期刊论文详细信息
International Journal of Health Geographics
Assessing socioeconomic vulnerability to dengue fever in Cali, Colombia: statistical vs expert-based modeling
Stefan Kienberger2  Irene Casas1  Eric Delmelle3  Michael Hagenlocher2 
[1] Department of Social Sciences, Louisiana Tech University, Ruston, LA 71272, USA;Interfaculty Department of Geoinformatics – Z_GIS, University of Salzburg, Schillerstraße 30, Salzburg 5020, Austria;Department of Geography and Earth Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
关键词: Colombia;    Vector-borne diseases;    Geovisualization;    GIS;    Expert-based vs. statistical modeling;    Composite indicators;    Vulnerability;    Dengue fever;   
Others  :  810081
DOI  :  10.1186/1476-072X-12-36
 received in 2013-06-05, accepted in 2013-08-08,  发布年份 2013
PDF
【 摘 要 】

Background

As a result of changes in climatic conditions and greater resistance to insecticides, many regions across the globe, including Colombia, have been facing a resurgence of vector-borne diseases, and dengue fever in particular. Timely information on both (1) the spatial distribution of the disease, and (2) prevailing vulnerabilities of the population are needed to adequately plan targeted preventive intervention. We propose a methodology for the spatial assessment of current socioeconomic vulnerabilities to dengue fever in Cali, a tropical urban environment of Colombia.

Methods

Based on a set of socioeconomic and demographic indicators derived from census data and ancillary geospatial datasets, we develop a spatial approach for both expert-based and purely statistical-based modeling of current vulnerability levels across 340 neighborhoods of the city using a Geographic Information System (GIS). The results of both approaches are comparatively evaluated by means of spatial statistics. A web-based approach is proposed to facilitate the visualization and the dissemination of the output vulnerability index to the community.

Results

The statistical and the expert-based modeling approach exhibit a high concordance, globally, and spatially. The expert-based approach indicates a slightly higher vulnerability mean (0.53) and vulnerability median (0.56) across all neighborhoods, compared to the purely statistical approach (mean = 0.48; median = 0.49). Both approaches reveal that high values of vulnerability tend to cluster in the eastern, north-eastern, and western part of the city. These are poor neighborhoods with high percentages of young (i.e., < 15 years) and illiterate residents, as well as a high proportion of individuals being either unemployed or doing housework.

Conclusions

Both modeling approaches reveal similar outputs, indicating that in the absence of local expertise, statistical approaches could be used, with caution. By decomposing identified vulnerability “hotspots” into their underlying factors, our approach provides valuable information on both (1) the location of neighborhoods, and (2) vulnerability factors that should be given priority in the context of targeted intervention strategies. The results support decision makers to allocate resources in a manner that may reduce existing susceptibilities and strengthen resilience, and thus help to reduce the burden of vector-borne diseases.

【 授权许可】

   
2013 Hagenlocher et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140709032705565.pdf 2590KB PDF download
Figure 7. 68KB Image download
Figure 6. 74KB Image download
Figure 5. 143KB Image download
Figure 4. 83KB Image download
Figure 3. 123KB Image download
Figure 2. 38KB Image download
Figure 1. 71KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

【 参考文献 】
  • [1]Githeko AK, Lindsay SW, Confalonieri UE, Patz JA: Climate change and vector-borne diseases: a regional analysis. Bull World Health Organ 2000, 78(9):1136-1147.
  • [2]Gubler DJ: Resurgent vector-borne diseases as a global health problem. Emerg Infect Dis 1998, 4(3):442-450.
  • [3]Sutherst RW: Global change and human vulnerability to vector-borne diseases. Clin Microbiol Rev 2004, 17(1):136-173.
  • [4]Intergovernmental Panel on Climate Change: Climate change 2007: the physical science basis. contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge, UK, and New York, NY, USA: Cambridge University Press; 2007.
  • [5]Gubler DJ: Epidemic dengue/dengue hemorrhagic fever as a public health, social and economic problem in the 21st century. Trends Microbiol 2002, 10:100-103.
  • [6]Sachs J, Malaney P: The economic and social burden of malaria. Nature 2002, 415:680-685.
  • [7]Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, Drake JM, Brownstein JS, Hoen AG, Sankoh O, Myers MF, George DB, Jaenisch T, Wint GRW, Simmons CP, Scott TW, Farrar JJ, Hay SI: The global distribution and burden of dengue. Nature 2013, 496(7446):504-507.
  • [8]World Health Organization: Dengue and severe dengue. Factsheet N° 117. 2012. http://www.who.int/mediacentre/factsheets/fs117/en/index.html webcite
  • [9]Simmons CP, Farrar JJ, Nguyen vV, Wills B: Dengue. N Engl J Med 2012, 366(15):1423-1432.
  • [10]Braga C, Luna CF, Martelli CM, de Souza WV, Cordeiro MT, Alexander N, de Albuquerque MF, Júnior JC, Marques ET: Seroprevalence and risk factors for dengue infection in socio-economically distinct areas of Recife Brazil. Acta Trop 2010, 113(3):234-240.
  • [11]Getis A, Morrison AC, Gray K, Scott TW: Characteristics of the spatial pattern of the dengue vector, Aedes aegypti, in Iquitos, Peru. Am J Trop Med Hyg 2003, 69(5):494-505.
  • [12]Honório NA, Nogueira RMR, Codeço CT, Carvalho MS, Cruz OG, Magalhães MDAFM, De Araújo JMG, de Araújo ESM, Gomes MQ, Pinheiro LS, da Silva Pinel C, Lourenço-de-Oliveira R: Spatial evaluation and modeling of Dengue seroprevalence and vector density in Rio de Janeiro Brazil. PLoS Negl Trop Dis 2009, 3(11):1-11.
  • [13]Paz-Soldan VA, Plasai V, Morrison AC, Rios-Lopez EJ, Guedez-Gonzales S, Grieco JP, Mundal K, Chareonviriyaphap T, Achee NL: Initial assessment of the acceptability of a push-pull aedes aegypti control strategy in Iquitos, Peru and Kanchanaburi Thailand. Am J Trop Med Hyg 2011, 84(2):208-217.
  • [14]Teixeira M, Barreto ML, Costa Mda C, Ferreira LD, Vasconcelos PF, Cairncross S: Dynamics of dengue virus circulation: a silent epidemic in a complex urban area. Trop Med Int Health 2002, 7(9):757-762.
  • [15]Troyo A, Fuller DO, Calderón-Arguedas O, Solano ME, Beier JC: Urban structure and dengue fever in Puntarenas, Costa Rica. Singap J Trop Geogr 2009, 30(2):265-282.
  • [16]Romero-Vivas CM, Leake CJ, Falconar AK: Determination of dengue virus serotypes in individual Aedes aegypti mosquitoes in Colombia. Med Vet Entomol 1998, 12:284-288.
  • [17]Mendez JA, Usme-Ciro JA, Domingo C, Rey GJ, Sanchez JA, Tenorio A, Gallego-Gomez JC: Phylogenetic history demonstrates two different lineages of dengue type 1 virus in Colombia. Virol J 2010, 7(226):1-12.
  • [18]Cali, SdSPMd: Historia del dengue en Cali. Endemia o una continua epidemia. Cali: Secretaria de Salud Publica Municipal de Cali; 2010.
  • [19]Delmelle E, Casas I, Rojas J, Varelo A: Modeling spatio-temporal patterns of dengue fever, Colombia. Int J Applied Geospatial Researchin press
  • [20]Birkmann J: Measuring Vulnerability to Towards Disaster Resilient Societies. Shibuya-ku, Tokyo, Japan: Nations University Press; 2006.
  • [21]Cutter SL, Boruff BJ, Shirley WL: Social vulnerability to environmental hazards. Soc Sci Quart 2003, 84:242-261.
  • [22]Füssel HM: Vulnerability: a generally applicable conceptual framework for climate change research. Glob Environ Change 2007, 17(2):155-167.
  • [23]Intergovernmental Panel on Climate Change: Managing the risks of extreme events and disasters to advance climate change adaptation. a special report of working groups I and II of the intergovernmental panel on climate change. Cambridge, UK, and New York, NY, USA: Cambridge University Press; 2012:582.
  • [24]Bates I, Fenton C, Gruber J, Lalloo D, Lara AM, Squire SB, Theobald S, Thomson R, Tolhurst R: Vulnerability to malaria, tuberculosis, and HIV/AIDS infection and disease. Part 1: determinants operating at individual and household level. Lancet Infect Dis 2004, 4:267-277.
  • [25]Bates I, Fenton C, Gruber J, Lalloo D, Lara AM, Squire SB, Theobald S, Thomson R, Tolhurst R: Vulnerability to malaria, tuberculosis, and HIV/AIDS infection and disease. Part II: determinants operating at environmental and institutional level. Lancet Infect Dis 2004, 4:368-375.
  • [26]Semenza JC, Suk JE, Estevez V, Ebi KL, Lindgren E: Mapping climate change vulnerabilities to infectious diseases in Europe. Environ Health Perspect 2012, 120(3):385-392.
  • [27]De Mattos Almeida MC, Caiaffa WT, Assuncao RM, Proietti FA: Spatial vulnerability to dengue in a Brazilian urban area during a 7-year surveillance. J Urban Health 2007, 84(3):334-345.
  • [28]Martinez TTP, Rojas LI, Valdés LS, Noa RR: Spatial vulnerability to dengue: an application of the geographic information systems in Playa municipality, City of Havana. Revista Cubana de Salud Pública 2003, 29(4):353-365.
  • [29]Mazrura S, Rozita H, Hidayatulfathi O, Zainudin MA, Mohamad Naim MR, Nadia Atiqah MN, Rafeah MN, Er AC, Norela S, Nurul Ashikin Z, Joy JP: Community vulnerability on dengue and its association with climate variability in Malaysia: a public health approach. Malaysian Journal of Public Health Medicine 2010, 10(2):25-34.
  • [30]Tipayamongkholgul M, Lisakulruk S: Socio-geographical factors in vulnerability to dengue in Thai villages: a spatial regression analysis. Geospat Health 2011, 5(2):191-198.
  • [31]Dickin SK, Schuster-Wallace CJ, Elliott SJ: Developing a vulnerability mapping methodology: applying the water-associated disease index to dengue in Malaysia. PLoS ONE 2013, 8(5):e63584.
  • [32]Chang AY, Parrales ME, Jimenez J, Sobieszczyk ME, Hammer SC, Copenhaver DJ, Kulkarni RP: Combining Google earth and GIS mapping technologies in a dengue surveillance system for developing countries. Int J Health Geogr 2009, 8:49.
  • [33]Vazquez-Prokopec GM, Stoddard ST, Paz-Soldan V, Morrison AC, Elder JP, Kochel TJ, Scott TW, Kitron U: Usefulness of commercially available GPS data-loggers for tracking human movement and exposure to dengue virus. Int J Health Geogr 2009, 8:68.
  • [34]Vanwambeke SO, van Benthem BHB, Khantikul N, Burghoorn-Maas C, Panart K, Oskam L, Lambin EF, Pradya : Multi-level analyses of spatial and temporal determinants for dengue infection. Int J Health Geogr 2006, 5:5.
  • [35]Stratton LM, O’Neill S, Kruk ME, Bell ML: The persistence of malaria: addressing the fundamental causes of a global killer. Soc Sci Med 2008, 67:854-862.
  • [36]Jones CO, Williams HA: The social burden of malaria: what are we measuring? Am J Trop Med Hyg 2004, 71(2):156-161.
  • [37]Cali, AdSd: Cali en cifras. Cali: Alcaldia de Cali. 2008. http://planeacion.cali.gov.co/Publicaciones/Cali_en_cifras/Caliencifras2010.pdf webcite
  • [38]Restrepo LDE: El plan piloto de cali 1950. Revista Bitacora Urbano Territorial 2006, 1:222-223.
  • [39]Casas I, Delmelle E, Varela A: A space-time approach to diffusion of health service provision information. Int Reg Sci Rev 2010, 33(2):134-156.
  • [40]Birkmann J, Cardonna OD, Carreno ML, Barbat AH, Pelling M, Schneiderbauer S, Kienberger S, Keiler M, Alexander D, Zeil P, Welle T: Framing vulnerability, risk and societal responses: the MOVE framework. Nat Hazards 2013. online
  • [41]Organisation for Economic Co-operation and Development: Handbook on constructing composite indicators: methodology and user guide. 2008. http://www.oecd.org/std/42495745.pdf webcite
  • [42]Malczewski J: GIS and multicriteria decision analysis. New York, NY, USA: Wiley; 1999.
  • [43]Guha-Sapir D, Schimmer B: Dengue fever: new paradigms for a changing epidemiology. Emerg Themes Epidemiol 2005, 2:7622-7632.
  • [44]Were F: The dengue situation in Africa. Paediatr Int Child Health 2012, 32(1):18-21.
  • [45]Sierra CB, Kouri G, Guzman MG: Race: a risk factor for dengue hemorrhagic fever. Arch Virol 2007, 152:533-542.
  • [46]Kouri GP, Guzman MG, Bravo JR, Triana C: Dengue haemorrhagic fever/dengue shock syndrome: lessons from the Cuban epidemic. Bull World Health 1981, 67:375-380.
  • [47]Moldan B, Dahl AL: Challenges to sustainability indicators. In Sustainability Indicators. A Scientific Assessment. Edited by Hak T, Moldan B, Dahl AL. Washington, DC, USA: Island Press; 2007:1-26.
  • [48]Delmelle EC, Casas I: Evaluating the spatial equity of bus rapid transit-based accessibility patterns in a developing country: the case of Cali, Colombia. Transport Policy 2012, 20:36-46.
  • [49]Wisner B, Blaikie P, Cannon T, Davis I: At risk: natural hazards, people’s vulnerability and disasters. New York, NY, USA: Routledge; 2004.
  • [50]Rygel L, O’Sullivan D, Yarnal B: A method for constructing a social vulnerability index: an application to hurricane storm surges in a developed country. Mitig Adapt Strat Glob Chang 2006, 11:741-764.
  • [51]Groeneveld RA, Meeden G: Measuring Skewness and Kurtosis. J R Stat Soc Discipline 1984, 33(4):391-399.
  • [52]Anselin L: Local indicators of spatial association—LISA. Geographical analysis 1995, 27(2):93-115.
  • [53]Blaschke T, Donert K, Gossette F, Kienberger S, Marani M, Qureshi S, Tiede D: Virtual globes: serving science and society. Information 2012, 3(3):372-390.
  • [54]Openshaw S: The modifiable areal unit problem. Norwich: Concepts and Techniques in Modern Geography; 1984.
  • [55]Kienberger S, Lang S, Zeil P: Spatial vulnerability units – expert-based spatial modeling of socio-economic vulnerability in the Salzach catchment, Austria. Nat Hazard Earth Sys 2009, 9:767-778.
  文献评价指标  
  下载次数:122次 浏览次数:72次