期刊论文详细信息
Molecular Neurodegeneration
Histone deacetylase-3 interacts with ataxin-7 and is altered in a spinocerebellar ataxia type 7 mouse model
Lisa M Ellerby1  Cathy Vitelli1  Caitlin Rugani1  Theodora Papanikolaou1  Mahru C An1  Carlotta E Duncan1 
[1] Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA 94945, USA
关键词: Polyglutamine;    Spinocerebellar ataxia type 7;    Ataxin-7;    HDAC;   
Others  :  862067
DOI  :  10.1186/1750-1326-8-42
 received in 2013-04-22, accepted in 2013-10-09,  发布年份 2013
PDF
【 摘 要 】

Spinocerebellar ataxia type 7 (SCA7) is caused by a toxic polyglutamine (polyQ) expansion in the N-terminus of the protein ataxin-7. Ataxin-7 has a known function in the histone acetylase complex, Spt/Ada/Gcn5 acetylase (STAGA) chromatin-remodeling complex. We hypothesized that some histone deacetylase (HDAC) family members would impact the posttranslational modification of normal and expanded ataxin-7 and possibly modulate ataxin-7 function or neurotoxicity associated with the polyQ expansion. Interestingly, when we coexpressed each HDAC family member in the presence of ataxin-7 we found that HDAC3 increased the posttranslational modification of normal and expanded ataxin-7. Specifically, HDAC3 stabilized ataxin-7 and increased modification of the protein. Further, HDAC3 physically interacts with ataxin-7. The physical interaction of HDAC3 with normal and polyQ-expanded ataxin-7 affects the toxicity in a polyQ-dependent manner. We detect robust HDAC3 expression in neurons and glia in the cerebellum and an increase in the levels of HDAC3 in SCA7 mice. Consistent with this we found altered lysine acetylation levels and deacetylase activity in the brains of SCA7 transgenic mice. This study implicates HDAC3 and ataxin-7 interaction as a target for therapeutic intervention in SCA7, adding to a growing list of neurodegenerative diseases that may be treated by HDAC inhibitors.

【 授权许可】

   
2013 Duncan et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140725010809361.pdf 2075KB PDF download
99KB Image download
49KB Image download
158KB Image download
87KB Image download
70KB Image download
70KB Image download
64KB Image download
【 图 表 】

【 参考文献 】
  • [1]Lindblad K, Savontaus ML, Stevanin G, Holmberg M, Digre K, Zander C, Ehrsson H, David G, Benomar A, Nikoskelainen E, Trottier Y, Holmgren G, Ptacek LJ, Anttinen A, Brice A, Schalling M: An expanded CAG repeat sequence in spinocerebellar ataxia type 7. Genome Res 1996, 6:965-971.
  • [2]David G, Abbas N, Stevanin G, Durr A, Yvert G, Cancel G, Weber C, Imbert G, Saudou F, Antoniou E, Drabkin H, Gemmill R, Giunti P, Benomar A, Wood N, Ruberg M, Agid Y, Mandel JL, Brice A: Cloning of the SCA7 gene reveals a highly unstable CAG repeat expansion. Nat Genet 1997, 17:65-70.
  • [3]Del-Favero J, Krols L, Michalik A, Theuns J, Lofgren A, Goossens D, Wehnert A, Van den Bossche D, Van Zand K, Backhovens H, van Regenmorter N, Martin JJ, Van Broeckhoven C: Molecular genetic analysis of autosomal dominant cerebellar ataxia with retinal degeneration (ADCA type II) caused by CAG triplet repeat expansion. Hum Mol Genet 1998, 7:177-186.
  • [4]David G, Durr A, Stevanin G, Cancel G, Abbas N, Benomar A, Belal S, Lebre AS, Abada-Bendib M, Grid D, Holmberg M, Yahyaoui M, Hentati F, Chkili T, Agid Y, Brice A: Molecular and clinical correlations in autosomal dominant cerebellar ataxia with progressive macular dystrophy (SCA7). Hum Mol Genet 1998, 7:165-170.
  • [5]Michalik A, Martin JJ, Van Broeckhoven C: Spinocerebellar ataxia type 7 associated with pigmentary retinal dystrophy. Eur J Hum Genet 2004, 12:2-15.
  • [6]Cancel G, Duyckaerts C, Holmberg M, Zander C, Yvert G, Lebre AS, Ruberg M, Faucheux B, Agid Y, Hirsch E, Brice A: Distribution of ataxin-7 in normal human brain and retina. Brain 2000, 123(Pt 12):2519-2530.
  • [7]Lindenberg KS, Yvert G, Muller K, Landwehrmeyer GB: Expression analysis of ataxin-7 mRNA and protein in human brain: evidence for a widespread distribution and focal protein accumulation. Brain Pathol 2000, 10:385-394.
  • [8]Palhan VB, Chen S, Peng GH, Tjernberg A, Gamper AM, Fan Y, Chait BT, La Spada AR, Roeder RG: Polyglutamine-expanded ataxin-7 inhibits STAGA histone acetyltransferase activity to produce retinal degeneration. Proc Natl Acad Sci USA 2005, 102:8472-8477.
  • [9]Helmlinger D, Hardy S, Sasorith S, Klein F, Robert F, Weber C, Miguet L, Potier N, Van-Dorsselaer A, Wurtz JM, Mandel JL, Tora L, Devys D: Ataxin-7 is a subunit of GCN5 histone acetyltransferase-containing complexes. Hum Mol Genet 2004, 13:1257-1265.
  • [10]Strom AL, Forsgren L, Holmberg M: A role for both wild-type and expanded ataxin-7 in transcriptional regulation. Neurobiol Dis 2005, 20:646-655.
  • [11]Holmberg M, Duyckaerts C, Durr A, Cancel G, Gourfinkel-An I, Damier P, Faucheux B, Trottier Y, Hirsch EC, Agid Y, Brice A: Spinocerebellar ataxia type 7 (SCA7): a neurodegenerative disorder with neuronal intranuclear inclusions. Hum Mol Genet 1998, 7:913-918.
  • [12]Einum DD, Townsend JJ, Ptacek LJ, Fu YH: Spinocerebellar ataxia type 7 (SCA7): a neurodegenerative disorder with neuronal intranuclear inclusions. Neurogenetics 2001, 3:83-90.
  • [13]Yvert G, Lindenberg KS, Devys D, Helmlinger D, Landwehrmeyer GB, Mandel JL: SCA7 mouse models show selective stabilization of mutant ataxin-7 and similar cellular responses in different neuronal cell types. Hum Mol Genet 2001, 10:1679-1692.
  • [14]La Spada AR, Fu Y, Sopher BL, Libby RT, Wang X, Li LY, Einum DD, Huang J, Possin DE, Smith AC, Martinez RA, Koszdin KL, Treuting PM, Ware CB, Hurley JB, Ptacek LJ, Chen S: Polyglutamine-expanded ataxin-7 antagonizes CRX function and induces cone-rod dystrophy in a mouse model of SCA7. Neuron 2001, 31:913-927.
  • [15]Latouche M, Lasbleiz C, Martin E, Monnier V, Debeir T, Mouatt-Prigent A, Muriel MP, Morel L, Ruberg M, Brice A, Stevanin G, Tricoire H: A conditional pan-neuronal Drosophila model of spinocerebellar ataxia 7 with a reversible adult phenotype suitable for identifying modifier genes. J Neurosci 2007, 27:2483-2492.
  • [16]Mookerjee S, Papanikolaou T, Guyenet SJ, Sampath V, Lin A, Vitelli C, DeGiacomo F, Sopher BL, Chen SF, La Spada AR, Ellerby LM: Posttranslational modification of ataxin-7 at lysine 257 prevents autophagy-mediated turnover of an N-terminal caspase-7 cleavage fragment. J Neurosci 2009, 29:15134-15144.
  • [17]McCullough SD, Grant PA: Histone acetylation, acetyltransferases, and ataxia–alteration of histone acetylation and chromatin dynamics is implicated in the pathogenesis of polyglutamine-expansion disorders. Adv Protein Chem Struct Biol 2010, 79:165-203.
  • [18]Tsai CC, Kao HY, Mitzutani A, Banayo E, Rajan H, McKeown M, Evans RM: Ataxin 1, a SCA1 neurodegenerative disorder protein, is functionally linked to the silencing mediator of retinoid and thyroid hormone receptors. Proc Natl Acad Sci USA 2004, 101:4047-4052.
  • [19]Evert BO, Araujo J, Vieira-Saecker AM, de Vos RA, Harendza S, Klockgether T, Wullner U: Ataxin-3 represses transcription via chromatin binding, interaction with histone deacetylase 3, and histone deacetylation. J Neurosci 2006, 26:11474-11486.
  • [20]Li J, Wang J, Wang J, Nawaz Z, Liu JM, Qin J, Wong J: Both corepressor proteins SMRT and N-CoR exist in large protein complexes containing HDAC3. EMBO J 2000, 19:4342-4350.
  • [21]Wen YD, Perissi V, Staszewski LM, Yang WM, Krones A, Glass CK, Rosenfeld MG, Seto E: The histone deacetylase-3 complex contains nuclear receptor corepressors. Proc Natl Acad Sci USA 2000, 97:7202-7207.
  • [22]Guenther MG, Barak O, Lazar MA: The SMRT and N-CoR corepressors are activating cofactors for histone deacetylase 3. Mol Cell Biol 2001, 21:6091-6101.
  • [23]Sengupta N, Seto E: Regulation of histone deacetylase activities. J Cell Biochem 2004, 93:57-67.
  • [24]Baek SH, Ohgi KA, Rose DW, Koo EH, Glass CK, Rosenfeld MG: Exchange of N-CoR corepressor and Tip60 coactivator complexes links gene expression by NF-kappaB and beta-amyloid precursor protein. Cell 2002, 110:55-67.
  • [25]Broide RS, Redwine JM, Aftahi N, Young W, Bloom FE, Winrow C: Distribution of histone deacetylases 1-11 in the rat brain. J Mol Neurosci 2007, 31:47-58.
  • [26]Bhaskara S, Chyla BJ, Amann JM, Knutson SK, Cortez D, Sun ZW, Hiebert SW: Deletion of histone deacetylase 3 reveals critical roles in S phase progression and DNA damage control. Mol Cell 2008, 30:61-72.
  • [27]Bardai FH, D’Mello SR: Selective toxicity by HDAC3 in neurons: regulation by Akt and GSK3beta. J Neurosci 2011, 31:1746-1751.
  • [28]Bardai FH, Price V, Zaayman M, Wang L, D'Mello SR: Histone deacetylase-1 (HDAC1) is a molecular switch between neuronal survival and death. J Biol Chem 2012, 287:35444-35453.
  • [29]Hockly E, Richon VM, Woodman B, Smith DL, Zhou X, Rosa E, Sathasivam K, Ghazi-Noori S, Mahal A, Lowden PA, Steffan JS, Marsh JL, Thompson LM, Lewis CM, Marks PA, Bates GP: Suberoylanilide hydroxamic acid, a histone deacetylase inhibitor, ameliorates motor deficits in a mouse model of Huntington's disease. Proc Natl Acad Sci USA 2003, 100:2041-2046.
  • [30]Bates EA, Victor M, Jones AK, Shi Y, Hart AC: Differential contributions of Caenorhabditis elegans histone deacetylases to huntingtin polyglutamine toxicity. J Neurosci 2006, 26:2830-2838.
  • [31]Thomas EA, Coppola G, Desplats PA, Tang B, Soragni E, Burnett R, Gao F, Fitzgerald KM, Borok JF, Herman D, Geschwind DH, Gottesfeld J: The HDAC inhibitor 4b ameliorates the disease phenotype and transcriptional abnormalities in Huntington's disease transgenic mice. Proc Natl Acad Sci USA 2008, 105:15564-15569.
  • [32]Sandi C, Pinto RM, Al-Mahdawi S, Ezzatizadeh V, Barnes G, Jones S, Rusche JR, Gottesfeld JM, Pook MA: Prolonged treatment with pimelic o-aminobenzamide HDAC inhibitors ameliorates the disease phenotype of a Friedreich ataxia mouse model. Neurobiol Dis 2011, 42:496-505.
  • [33]Janer A, Werner A, Takahashi-Fujigasaki J, Daret A, Fujigasaki H, Takada K, Duyckaerts C, Brice A, Dejean A, Sittler A: SUMOylation attenuates the aggregation propensity and cellular toxicity of the polyglutamine expanded ataxin-7. Hum Mol Genet 2010, 19:181-195.
  • [34]Butler R, Bates GP: Histone deacetylase inhibitors as therapeutics for polyglutamine disorders. Nature Rev Neurosci 2006, 7:784-796.
  • [35]McCampbell A, Taye AA, Whitty L, Penney E, Steffan JS, Fischbeck KH: Histone deacetylase inhibitors reduce polyglutamine toxicity. Proc Natl Acad Sci USA 2001, 98:15179-15184.
  • [36]Morrison BE, Majdzadeh N, D'Mello SR: Histone deacetylases: focus on the nervous system. Cellular and molecular life sciences: CMLS 2007, 64:2258-2269.
  • [37]Dietz KC, Casaccia P: HDAC inhibitors and neurodegeneration: at the edge between protection and damage. Pharmacological research : the official journal of the Italian Pharmacological Society 2010, 62:11-17.
  • [38]McQuown SC, Barrett RM, Matheos DP, Post RJ, Rogge GA, Alenghat T, Mullican SE, Jones S, Rusche JR, Lazar MA, Wood MA: HDAC3 is a critical negative regulator of long-term memory formation. J Neurosci 2011, 31:764-774.
  • [39]Shen S, Li J, Casaccia-Bonnefil P: Histone modifications affect timing of oligodendrocyte progenitor differentiation in the developing rat brain. J Cell Biol 2005, 169:577-589.
  • [40]Custer SK, Garden GA, Gill N, Rueb U, Libby RT, Schultz C, Guyenet SJ, Deller T, Westrum LE, Sopher BL, La Spada AR: Bergmann glia expression of polyglutamine-expanded ataxin-7 produces neurodegeneration by impairing glutamate transport. Nat Neurosci 2006, 9:1302-1311.
  • [41]Furrer SA, Mohanachandran MS, Waldherr SM, Chang C, Damian VA, Sopher BL, Garden GA, La Spada AR: Spinocerebellar ataxia type 7 cerebellar disease requires the coordinated action of mutant ataxin-7 in neurons and glia, and displays non-cell-autonomous bergmann glia degeneration. J Neurosci 2011, 31:16269-16278.
  • [42]McFarland KN, Das S, Sun TT, Leyfer D, Xia E, Sangrey GR, Kuhn A, Luthi-Carter R, Clark TW, Sadri-Vakili G, Cha JH: Genome-wide histone acetylation is altered in a transgenic mouse model of Huntington's disease. PloS one 2012, 7:e41423.
  • [43]Xu C, Soragni E, Chou CJ, Herman D, Plasterer HL, Rusch JR, Gottesfeld JM: Chemical probes identify a role for histone deacetylase 3 in Friedreich's ataxia gene silencing. Chem Biol 2009, 16:980-989.
  • [44]Chen JY, Wang E, Galvan L, Huynh M, Joshi P, Cepeda C, Levine MS: Effects of the Pimelic Diphenylamide Histone Deacetylase Inhibitor HDACi 4b on the R6/2 and N171-82Q Mouse Models of Huntington's Disease. PLoS Currents 2013., 5http://currents.plos.org/hd/article/effects-of-the-pimelic-diphenylamide-histone-deacetylase-inhibitor-hdaci-4b-on-the-r62-and-n171-82q-mouse-models-of-huntingtons-disease/ webcite, doi:10.1371/currents.hd.ec3547da1c2a520ba959ee7bf8bdd202
  • [45]Beconi M, Aziz O, Matthews K, Moumne L, O'Connell C, Yates D, Clifton S, Pett H, Vann J, Crowley L, Haughan AF, Smith DL, Woodman B, Bates GP, Brookfield F, Burli RW, McAllister G, Dominguez C, Munoz-Sanjuan I, Beaumont V: Oral administration of the pimelic diphenylamide HDAC inhibitor HDACi 4b is unsuitable for chronic inhibition of HDAC activity in the CNS in vivo. PloS One 2012, 7:e44498.
  • [46]Moumne L, Campbell K, Howland D, Ouyang Y, Bates GP: Genetic knock-down of HDAC3 does not modify disease-related phenotypes in a mouse model of Huntington's disease. PloS One 2012, 7:e31080.
  • [47]Bardai FH, Verma P, Smith C, Rawat V, Wang L, D'Mello SR: Disassociation of histone deacetylase-3 from normal huntingtin underlies mutant huntingtin neurotoxicity. J Neurosci 2013, 33:11833-11838.
  • [48]Debacker K, Frizzell A, Gleeson O, Kirkham-McCarthy L, Mertz T, Lahue RS: Histone deacetylase complexes promote trinucleotide repeat expansions. PLoS Biol 2012, 10:e1001257.
  • [49]Sancho-Pelluz J, Alavi MV, Sahaboglu A, Kustermann S, Farinelli P, Azadi S, van Veen T, Romero FJ, Paquet-Durand F, Ekstrom P: Excessive HDAC activation is critical for neurodegeneration in the rd1 mouse. Cell death Dis 2010, 1:e24.
  文献评价指标  
  下载次数:19次 浏览次数:16次