期刊论文详细信息
Journal of Translational Medicine
Milk consumption during pregnancy increases birth weight, a risk factor for the development of diseases of civilization
Gerd Schmitz1  Swen Malte John2  Bodo C Melnik2 
[1] Institute of Clinical Chemistry and Laboratory Medicine, University Clinics of Regensburg, Regensburg, Germany;Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, Sedanstrasse 115, Osnabrück, D-49090, Germany
关键词: Primary prevention;    Placental weight;    mTORC1;    Milk;    Gestational weight;    Fetal weight;    Exosomal microRNA;    Birth weight;   
Others  :  1146198
DOI  :  10.1186/s12967-014-0377-9
 received in 2014-10-23, accepted in 2014-12-29,  发布年份 2015
PDF
【 摘 要 】

Antenatal dietary lifestyle intervention and nutrition during pregnancy and early postnatal life are important for appropriate lifelong metabolic programming. Epidemiological evidence underlines the crucial role of increased birth weight as a risk factor for the development of chronic diseases of civilization such as obesity, diabetes and cancer. Obstetricians and general practitioners usually recommend milk consumption during pregnancy as a nutrient enriched in valuable proteins and calcium for bone growth. However, milk is not just a simple nutrient, but has been recognized to function as an endocrine signaling system promoting anabolism and postnatal growth by activating the nutrient-sensitive kinase mTORC1. Moreover, pasteurized cow’s milk transfers biologically active exosomal microRNAs into the systemic circulation of the milk consumer apparently affecting more than 11 000 human genes including the mTORC1-signaling pathway. This review provides literature evidence and evidence derived from translational research that milk consumption during pregnancy increases gestational, placental, fetal and birth weight. Increased birth weight is a risk factor for the development of diseases of civilization thus involving key disciplines of medicine. With regard to the presented evidence we suggest that dietary recommendations promoting milk consumption during pregnancy have to be re-evaluated.

【 授权许可】

   
2015 Melnik et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150403095658191.pdf 821KB PDF download
Figure 1. 110KB Image download
【 图 表 】

Figure 1.

【 参考文献 】
  • [1]The American College of Obstetricians and Gynecologists: FAQ1. Nutrition during pregnancy. Sep 2013; http://www.acog.org/~/media/For%20Patients/faq001.Pdf?dmc=1&ts=20140823T1014147121.
  • [2]Melnik BC, John SM, Schmitz G: Milk is not just food but most likely a genetic transfection system activating mTORC1 for postnatal growth. Nutr J 2013, 12:103.
  • [3]Foster KG, Fingar DC: Mammalian target of rapamycin (mTOR): conducting the cellular signaling symphony. J Biol Chem 2010, 285:14071-14077.
  • [4]Inoki K, Ouyang H, Li Y, Guan KL: Signaling by target of rapamycin proteins in cell growth control. Microbiol Mol Biol Rev 2005, 69:79-100.
  • [5]Avruch J, Long X, Ortiz-Vega S, Rapley J, Papageorgiou A, Dai N: Amino acid regulation of TOR complex 1. Am J Physiol Endocrinol Metab 2009, 296:E592-E602.
  • [6]Sengupta S, Peterson T, Sabatini DM: Regulation of the mTOR complex 1 pathway by nutrients, growth factors, and stress. Mol Cell 2010, 40:310-322.
  • [7]Laplante M, Sabatini DM. mTOR signaling. Cold Spring Harb Perspect Biol. 2012; 4.
  • [8]Kim J, Guan KL: Amino acid signaling in TOR activation. Annu Rev Plant Physiol Plant Mol Biol 2011, 80:1001-1032.
  • [9]Kim S, Buel GR, Blenis J: Nutrient regulation of the mTOR complex 1 signaling pathway. Mol Cells 2013, 35:463-473.
  • [10]Jewell JL, Guan KL: Nutrient signaling to mTOR and cell growth. Trends Biochem Sci 2013, 38:233-242.
  • [11]Efeyan A, Sabatini DM: Nutrients and growth factors in mTORC1 activation. Biochem Soc Trans 2013, 41:902-905.
  • [12]Laplante M, Sabatini DM: Regulation of mTORC1 and its impact on gene expression at a glance. J Cell Sci 2013, 126:1713-1719.
  • [13]Wiley AS: Cow milk consumption, insulin-like growth factor-I, and human biology: a life history approach. Am J Hum Biol 2012, 24:130-138.
  • [14]Yamin HB, Barnea M, Genzer Y, Chapnik N, Froy O: Long-term commercial cow’s milk consumption and its effects on metabolic parameters associated with obesity in young mice. Mol Nutr Food Res 2014, 58:1061-1068.
  • [15]Zoncu R, Efeyan A, Sabatini DM: mTOR: from growth signal integration to cancer, diabetes and ageing. Nature Rev Mol Cell Biol 2011, 12:21-35.
  • [16]Johnson SC, Rabinovitch PS, Kaeberlein M: mTOR is a key modulator of ageing and age-related disease. Nature 2013, 493:338-345.
  • [17]Xu S, Cai Y, Wei Y: mTOR signaling from cellular senescence to organismal aging. Aging Dis 2014, 5:263-273.
  • [18]Symonds ME, Mendez MA, Meltzer HM, Koletzko B, Godfrey K, Forsyth S, van der Beek EM: Early life nutritional programming of obesity: mother-child cohort studies. Ann Nutr Metab 2013, 62:137-145.
  • [19]Abrams BF, Laros RK Jr: Prepregnancy weight, weight gain, and birth weight. Am J Obstet Gynecol 1986, 154:503-509.
  • [20]O’Callaghan MJ, Williams GM, Andersen MJ, Bor W, Najman JM: Prediction of obesity in children at 5 years: a cohort study. J Paediatr Child Health 1997, 33:311-316.
  • [21]Li C, Kaur H, Choi WS, Huang TT, Lee RE, Ahluwalia JS: Additive interactions of maternal prepregnancy BMI and breast-feeding on childhood overweight. Obes Res 2005, 13:362-371.
  • [22]Lawlor DA, Smith GD, O’Callaghan M, Alati R, Mamun AA, Williams GM, Najman JM: Epidemiologic evidence for the fetal overnutrition hypothesis: findings from the Mater-University Study of Pregnancy and its Outcomes. Am J Epidemiol 2007, 165:418-424.
  • [23]Davey Smith G, Steer C, Leary S, Ness A: Is there an intrauterine influence on obesity? Evidence from parent child associations in the Avon Longitudinal Study of Parents and Children (ALSPAC). Arch Dis Child 2007, 92:876-880.
  • [24]Viswanathan M, Siega-Riz AM, Moos MK, Deierlein A, Mumford S, Knaack J, Thieda P, Lux LJ, Lohr KN: Outcomes of maternal weight gain. Evid Rep Technol Assess (Full Rep) 2008, 168:1-223.
  • [25]Catalano PM, Farrell K, Thomas A, Huston-Presley L, Mencin P, de Mouzon SH, Amini SB: Perinatal risk factors for childhood obesity and metabolic dysregulation. Am J Clin Nutr 2009, 90:1303-1313.
  • [26]Jääskeläinen A, Pussinen J, Nuutinen O, Schwab U, Pirkola J, Kolehmainen M, Järvelin MR, Laitinen J: Intergenerational transmission of overweight among Finnish adolescents and their parents: a 16-year follow-up study. Int J Obes (Lond) 2011, 35:1289-1294.
  • [27]Wang X, Proud CG: Nutrient control of mTORC1, a cell-cycle regulator. Trends Cell Biol 2009, 19:260-267.
  • [28]Chakrabarti P, English T, Shi J, Smas CM, Kandror KV: Mammalian target of rapamycin complex 1 suppresses lipolysis, stimulates lipogenesis, and promotes fat storage. Diabetes 2010, 59:775-781.
  • [29]Ricoult SJ, Manning BD: The multifaceted role of mTORC1 in the control of lipid metabolism. EMBO Rep 2013, 14:242-251.
  • [30]Howell JJ, Ricoult SJ, Ben-Sahra I, Manning BD: A growing role for mTOR in promoting anabolic metabolism. Biochem Soc Trans 2013, 41:906-912.
  • [31]Xu J, Ji J, Yan XH: Cross-talk between AMPK and mTOR in regulating energy balance. Crit Rev Food Sci Nutr 2012, 52:373-381.
  • [32]Shaw RJ, Kosmatka M, Bardeesy N, Hurley RL, Witters LA, DePinho RA, Cantley LC: The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress. Proc Natl Acad Sci U S A 2004, 101:3329-3335.
  • [33]Dodd KM, Tee AR: Leucine and mTORC1: a complex relationship. Am J Physiol Endocrinol Metab 2012, 302:E1329-E1342.
  • [34]Nicklin P, Bergman P, Zhang B, Triantafellow E, Wang H, Nyfeler B, Yang H, Hild M, Kung C, Wilson C, Myer VE, MacKeigan JP, Porter JA, Wang YK, Cantley LC, Finan PM, Murphy LO: Bidirectional transport of amino acids regulates mTOR and autophagy. Cell 2009, 136:521-534.
  • [35]Cohen A, Hall MN: An amino acid shuffle activates mTORC1. Cell 2009, 136:399-400.
  • [36]Duran RV, Oppliger W, Robitaille AM, Heiserich L, Skendaj R, Gottlieb E, Hall MN: Glutaminolysis activates Rag-mTORC1 signaling. Mol Cell 2012, 47:349-358.
  • [37]Yasuda M, Tanaka Y, Kume S, Morita Y, Chin-Kanasaki M, Araki H, Isshiki K, Araki S, Koya D, Haneda M, Kashiwagi A, Maegawa H, Uzu T: Fatty acids are novel nutrient factors to regulate mTORC1 lysosomal localization and apoptosis in podocytes. Biochim Biophys Acta 2014, 1842:1097-1108.
  • [38]Millward DJ, Layman DK, Tomé D, Schaafsma G: Protein quality assessment: impact of expanding understanding of protein and amino acid needs for optimal health. Am J Clin Nutr 2008, 87:1576S-1581S.
  • [39]Boirie Y, Dangin M, Gachon P, Vasson MP, Maubois JL, Beaufrère B: Slow and fast dietary proteins differently modulate postprandial protein accretion. Proc Natl Acad Sci U S A 1997, 94:14930-14935.
  • [40]He T, Giuseppin ML: Slow and fast dietary proteins differentially modulate postprandial metabolism. Int J Food Sci Nutr 2014, 65:386-390.
  • [41]Boutrou R, Gaudichon C, Dupont D, Jardin J, Airinei G, Marsset-Baglieri A, Benamouzig R, Tomé D, Leonil J: Sequential releases of milk protein-derived bioactive peptides in the jejunum in healthy humans. Am J Clin Nutr 2013, 97:1414-1423.
  • [42]Mahé S, Roos N, Benamouzig R, Davin L, Luengo C, Gagnon L, Gaussergès N, Rautureau J, Tomé D: Gastrojejunal kinetics and the digestion of [15 N]beta-lactoglobulin and casein in humans: the influence of the nature and quantity of the protein. Am J Clin Nutr 1996, 63:546-552.
  • [43]Lenders CM, Liu S, Wilmore DW, Sampson L, Dougherty LW, Spiegelman D, Willett WC: Evaluation of a novel food composition database that includes glutamine and other amino acids derived from gene sequencing data. Eur J Clin Nutr 2009, 63:1433-1439.
  • [44]Li M, Li C, Allen A, Stanley CA, Smith TJ: The structure and allosteric regulation of mammalian glutamate dehydrogenase. Arch Biochem Biophys 2012, 519:69-80.
  • [45]Lorin S, Tol MJ, Bauvy C, Strijland A, Poüs C, Verhoeven AJ, Codogno P, Meijer AJ: Glutamate dehydrogenase contributes to leucine sensing in the regulation of autophagy. Autophagy 2013, 9:850-860.
  • [46]Xu G, Kwon G, Cruz WS, Marshall CA, McDaniel ML: Metabolic regulation by leucine of translation initiation through the mTOR-signaling pathway by pancreatic beta-cells. Diabetes 2001, 50:353-360.
  • [47]Holt S, Brand Miller J, Petocz P: An insulin index of foods: the insulin demand generated by 1000-kK portions of common foods. Am J Clin Nutr 1997, 66:1264-1276.
  • [48]Hoyt G, Hickey MS, Cordain L: Dissociation of the glycaemic and insulinaemic responses to whole and skimmed milk. Br J Nutr 2005, 93:175-177.
  • [49]Hoppe C, Mølgaard C, Dalum C, Vaag A, Michaelsen KF: Differential effects of casein versus whey on fasting plasma levels of insulin, IGF-1 and IGF-1/IGFBP-3: results from a randomized 7-day supplementation study in prepubertal boys. Eur J Clin Nutr 2009, 63:1076-1083.
  • [50]Thomas FB, Sinar D, Mazzaferri EL, Cataland S, Mekhjian HS, Caldwell JH, Fromkes JJ: Selective release of gastric inhibitory polypeptide by intraduodenal amino acid perfusion in man. Gastroenterology 1978, 74:1261-1265.
  • [51]Chen Q, Reimer RA: Dairy protein and leucine alter GLP-1 release and mRNA of genes involved in intestinal lipid metabolism in vitro. Nutrition 2009, 25:340-349.
  • [52]Nilsson M, Stenberg M, Frid AH, Holst JJ, Björck IM: Glycemia and insulinemia in healthy subjects after lactose-equivalent meals of milk and other food proteins: the role of plasma amino acids and incretins. Am J Clin Nutr 2004, 80:1246-1253.
  • [53]Nilsson M, Holst JJ, Björck IM: Metabolic effects of amino acid mixtures and whey protein in helathy subjects: studies using glucose-equivalent drinks. Am J Clin Nutr 2007, 85:996-1004.
  • [54]Salehi A, Gunnerud U, Muhammed SJ, Ostman E, Holst JJ, Björck I, Rorsman P: The insulinogenic effects of whey protein is partially mediated by a direct effect of amino acids and GIP on β-cells. Nutr Metab (Lond) 2012, 9:48.
  • [55]McDaniel ML, Marshall CA, Pappan KL, Kwon G: Metabolic and autocrine regulation of the mammalian target of rapamycin by pancreatic β-cells. Diabetes 2002, 51:2877-2885.
  • [56]Yang J, Chi Y, Burkhardt BR, Guan Y, Wolf BA: Leucine metabolism in regulation of insulin secretion from pancreatic beta cells. Nutr Rev 2010, 68:270-279.
  • [57]Le Bacquer O, Queniat G, Gmyr V, Kerr-Conte J, Lefebvre B, Pattou F: mTORC1 and mTORC2 regulate insulin secretion through Akt in INS-1 cells. J Endocrinol 2013, 216:21-29.
  • [58]Hoppe C, Mølgaard C, Vaag A, Barkholt V, Michaelsen KF: High intakes of milk, but not meat, increases s-insulin and insulin resistance in 8-year-old boys. Eur J Clin Nutr 2005, 59:393-398.
  • [59]Qin LQ, He K, Xu JY: Milk consumption and circulating insulin-like growth factor-I level: a systematic literature review. Int J Food Sci Nutr 2009, 60(Suppl 7):330-340.
  • [60]Norat T, Dossus L, Rinaldi S, Overvad K, Grønbaek H, Tjønneland A, Olsen A, Clavel-Chapelon F, Boutron-Ruault MC, Boeing H, Lahmann PH, Linseisen J, Nagel G, Trichopoulou A, Trichopoulos D, Kalapothaki V, Sieri S, Palli D, Panico S, Tumino R, Sacerdote C, Bueno-de-Mesquita HB, Peeters PH, van Gils CH, Agudo A, Amiano P, Ardanoz E, Martinez C, Quirós R, Tormo MJ, Bingham S, Key TJ, Allen NE, Ferrari P, Slimani N, Riboli E, Kaaks R: Diet, serum insulin-like growth factor-I and IGF-binding protein-3 in European women. Eur J Clin Nutr 2007, 61:91-98.
  • [61]Rich-Edwards JW, Ganmaa D, Pollak MN, Nakamoto EK, Kleinman K, Tserendolgor U, Willett WC, Frazier AL: Milk consumption and the prepubertal somatotropic axis. Nutr J 2007, 6:28.
  • [62]Larnkjær A, Arnberg K, Michaelsen KF, Jensen SM, Mølgaard C: Effect of milk proteins on linear growth and IGF variables in overweight adolescents. Growth Horm IGF Res 2014, 24:54-59.
  • [63]Melnik BC: Leucine signaling in the pathogenesis of type 2 diabetes and obesity. World J Diabetes 2012, 3:38-53.
  • [64]Jensen RG, Ferris AM, Lammi-Keefe CJ: The composition of milk fat. J Dairy Sci 1991, 74:3228-3243.
  • [65]Bitman J, Wood DL: Changes in milk fat phospholipids during lactation. J Dairy Sci 1990, 73:1208-1216.
  • [66]She P, Van Horn C, Reid T, Hutson SM, Cooney RN, Lynch CJ: Obesity-related elevations in plasma leucine are associated with alterations in enzymes involved in branched-chain amino acid metabolism. Am J Physiol Endocrinol Metab 2007, 293:E1552-E1563.
  • [67]Newgard CB, An J, Bain J, Muehlbauer MJ, Stevens RD, Lien LF, Haqq AM, Shah SH, Arlotto M, Slentz CA, Rochon J, Gallup D, Ilkayeva O, Wenner BR, Yancy WS Jr, Eisenson H, Musante G, Surwit RS, Millington DS, Butler MD, Svetkey LP: A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab 2009, 9:311-326.
  • [68]Morris C, O’Grada C, Ryan M, Roche HM, Gibney MJ, Gibney ER, Brennan L: The relationship between BMI and metabolomic profiles: a focus on amino acids. Proc Nutr Soc 2012, 71:634-638.
  • [69]McCormack SE, Shaham O, McCarthy MA, Deik AA, Wang TJ, Gerszten RE, Clish CB, Mootha VK, Grinspoon SK, Fleischman A: Circulating branched-chain amino acid concentrations are associated with obesity and future insulin resistance in children and adolescents. Pediatr Obes 2013, 8:52-61.
  • [70]Loridan L, Sadeghi-Nejad A, Senior B: Hypersecretion of insulin after the administration of L-leucine to obese children. J Pediatr 1971, 78:53-58.
  • [71]Zhou YP, Grill VE: Long-term exposure of rat pancreatic islets to fatty acids inhibits glucose-induced insulin secretion and biosynthesis through a glucose fatty acid cycle. J Clin Invest 1994, 93:870-876.
  • [72]Dresner A, Laurent D, Marcucci M, Griffin ME, Dufour S, Cline GW, Slezak LA, Andersen DK, Hundal RS, Rothman DL, Petersen KF, Shulman GI: Effects of free fatty acids on glucose transport and IRS-1-associated phosphatidylinositol 3-kinase activity. J Clin Invest 1999, 103:253-259.
  • [73]Unger RH, Clark GO, Scherer PE, Orci L: Lipid homeostasis, lipotoxicity and the metabolic syndrome. Biochim Biophys Acta 2010, 1801:209-214.
  • [74]Um SH, Frigerio F, Watanabe M, Picard F, Joaquin M, Sticker M, Fumagalli S, Allegrini PR, Kozma SC, Auwerx J, Thomas G: Absence of S6K1 protects against age- and diet-induced obesity while enhancing insulin sensitivity. Nature 2004, 431:200-205.
  • [75]Um SH, D’Alessio D, Thomas G: Nutrient overload, insulin resistance, and ribosomal protein S6 kinase 1, S6K1. Cell Metab 2006, 3:393-402.
  • [76]Hoppe C, Mølgaard C, Michaelsen KF: Cow’s milk and linear growth in industrialized and developing countries. Ann Rev Nutr 2006, 26:131-173.
  • [77]Wiley AS: Dairy and milk consumption and child growth: Is BMI involved? An analysis of NHANES 1999–2004. Am J Hum Biol 2010, 22:517-525.
  • [78]Berkey CS, Rocket HR, Willet WC, Colditz GA: Milk, dairy fat, dietary calcium, and weight gain. Arch Pediatr Adolesc Med 2005, 159:543-550.
  • [79]Matthews VL, Wien M, Sabaté J: The risk of child and adolescent overweight is related to types of food consumed. Nutr J 2011, 10:71.
  • [80]Arnberg K, Mølgaard C, Michaelsen KF, Jensen SM, Trolle E, Larnkjær A: Skim milk, whey, and casein increase body weight and whey and casein increase plasma C-peptide concentration in overweight adolescents. J Nutr 2012, 142:2083-2090.
  • [81]Barr SI, McCarron DA, Heaney RP, Dawson-Hughes B, Berga SL, Stern JS, Oparil S: Effects of increased consumption of fluid milk on energy and nutrient intake, body weight, and cardiovascular risk factors in healthy older adults. Am J Diet Assoc 2000, 100:810-817.
  • [82]Chen M, Pan A, Malik VS, Hu FB: Effects of dairy intake on body weight and fat: a meta-analysis of randomized controlled trials. Am J Clin Nutr 2012, 96:735-747.
  • [83]Abreu S, Santos R, Moreira C, Vale S, Santos PC, Soares-Miranda L, Marques AI, Mota J, Moreira P: Association between dairy product intake and abdominal obesity in Azorean adolescents. Eur J Clin Nutr 2012, 66:830-835.
  • [84]Abreu S, Santos R, Moreira C, Santos PC, Vale S, Soares-Miranda L, Mota J, Moreira P: Milk intake is inversely related to body mass index and body fat in girls. Eur J Pediatr 2012, 171:1467-1474.
  • [85]Männik J, Vaas P, Rull K, Teesalu P, Laan M: Differential placental expression profile of human growth hormone/chorionic somatomammotropin genes in pregnancies with pre-eclampsia and gestational diabetes mellitus. Mol Cell Endocrinol 2012, 355:180-187.
  • [86]Olafsdottir AS, Skuladottir GV, Thorsdottir I, Hauksson A, Steingrimsdottir L: Maternal diet in early and late pregnancy in relation to weight gain. Int J Obes (Lond) 2006, 30:492-499.
  • [87]Olsen SF, Halldorsson TI, Willett WC, Knudsen VK, Gillman MW, Mikkelsen TB, Olsen J: NUTRIX Consortium: Milk consumption during pregnancy is associated with increased infant size at birth: prospective cohort study. Am J Clin Nutr 2007, 86:1104-1110.
  • [88]Rao S, Yajnik CS, Kanade A, Fall CH, Margetts BM, Jackson AA, Shier R, Joshi S, Rege S, Lubree H, Desai B: Intake of micronutrient-rich foods in rural Indian mothers is associated with the size of their babies at birth: Pune Maternal Nutrition Study. J Nutr 2001, 131:1217-1224.
  • [89]Cramer DW, Beck P, Makowski EL: Correlation of gestational age with maternal human chorionic somatomammotropin and maternal and fetal growth hormone plasma concentrations during labor. Am J Obstet Gynecol 1971, 109:649-655.
  • [90]Lindberg BS, Nilsson BA: Human placental lactogen (HPL) levels in abnormal pregnancies. J Obstet Gynaecol Br Commonw 1973, 80:1046-1053.
  • [91]Sciarra JJ, Sherwood LM, Varma AA, Lundberg WB: Human placental lactogen (HPL) and placental weight. Am J Obstet Gynecol 1968, 101:413-416.
  • [92]Boyce A, Schwartz D, Hubert C, Cedard L, Dreyfus J: Smoking, human placental lactogen and birth weight. Br J Obstet Gynaecol 1975, 82:964-967.
  • [93]Letchworth AT, Boardman RJ, Bristow C, Landon J, Chard T: A rapid semi-automated method for the measurement of human chorionic sommatomammotrophin. The normal range in the third trimester and its relation to fetal weight. J Obstet Gynaecol Br Commonw 1971, 78:542-548.
  • [94]Lindberg BS, Nilsson BA: Variations in maternal plasma levels of human placental lactogen (HPL) in normal pregnancy and labour. J Obstet Gynaecol Br Commonw 1973, 80:619-626.
  • [95]Freemark M: Placental hormones and the control of fetal growth. J Clin Endocrinol Metab 2010, 95:2054-2057.
  • [96]Henleigh PA, Cheatum SG, Spellacy WN: Oxytocinase and human placental lactogen for the prediction of intrauterine growth retardation. Am J Obstet Gynaecol 1977, 129:675-678.
  • [97]Lager S, Oowell TL: Regulation of nutrient transport across the placenta. J Pregnancy 2012, 2012:179827.
  • [98]Larqué E, Riuz-Palacios M, Koletzko B: Placental regulation of fetal nutrient supply. Curr Opin Clin Nutr Metab Care 2013, 16:292-297.
  • [99]Roos S, Jansson N, Palmberg I, Säljö K, Powell TL, Jansson T: Mammalian target of rapamycin in the human placenta regulates leucine transport and is down-regulated in restricted growth. J Physiol 2007, 582:449-459.
  • [100]Jansson T, Aye IL, Goberdhan DC: The emerging role of mTORC1 signaling in placental nutrient-sensing. Placenta 2012, 33(Suppl 2):e23-e29.
  • [101]Roos S, Lagerlöf O, Wennergren M, Powell TL, Jansson T: Regulation of amino acid transporters by glucose and growth factors in cultured primary human trophoblast cells is mediated by mTOR signaling. Am J Physiol Cell Physiol 2009, 297:C723-C731.
  • [102]Jansson N, Rosario FJ, Gaccioli F, Lager S, Jones HN, Roos S, Jansson T, Powell TL: Activation of placental mTOR signaling and amino acid transporters in obese women giving birth to large babies. J Clin Endocrinol Metab 2013, 98:105-113.
  • [103]Gaccioli F, White V, Capobianco E, Powell TL, Jawerbaum A, Jansson T: Maternal overweight induced by a diet with high content of saturated fat activates placental mTOR and eIF2alpha signaling and increases fetal growth in rats. Biol Reprod 2013, 89:96.
  • [104]Lu Y, Qian L, Zhang Q, Chen B, Gui L, Huang D, Chen G, Chen L: Palmitate induces apoptosis in mouse aortic endothelial cells and endothelial dysfunction in mice fed high-calorie and high-cholesterol diets. Life Sci 2013, 92:1165-1173.
  • [105]Kavitha JV, Rosario FJ, Nijland MJ, McDonald TJ, Wu G, Kanai Y, Powell TL, Nathanielsz PW, Jansson T: Down-regulation of placental mTOR, insulin/IGF-I signaling, and nutrient transporters in response to maternal nutrient restriction in the baboon. FASEB J 2014, 28:1294-2305.
  • [106]Newbern D, Freemark M: Placental hormones and the control of maternal metabolism and fetal growth. Curr Opin Endocrinol Diabetes Obes 2011, 18:409-416.
  • [107]Hennighausen L, Robibson GW: Interpretation of cytokine signalling through the transcription factors STAT5A and STAT5B. Genes Dev 2008, 22:711-721.
  • [108]Cao J, Gowri PM, Ganguly TC, Wood M, Hyde JF, Talamantes F, Vore M: PRL, placental lactogen, and GH induce NA(+)/taurocholate-cotransporting polypeptide gene expression by activating signal transducer and activator of transcription-5 in liver cells. Endocrinology 2001, 142:4212-4222.
  • [109]Kondegowda NG, Mozar A, Chin C, Otero A, Garcia-Ocana A, Vasavada RC: Lactogens protect rodent and human beta cells agianst glucolipotoxicity-induced cell death through Janus kinase-2 (JAK2)/signal transducer and activator of transcription-5 (STAT5) signalling. Diabetologica 2012, 55:1721-1732.
  • [110]Fujinaka Y, Takane K, Yamashita H, Vasavada RC: Lactogens promote beta cell survival through JAK2/STAT5 activation and Bcl-XL upregulation. J Biol Chem 2007, 282:30707-30717.
  • [111]Pedersen NG, Juul A, Chrisitansen M, Wojdemann KR, Tabor A: Maternal serum placental growth hormone, but not human placental lactogen or insulin growth factor-1, is positively associated with fetal growth in the first half of pregnancy. Ultrasound Obstet Gynecol 2010, 36:534-541.
  • [112]Howard JK, Flier JS: Attenuation of leptin and insulin signaling by SOCS proteins. Trends Endocrinol Metab 2006, 17:365-371.
  • [113]Lebrun P, Van Obberghen E: SOCS proteins causing trouble in insulin action. Acta Physiol (Oxf) 2008, 192:29-36.
  • [114]Lebrun P, Cognard E, Gontard P, Bellon-Paul R, Filloux C, Berthault MF, Magnan C, Ruberte J, Luppo M, Pujol A, Pachera N, Herchuelz A, Bosch F, Van Obberghen E: The suppressor of cytokine signalling 2 (SOCS2) is a key repressor of insulin secretion. Diabetologia 2010, 53:1935-1946.
  • [115]Yang Z, Hulver M, McMillan RP, Cai L, Kershaw EE, Yu L, Xue B, Shi H: Regulation of insulin and leptin signaling by muscle suppressor of cytokine signaling 3 (SOCS3). PLoS One 2012, 7:e47493.
  • [116]Dann SG, Selvaraj A, Thomas G: mTOR Complex1-S6K1 signaling: at the crossroads of obesity, diabetes and cancer. Trends Mol Med 2007, 13:252-259.
  • [117]Magnuson B, Ekim B, Fingar DC: Regulation and function of ribosomal protein S6 kinase (S6K) within mTOR signalling networks. Biochem J 2012, 441:1-21.
  • [118]Patti ME, Brambilla E, Luzi L, Landaker EJ, Kahn CR: Bidirectional modulation of insulin action by amino acids. J Clin Invest 1998, 101:1519-1529.
  • [119]Krebs M, Krssak M, Bernroider E, Anderwald C, Brehm A, Meyerspeer M, Nowotny P, Roth E, Waldhäusl W, Roden M: Mechanism of amino acid-induced skeletal muscle insulin resistance in humans. Diabetes 2002, 51:599-605.
  • [120]Tremblay F, Krebs M, Dombrowski L, Brehm A, Bernroider E, Roth E, Nowotny P, Waldhäusl W, Marette A, Roden M: Overactivation of S6 kinase 1 as a cause of human insulin resistance during increased amino acid availability. Diabetes 2005, 54:2674-2684.
  • [121]Tremblay F, Brulé S, Hee Um S, Masuda K, Roden M, Sun XJ, Krebs M, Polakiewicz RD, Thomas G, Marette A: Identification of Ser-1101 as a target of S6K1 in nutrient- and obesity-induced insulin resistance. Proc Natl Acad Sci U S A 2007, 104:14056-14061.
  • [122]Shah OJ, Wang Z, Hunter T: Inappropriate activation of the TSC/Rheb/mTOR/S6K cassette induces IRS1/2 depletion, insulin resistance, and cell survival deficiencies. Curr Biol 2004, 14:1650-1656.
  • [123]Lu J, Xie G, Jia W, Jia W: Insulin resistance and the metabolism of branched-chain amino acids. Front Med 2013, 7:53-59.
  • [124]Zeng M, Che Z, Liang Y, Wang B, Chen X, Li H, Deng J, Zhou Z: GC-MS based plasma metabolic profiling of type 2 diabetes mellitus. Chromatographia 2009, 69:941-948.
  • [125]Iglesias P, Selgas R, Romero S, Díez JJ: Biological role, clinical significance, and therapeutic possibilities of the recently discovered metabolic hormone fibroblastic growth factor 21. Eur J Endocrinol 2012, 167:301-309.
  • [126]Zhang X, Yeung DC, Karpisek M, Stejskal D, Zhou ZG, Liu F, Wong RL, Chow WS, Tso AW, Lam KS, Xu A: Serum FGF21 levels are increased in obesity and are independently associated with the metabolic syndrome in humans. Diabetes 2008, 57:1246-1253.
  • [127]Tan BK, Sivakumar K, Bari MF, Vatish M, Randeva HS: Lower cerebrospinal fluid/plasma fibroblast growth factor 21 (FGF21) ratios and placental FGF21 production in gestational diabetes. PLoS One 2013, 8:e65254.
  • [128]Dekker Nitert M, Barrett HL, Kubala MH, Scholz Romero K, Denny KJ, Woodruff TM, McIntyre HD, Callaway LK: Increased placental expression of fibroblast growth factor 21 in gestational diabetes mellitus. J Clin Endocrinol Metab 2014, 99:E591-E598.
  • [129]Yu J, Zhao L, Wang A, Eleswarapu S, Ge X, Chen D, Jiang H: Growth hormone stimulates transcription of the fibroblast growth factor 21 gene in the liver through the signal transducer and activator of transcription 5. Endocrinology 2012, 153:750-758.
  • [130]Cui Y, Giesy SL, Hassan M, Davis K, Zhao S, Boisclair YR: Hepatic FGF21 production is increased in late pregnancy in the mouse. Am J Physiol Regul Integr Comp Physiol 2014, 307:R290-R298.
  • [131]Cornu M, Oppliger W, Albert V, Robitaille AM, Trapani F, Quagliata L, Fuhrer T, Sauer U, Terracciano L, Hall MN: Hepatic mTORC1 controls locomotor activity, body temperature and lipid metabolism through FGF21. Proc Natl Acad Sci U S A 2014, 111:11592-11599.
  • [132]Li K, Li L, Yang M, Liu H, Boden G, Yang G: The effects of fibroblast growth factor-21 knockdown and over-expression on its signaling pathway and glucose-lipid metabolism in vitro. Mol Cell Endocrinol 2012, 348:21-26.
  • [133]Ericsson A, Hamark B, Powell TL, Jansson T: Glucose transporter isoform 4 is expressed in the syncytiotrophoblast of first trimester human placenta. Hum Reprod 2005, 20:521-530.
  • [134]Jansson T, Wennergren M, Illsley NP: Glucose transporter protein expression in human placenta throughout gestation and in intrauterine growth retardation. J Clin Endocrinol Metab 1993, 77:1554-1562.
  • [135]Jansson T, Wennergren M, Powell TL: Placental glucose transport and GLUT1 expression in insulin-dependent diabetes. Am J Obstet Gynecol 1999, 180:163-168.
  • [136]Gaither K, Quraishi AN, Illsley NP: Diabetes alters the expression and activity of the human placental GLUT1 glucose transporter. J Clin Endocrinol Metab 1999, 84:695-701.
  • [137]Acosta O, Ramirez VI, Lager S, Gaccioli F, Dudley DJ, Powell TL, et al. Increased glucose and placental GLUT-1 in large babies of obese non-diabetic mothers. Am J Obstet Gynecol. 2014; Aug 14 [Epub ahead of print].
  • [138]Jiang H, Wu W, Zhang M, Li J, Peng Y, Miao TT, Zhu H, Xu G: Aberrant upregulation of miR-21 in placental tissues of macrosomia. J Perinatol 2014, 34:658-663.
  • [139]Chen X, Gao C, Li H, Huang L, Sun Q, Dong Y, Tian C, Gao S, Dong H, Guan D, Hu X, Zhao S, Li L, Zhu L, Yan Q, Zhang J, Zen K, Zhang CY: Identification and characterization of microRNAs in raw milk during different periods of lactation, commercial fluid, and powdered milk products. Cell Res 2010, 20:1128-1137.
  • [140]Baier SR, Nguyen C, Xie F, Wood JR, Zempleni J: MicroRNAs are absorbed in biologically meaningful amounts from nutritionally relevant doses of cow milk and affect gene expression in peripheral blood mononuclear cells, HEK-293 kidney cell cultures, and mouse livers. J Nutr 2014, 144:1495-1500.
  • [141]Meng F, Henson R, Wehbe-Janek H, Ghoshal K, Jacob ST, Patel T: MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology 2007, 133:647-658.
  • [142]Han M, Liu M, Wang Y, Chen X, Xu J, Sun Y, Zhao L, Qu H, Fan Y, Wu C: Antagonism of miR-21 reverses epithelial-mesenchymal transition and cancer stem cell phenotype through AKT/ERK1/2 inactivation by targeting PTEN. PLoS One 2012, 7:e39520.
  • [143]Dey N, Das F, Mariappan MM, Mandal CC, Ghosh-Choudhury N, Kasinath BS, Choudhury GG: MicroRNA-21 orchestrates high glucose-induced signals to TOR complex 1, resulting in renal cell pathology in diabetes. J Biol Chem 2011, 286:25586-25603.
  • [144]Dey N, Ghosh-Choudhury N, Kasinath BS, Choudhury GG: TGFβ-stimulated microRNA-21 utilizes PTEN to orchestrate AKT/mTORC1 signaling for mesangial cell hypertrophy and matrix expansion. PLoS One 2012, 7:e42316.
  • [145]Sayed D, Rane S, Lypowy J, He M, Chen IY, Vashistha H, Yan L, Malhotra A, Vatner D, Abdellatif M: MicroRNA-21 targets Sprouty2 and promotes cellular outgrowths. Mol Biol Cell 2008, 19:3272-3282.
  • [146]Dariminpourain M, Wang S, Ittmann M, Kwabi-Addo B: Transcriptional and post-transcriptional regulation of Sprouty1, a receptor tyrosine kinase inhibitor in prostate cancer. Prostate Cancer Prostatic Dis 2011, 14:279-285.
  • [147]Frey MR, Carraro G, Batra RK, Polk DB, Warburton D: Sprouty keeps bowel kinases regular in colon cancer, while miR-21 targets Sprouty. Cancer Biol Ther 2011, 11:122-124.
  • [148]Asangani IA, Rasheed SA, Nikolova DA, Leupold JH, Colburn NH, Post S, Allgayer H: MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene 2008, 27:2128-2136.
  • [149]Lu Z, Liu M, Stribinskis V, Klinge CM, Ramos KS, Colburn NH, Li Y: MicroRNA-21 promotes cell transformation by targeting the programmed cell death 4 gene. Oncogene 2008, 27:4373-4379.
  • [150]Carayol N, Katsoulidis E, Sassano A, Altman JK, Druker BJ, Platanias LC: Suppression of programmed cell death 4 (PDCD4) protein expression by BCR-ABL-regulated engagement of the mTOR/p70 S6 kinase pathway. J Biol Chem 2008, 28:8601-8610.
  • [151]Ng R, Song G, Roll GR, Frandsen NM, Willenbring H: A microRNA-21 surge facilitates rapid cyclin D1 translation and cell cycle progression in mouse liver regeneration. J Clin Invest 2012, 122:1097-1108.
  • [152]Dennis MD, Jefferson LS, Kimball SR: Role of p70S6K1-mediated phosphorylation of eIF4B and PDCD4 proteins in the regulation of protein synthesis. J Biol Chem 2012, 287:42890-42899.
  • [153]Kim YJ, Hwang SJ, Bae YC, Jung JS: MiR-21 regulates adipogenic differentiation through the modulation of TGF-beta signaling in mesenchymal stem cells derived from human adipose tissue. Stem Cells 2009, 27:3093-3102.
  • [154]Kim YJ, Hwang SH, Cho HH, Shin KK, Bae YC, Jung JS: MicroRNA 21 regulates the proliferation of human adipose tissue-derived mesenchymal stem cells and high-fat diet-induced obesity alters microRNA 21 expression in white adipose tissues. J Cell Physiol 2012, 227:183-193.
  • [155]Seeger T, Fischer A, Muhly-Reinholz M, Zeiher AM, Dimmeler S: Long-term inhibition of miR-21 leads to reduction of obesity in db/db mice. Obesity (Silver Spring) 2014, 22:2352-2360.
  • [156]Heppe DH, van Dam RM, Willemsen SP, den Breeijen H, Raat H, Hofman A, Steegers EA, Jaddoe VW: Maternal milk consumption, fetal growth, and the risks of neonatal complications: the Generation R Study. Am J Clin Nutr 2011, 94:501-509.
  • [157]Hadlock FP, Harrist RB, Sharman RS, Deter RL, Park SK: Estimation of fetal weight with the use of head, body, and femur measurements - a prospective study. Am J Obstet Gynecol 1985, 151:333-337.
  • [158]Ludvigsson JF, Ludvigsson J: Milk consumption during pregnancy and infant birthweight. Acta Paediatr 2004, 93:1474-1478.
  • [159]Mannion CA, Gray-Donald K, Koski KG: Association of low intake of milk and vitamin D during pregnancy with decreased birth weight. CMAJ 2006, 174:1273-1277.
  • [160]Moore VM, Davies MJ, Willson KJ, Worsley A, Robinson JS: Dietary composition of pregnant women is related to size of the baby at birth. J Nutr 2004, 134:1820-1826.
  • [161]Chan GM, McElligott K, McNaught T, Gill G: Effects of dietary calcium intervention on adolescent mothers and newborns: A randomized controlled trial. Obstet Gynecol 2006, 108:565-571.
  • [162]Brantsæter AL, Olafsdottir AS, Forsum E, Olsen SF, Thorsdottir I: Does milk and dairy consumption during pregnancy influence fetal growth and infant birthweight? A systematic literature review. Food Nutr Res 2012, 56:20050.
  • [163]Boney CM, Verma A, Tucker R, Vohr BR: Metabolic syndrome in childhood: association with birth weight, maternal obesity, and gestational diabetes mellitus. Pediatrics 2005, 115:e290-e296.
  • [164]Sørensen HT, Sabroe S, Rothman KJ, Gillman M, Fischer P, Sørensen TI: Relation between weight and length at birth and body mass index in young adulthood: cohort study. BMJ 1997, 315:1137.
  • [165]Leunissen RW, Stijnen T, Hokken-Koelega AC: Influence of birth size on body composition in early adulthood: the programming factors for growth and metabolism (PROGRAM)-study. Clin Endocrinol (Oxf) 2009, 70:245-251.
  • [166]Brüske I, Flexeder C, Heinrich J: Body mass index and incidence of asthma in children. Curr Opin Allergy Clin Immunol 2014, 14:155-160.
  • [167]Skilton MR, Siitonen N, Würtz P, Viikari JS, Juonala M, Seppälä I, Laitinen T, Lehtimäki T, Taittonen L, Kähönen M, Celermajer DS, Raitakari OT: High birth weight is associated with obesity and increased carotid wall thickness in young adults: the cardiovascular risk in young Finns study. Arterioscler Thromb Vasc Biol 2014, 34:1064-1068.
  • [168]Bukowski R, Chlebowski RT, Thune I, Furberg AS, Hankins GD, Malone FD, D’Alton ME: Birth weight, breast cancer and the potential mediating hormonal environment. PLoS One 2012, 7:e40199.
  • [169]Spracklen CN, Wallace RB, Sealy-Jefferson S, Robinson JG, Freudenheim JL, Wellons MF, Saftlas AF, Snetselaar LG, Manson JE, Hou L, Qi L, Chlebowski RT, Ryckman KK: Birth weight and subsequent risk of cancer. Cancer Epidemiol 2014, 38:538-543.
  • [170]Lewis RM, Demmelmair H, Gaillard R, Godfrey KM, Hauguel-de Mouzon S, Huppertz B, Larque E, Saffery R, Symonds ME, Desoye G: The placental exposome: placental determinants of fetal adiposity and postnatal body composition. Ann Nutr Metab 2013, 63:208-215.
  • [171]Yang Z, Huffman SL: Nutrition in pregnancy and early childhood and associations with obesity in developing countries. Matern Child Nutr. 2013, 9(Suppl 1):105-119.
  • [172]Haissaguerre M, Saucisse N, Cota D: Influence of mTOR in energy and metabolic homeostasis. Mol Cell Endocrinol 2014, 397:67-77.
  • [173]Melnik BC: The potential mechanistic link between allergy and obesity development and infant formula feeding. Allergy Asthma Clin Immunol 2014, 10:37.
  • [174]Melnik BC: Excessive leucine-mTORC1-signalling of cow milk-based infant formula: The missing link to understand early childhood obesity. J Obes 2012, 2012:197653.
  • [175]Harlan SM, Guo DF, Morgan DA, Fernandes-Santos C, Rahmouni K: Hypothalamic mTORC1 signaling controls sympathetic nerve activity and arterial pressure and mediates leptin effects. Cell Metab 2013, 17:599-606.
  • [176]Villanueva EC, Münzberg H, Cota D, Leshan RL, Kopp K, Ishida-Takahashi R, Jones JC, Fingar DC, Seeley RJ, Myers MG Jr: Complex regulation of mammalian target of rapamycin complex 1 in the basomedial hypothalamus by leptin and nutritional status. Endocrinology 2009, 150:4541-4551.
  • [177]Oken E, Gillman MW: Fetal origins of obesity. Obes Res 2003, 11:496-506.
  • [178]Gillman MW: A life course approach to obesity. In A life course approach to chronic disease epidemiology. 2nd edition. Edited by Kuh D, Be-Shlomo Y. Oxford University Press, New York, NY; 2004:189-217.
  • [179]Freinkel N: Banting Lecture 1980. Of pregnancy and progeny. Diabetes 1980, 29:1023-1035.
  • [180]Lynch CJ, Adams SH: Branched-chain amino acids in metabolic signalling and insulin resistance. Nat Rev Endocrinol 2014, 10:723-736.
  • [181]Whitaker RC, Dietz WH: Role of the prenatal environment in the development of obesity. J Pediatr 1998, 132:768-776.
  • [182]Melnik BC: Formula feeding promotes adipogenic, diabetogenic, hypertonic and allergic mTORC1-programming. In Handbook of dietary and nutritional aspects of bottle feeding. Human Health Handbooks no. 8, Wageningen Academic Publishers Wageningen Edited by Preedy VR, Watson RR, Zibadi S. 2014, 545-568.
  • [183]Harvard School of Public Health. The Nutrition Source: Calcium and milk. http://www.hsph.harvard.edu/nutritionsource/what-should-you-eat/calcium-and-milk/.
  • [184]Melnik BC, John SM, Schmitz G: Milk: an exosomal microRNA transmitter promoting thymic regulatory T cell maturation preventing the development of atopy? J Transl Med 2014, 12:43.
  • [185]Dodd JM, McPhee AJ, Turnbull D, Yelland LN, Deussen AR, Grivell RM, Crowther CA, Wittert G, Owens JA, Robinson JS: For the LIMIT Randomised Trial Group: The effects of antenatal dietary and lifestyle advice for women who are overweight or obese on neonatal health outcomes: the LIMIT randomized trial. BMC Med 2014, 12:163.
  文献评价指标  
  下载次数:0次 浏览次数:9次