e39520.
- [65]Dey N, Das F, Mariappan MM, Mandal CC, Ghosh-Choudhury N, Kasinath BS, Choudhury GG: MicroRNA-21 orchestrates high glucose-induced signals to TOR complex 1, resulting in renal cell pathology in diabetes. J Biol Chem 2011, 286:25586-25603.
- [66]Dey N, Ghosh-Choudhury N, Kasinath BS, Choudhury GG: TGFβ-stimulated microRNA-21 utilizes PTEN to orchestrate AKT/mTORC1 signaling for mesangial cell hypertrophy and matrix expansion. PLoS One 2012, 7:e42316.
- [67]Sayed D, Rane S, Lypowy J, He M, Chen IY, Vashistha H, Yan L, Malhotra A, Vatner D, Abdellatif M: MicroRNA-21 targets Sprouty2 and promotes cellular outgrouths. Mol Biol Cell 2008, 19:3272-3282.
- [68]Dariminpourain M, Wang S, Ittmann M, Kwabi-Addo B: Transcriptional and post-transcriptional regulation of Sprouty1, a receptor tyrosine kinase inhibitor in prostate cancer. Prostate Cancer Prostatic Dis 2011, 14:279-285.
- [69]Frey MR, Carraro G, Batra RK, Polk DB, Warburton D: Sprouty keeps bowel kinases regular in colon cancer, while miR-21 targets Sprouty. Cancer Biol Ther 2011, 11:122-124.
- [70]Asangani IA, Rasheed SA, Nikolova DA, Leupold JH, Colburn NH, Post S, Allgayer H: MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene 2008, 27:2128-2136.
- [71]Lu Z, Liu M, Stribinskis V, Klinge CM, Ramos KS, Colburn NH, Li Y: MicroRNA-21 promotes cell transformation by targeting the programmed cell death 4 gene. Oncogene 2008, 27:4373-4379.
- [72]Carayol N, Katsoulidis E, Sassano A, Altman JK, Druker BJ, Platanias LC: Suppression of programmed cell death 4 (PDCD4) protein expression by BCR-ABL-regulated engagement of the mTOR/p70 S6 kinase pathway. J Biol Chem 2008, 283:8601-8610.
- [73]Ng R, Song G, Roll GR, Frandsen NM, Willenbring H: A microRNA-21 surge facilitates rapid cyclin D1 translation and cell cycle progression in mouse liver regeneration. J Clin Invest 2012, 122:1097-1108.
- [74]Dennis MD, Jefferson LS, Kimball SR: Role of p70S6K1-mediated phosphorylation of eIF4B and PDCD4 proteins in the regulation of protein synthesis. J Biol Chem 2012, 287:42890-42899.
- [75]Becker Buscaglia LE, Li Y: Apoptosis and the target genes of miR-21. Chin J Cancer 2011, 30:371-380.
- [76]Dey N, Das F, Ghosh-Choudhury N, Mandal CC, Parekh DJ, Block K, Kasinath BS, Abboud HA, Chouldhury GG: MicroRNA-21 governs TORC1 activation in renal cancer cell proliferation and invasion. PLoS One 2012, 7:e37366.
- [77]Zoncu R, Efeyan A, Sabatini DM: mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol 2011, 12:21-35.
- [78]Proud CG: mTOR signalling in health and disease. Biochem Soc Trans 2011, 39:431-436.
- [79]Melnik BC: Dietary intervention in acne. Attenuation of increased mTORC1 signaling promoted by Western diet. Dermatoendocrinol 2012, 4:20-32.
- [80]Melnik BC, Zouboulis CC: Potential role of FoxO1 and mTORC1 in the pathogenesis of Western diet-induced acne. Exp Dermatol 2013, 22:311-315.
- [81]Melnik BC: Excessive leucine-mTORC1-signalling of cow milk-based infant formula: the missing link to understand early childhood obesity. J Obes 2012, 2012:197653.
- [82]Arnberg K, Mølgaard C, Michaelsen KF, Jensen SM, Trolle E, Larnkjær A: Skim milk, whey, and casein increase body weight and whey and casein increase plasma C-peptide concentration in overweight adolescents. J Nutr 2012, 142:2083-2090.
- [83]Melnik BC: Leucine signalling in the pathogenesis of type 2 diabetes and obesity. World J Diabetes 2012, 3:38-53.
- [84]Harlan SM, Guo DF, Morgan DA, Fernandes-Santos C, Rahmouni K: Hypothalamic mTORC1 signalling controls sympathetic nerve activity and arterial pressure and mediates leptin effects. Cell Metabol 2013, 17:599-606.
- [85]Oddo S: The role of mTOR signaling in Alzheimer disease. Front Biosci 2012, 4:941-952.
- [86]Pópulo H, Lopes JM, Soares P: The mTOR signalling pathway in human cancer. Int J Mol Sci 2012, 13:1886-1918.
- [87]Hsieh AC, Liu Y, Edlind MP, Ingolia NT, Janes MR, Sher A, Shi EY, Stumpf CR, Christensen C, Bonham MJ, Wang S, Ren P, Martin M, Jessen K, Feldman ME, Weissman JS, Shokat KM, Rommel C, Ruggero D: The translational landscape of mTOR signalling steers cancer initiation and metastasis. Nature 2012, 485:55-61.
- [88]Melnik BC, John SM, Carrera-Bastos P, Cordain L: The impact of cow´s milk-mediated mTORC1-signaling in the initiation and progression of prostate cancer. Nutr Metab (Lond) 2012, 9:74. BioMed Central Full Text
- [89]Ozkan H, Tuzun F, Kumral A, Duman N: Milk kinship hypothesis in light of epigenetic knowledge. Clin Epigenetics 2012, 4(1):14. BioMed Central Full Text
- [90]Gould SJ, Booth AM, Hildreth JEK: The Trojan exosome hypothesis. Proc Natl Acad Sci USA 2003, 100:10592-10597.
- [91]Wiley AS: Dairy and milk consumption and child growth: Is BMI involved? An analysis of NHANES 1999–2004. Am J Hum Biol 2010, 22:517-525.
- [92]Berkey CS, Rocket HRH, Willet WC, Colditz GA: Milk, dairy fat, dietary calcium, and weight gain. Arch Pediatr Adolesc Med 2005, 159:543-550.
- [93]Barr SI, McCarron DA, Heaney RP, Dawson-Hughes B, Berga SL, Stern JS, Oparil S: Effects of increased consumption of fluid milk on energy and nutrient intake, body weight, and cardiovascular risk factors in healthy older adults. Am J Diet Assoc 2000, 100:810-817.
- [94]Olsen SF, Halldorsson TI, Willett WC, Knudsen VK, Gillman MW, Mikkelsen TB, Olsen J, NUTRIX Consortium: Milk consumption during pregnancy is associated with increased infant size at birth: prospective cohort study. Am J Clin Nutr 2007, 86:1104-1110.
- [95]Brantsaeter AL, Olafsdottir AS, Forsum E, Olsen SF, Thorsdottir I: Does milk and dairy consumption during pregnancy influence fetal growth and infant birthweight? A systematic literature review. Food Nutr Res 2012, 56:20050.
- [96]Holt S, Brand Miller J, Petocz P: An insulin index of foods: the insulin demand generated by 1000-kJ portions of common foods. Am J Clin Nutr 1997, 66:1264-1276.
- [97]Hoyt G, Hickey MS, Cordain L: Dissociation of the glycaemic and insulinaemic responses to whole and skimmed milk. Br J Nutr 2005, 93:175-177.
- [98]Morris C, O´Grada C, Ryan M, Roche HM, Gibney MJ, Gibney ER, Brennan L: The relationship between BMI and metabolomic profiles: a focus on amino acids. Proc Nutr Soc 2012, 71:634-638.
- [99]McCormack SE, Shaham O, McCarthy MA, Deik AA, Wang TJ, Gerszten RE, Clish CB, Mootha VK, Grinspoon SK, Fleischman A: Circulating branched-chain amino acid concentrations are associated with obesity and future insulin resistance in children and adolescents. Pediatric Obesity 2013, 8:52-61.
- [100]Romao JM, Jin W, Dodson MV, Hausman GJ, Moore SS, Guan LL: MicroRNA regulation in mammalian adipogenesis. Exp Biol Med 2011, 236:997-1004.
- [101]Kim YJ, Hwang SJ, Bae YC, Jung JS: Mir-21 regulates adipogenic differentiation through the modulation of TGF-β signalling in mesenchymal stem cells derived from human adipose tissue. Stem Cells 2009, 27:3093-3102.
- [102]Kim YJ, Hwang SH, Cho HH, Shun KK, Bae YC, Jung JS: MicroRNA 21 regulates the proliferation of human adipose tissue-derived mesenchymal stem cells and high-fat diet-induced obesity alters microRNA 21 expression in white adipose tissues. J Cell Physiol 2011, 227:183-193.
- [103]Yoon MS, Zhang C, Sun Y, Schoenherr CJ, Chen J: Mechanistic target of rapamycin (mTOR) controls homeostasis of adipogenesis. J Lipid Res 2013, 54:2166-2173.
- [104]Carnevalli LS, Masuda K, Frigerio F, Le Bacquer O, Um SH, Gandin V, Topisirovic I, Sonenberg N, Thomas G, Kozma SC: S6K1 plays a critical role in early adipocyte differentiation. Dev Cell 2010, 18:763-774.
- [105]Xie H, Lim B, Lodish H: MicroRNAs induced during adipogenesis that accelerate fat cell development are downregulated in obesity. Diabetes 2009, 58:1050-1057.
- [106]Zhao C, Dong J, Jiang T, Shi Z, Yu B, Zhu Y, Chen D, Xu J, Huo R, Dai J, Xia Y, Pan S, Hu Z, Sha J: Early second-trimenster serum miRNA profiling predicts gestational diabetes mellitus. PLoS One 2011, 6:e23925.
- [107]Dong XY, Tang SQ: Insulin-induced gene: a new regulator in lipid metabolism. Peptides 2010, 31:2145-2150.
- [108]Li J, Takaishi K, Cook W, McCorkle SK, Unger RU: Insig-1 “brakes” lipogenesis in adipocytes and inhibits differentiation of preadipocytes. Proc Natl Acad Sci USA 2003, 100:9476-9481.
- [109]Chen Y, Siegel F, Kipschull S, Haas B, Fröhlich H, Meister G, Pfeifer A: miR-155 regulates differentiation of brown and beige adipocytes via a bistable circuit. Nat Commun 2013, 4:1769.
- [110]Lackey DE, Lynch CJ, Olson KC, Mostaedi R, Ali M, Smith WH, Karpe F, Humphreys S, Bedinger DH, Dunn TN, Thomas AP, Oort PJ, Kieffer DA, Amin R, Bettaieb A, Haj FG, Permana P, Anthony TG, Adams SH: Regulation of adipose branched-chain amino acid catabolism enzyme expression and cross-adipose amino acid flux in human obesity. Am J Physiol Endocrinol Metab 2013, 304:E1175-E1187.
- [111]Mersey BD, Jin P, Danner DJ: Human microRNA (miR29b) expression controls the amount of branched chain α-ketoacid dehydrogenase complex in a cell. Hum Mol Genet 2005, 14:3371-3377.
- [112]Um SH, D´Alession D, Thomas G: Nutrient overload, insulin resistance, and ribosomal protein S6 kinase 1, S6K1. Cell Metab 2006, 3:393-402.
- [113]Lu J, Xie G, Jia W, Jia W: Insulin resistance and the metabolism of branched-chain amino acids. Front Med 2013, 7:53-59.
- [114]Porstmann T, Santos CR, Lewis C, Griffiths B, Schulze A: A new player in the orchestra of cell growth: SREBP activity is regulated by mTORC1 and contributes to the regulation of cell and organ size. Biochme Soc Trans 2009, 37:278-283.
- [115]Laplante M, Sabatini DM: An emerging role of mTOR in lipid biosynthesis. Curr Biol 2009, 19:R1046-R1052.
- [116]Peterson TR, Sengupta SS, Harris TE, Carmack AE, Kang SA, Balderas E, Guertin DA, Madden KL, Carpenter AE, Finck BN, Sabatini DM: mTOR complex 1 regulates Lipin1 localization to control the SREBP pathway. Cell 2011, 146:408-420.
- [117]Kim JE, Chen J: Regulation of peroxisome proliferator-activated receptor-γ activity by mammalian target of rapamycin and amino acids in adipogenesis. Diabetes 2004, 53:2748-2756.
- [118]Blanchard FG, Festuccia WT, Houde VP, St-Pierre P, Brule S, Turcotte V, Cote M, Bellamnn K, Marette A, Deshaies Y: Major involvement of mTOR in the PPARγ-induced stimulation of adipose tissue lipid uptake and fat accretion. J Lipid Res 2012, 53:1117-1125.
- [119]Chakrabarti P, English T, Shi J, Smas CM, Kandror KV: Mammalian target of rapamycin complex 1 suppresses lipolysis, stimulates lipogenesis, and promotes fat storage. Diabetes 2010, 59:775-781.
- [120]Zhu H, Shyh-Chang N, Segrè AV, Shinoda G, Shah SP, Einhorn WS, Takeuchi A, Engreitz JM, Hagan JP, Kharas MG, Urbach A, Thornton JE, Triboulet R, Gregory RI, Altshuler D, Daley GQ, DIAGRAM Consortium, MAGIC Investigators: The Lin28/let-7 axis regulates glucose metabolism. Cell 2011, 147:81-94.
- [121]Viswanathan SR, Dalex GQ, Gregory RI: Selective blockade of microRNA processing by Lin-28. Science 2008, 320:97-100.
- [122]Pérez LM, Bernal A, San Martin N, Lorenzo M, Fernández-Veledo S, Gávez BG: Metabolic rescue of obese adipose-derived stem cells by Lin28/Let7 pathway. Diabetes 2013, 62:2368-2379.
- [123]Hulsmans M, Holvoet P: MicroRNA-containing microvesicles regulating inflammation in association with atherosclerotic diesease. Cardiovasc Res 2013. June 16 [Epub ahead of print]