期刊论文详细信息
Journal of Neuroinflammation
Acetate supplementation modulates brain histone acetylation and decreases interleukin-1β expression in a rat model of neuroinflammation
Thad A Rosenberger1  Heidi M Houdek1  Mark D Smith1  Mahmoud L Soliman1 
[1] Department of Pharmacology, Physiology and Therapeutics, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58203, USA
关键词: neuroinflammation;    histone deacetylase;    histone acetyltransferase;    histone;    cytokines;    brain;    Acetylation;   
Others  :  1212731
DOI  :  10.1186/1742-2094-9-51
 received in 2011-10-17, accepted in 2012-03-13,  发布年份 2012
PDF
【 摘 要 】

Background

Long-term acetate supplementation reduces neuroglial activation and cholinergic cell loss in a rat model of lipopolysaccharide-induced neuroinflammation. Additionally, a single dose of glyceryl triacetate, used to induce acetate supplementation, increases histone H3 and H4 acetylation and inhibits histone deacetylase activity and histone deacetylase-2 expression in normal rat brain. Here, we propose that the therapeutic effect of acetate in reducing neuroglial activation is due to a reversal of lipopolysaccharide-induced changes in histone acetylation and pro-inflammatory cytokine expression.

Methods

In this study, we examined the effect of a 28-day-dosing regimen of glyceryl triacetate, to induce acetate supplementation, on brain histone acetylation and interleukin-1β expression in a rat model of lipopolysaccharide-induced neuroinflammation. The effect was analyzed using Western blot analysis, quantitative real-time polymerase chain reaction and enzymic histone deacetylase and histone acetyltransferase assays. Statistical analysis was performed using one-way analysis of variance, parametric or nonparametric when appropriate, followed by Tukey's or Dunn's post-hoc test, respectively.

Results

We found that long-term acetate supplementation increased the proportion of brain histone H3 acetylated at lysine 9 (H3K9), histone H4 acetylated at lysine 8 and histone H4 acetylated at lysine 16. However, unlike a single dose of glyceryl triacetate, long-term treatment increased histone acetyltransferase activity and had no effect on histone deacetylase activity, with variable effects on brain histone deacetylase class I and II expression. In agreement with this hypothesis, neuroinflammation reduced the proportion of brain H3K9 acetylation by 50%, which was effectively reversed with acetate supplementation. Further, in rats subjected to lipopolysaccharide-induced neuroinflammation, the pro-inflammatory cytokine interleukin-1β protein and mRNA levels were increased by 1.3- and 10-fold, respectively, and acetate supplementation reduced this expression to control levels.

Conclusion

Based on these results, we conclude that dietary acetate supplementation attenuates neuroglial activation by effectively reducing pro-inflammatory cytokine expression by a mechanism that may involve a distinct site-specific pattern of histone acetylation and histone deacetylase expression in the brain.

【 授权许可】

   
2012 Soliman et al; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150614102953323.pdf 4220KB PDF download
Figure 5. 33KB Image download
Figure 4. 53KB Image download
Figure 3. 34KB Image download
Figure 2. 38KB Image download
Figure 1. 35KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Cheung WL, Briggs SD, Allis CD: Acetylation and chromosomal functions. Curr Opin Cell Biol 2000, 12:326-333.
  • [2]Gorisch SM, Wachsmuth M, Toth KF, Lichter P, Rippe K: Histone acetylation increases chromatin accessibility. J Cell Sci 2005, 118:5825-5834.
  • [3]Strahl BD, Allis CD: The language of covalent histone modifications. Nature 2000, 403:41-45.
  • [4]Shogren-Knaak M, Ishii H, Sun JM, Pazin MJ, Davie JR, Peterson CL: Histone H4-K16 acetylation controls chromatin structure and protein interactions. Science 2006, 311:844-847.
  • [5]Li X, Corsa CA, Pan PW, Wu L, Ferguson D, Yu X, Min J, Dou Y: MOF and H4 K16 acetylation play important roles in DNA damage repair by modulating recruitment of DNA damage repair protein Mdc1. Mol Cell Biol 2010, 30:5335-5347.
  • [6]Hezroni H, Sailaja BS, Meshorer E: Pluripotency-related, VPA-induced genome-wide H3K9 acetylation patterns in embryonic stem cells. J Biol Chem 2011, 286:35977-35988.
  • [7]de Ruijter AJ, van Gennip AH, Caron HN, Kemp S, van Kuilenburg AB: Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem J 2003, 370:737-749.
  • [8]Avalos JL, Bever KM, Wolberger C: Mechanism of sirtuin inhibition by nicotinamide: altering the NAD(+) cosubstrate specificity of a Sir2 enzyme. Mol Cell 2005, 17:855-868.
  • [9]Marmorstein R, Roth SY: Histone acetyltransferases: function, structure, and catalysis. Curr Opin Genet Dev 2001, 11:155-161.
  • [10]Kuo MH, Brownell JE, Sobel RE, Ranalli TA, Cook RG, Edmondson DG, Roth SY, Allis CD: Transcription-linked acetylation by Gcn5p of histones H3 and H4 at specific lysines. Nature 1996, 383:269-272.
  • [11]Howe L, Auston D, Grant P, John S, Cook RG, Workman JL, Pillus L: Histone H3 specific acetyltransferases are essential for cell cycle progression. Genes Dev 2001, 15:3144-3154.
  • [12]Aravalli RN, Peterson PK, Lokensgard JR: Toll-like receptors in defense and damage of the central nervous system. J Neuroimmune Pharmacol 2007, 2:297-312.
  • [13]Lehnardt S, Massillon L, Follett P, Jensen FE, Ratan R, Rosenberg PA, Volpe JJ, Vartanian T: Activation of innate immunity in the CNS triggers neurodegeneration through a Toll-like receptor 4-dependent pathway. Proc Natl Acad Sci USA 2003, 100:8514-8519.
  • [14]Hauss-Wegrzyniak B, Vraniak PD, Wenk GL: LPS-induced neuroinflammatory effects do not recover with time. Neuroreport 2000, 11:1759-1763.
  • [15]Hauss-Wegrzyniak B, Dobrzanski P, Stoehr JD, Wenk GL: Chronic neuroinflammation in rats reproduces components of the neurobiology of Alzheimer's disease. Brain Res 1998, 780:294-303.
  • [16]Hauss-Wegrzyniak B, Lukovic L, Bigaud M, Stoeckel ME: Brain inflammatory response induced by intracerebroventricular infusion of lipopolysaccharide: an immunohistochemical study. Brain Res 1998, 794:211-224.
  • [17]Reisenauer CJ, Bhatt DP, Mitteness DJ, Slanczka ER, Gienger HM, Watt JA, Rosenberger TA: Acetate supplementation attenuates lipopolysaccharide-induced neuroinflammation. J Neurochem 2011, 117:264-274.
  • [18]Rosenberger TA, Villacreses NE, Hovda JT, Bosetti F, Weerasinghe G, Wine RN, Harry GJ, Rapoport SI: Rat brain arachidonic acid metabolism is increased by a 6-day intracerebral ventricular infusion of bacterial lipopolysaccharide. J Neurochem 2004, 88:1168-1178.
  • [19]Lee H, Villacreses NE, Rapoport SI, Rosenberger TA: In vivo imaging detects a transient increase in brain arachidonic acid metabolism: a potential marker of neuroinflammation. J Neurochem 2004, 91:936-945.
  • [20]Mathew R, Arun P, Madhavarao CN, Moffett JR, Namboodiri MA: Progress toward acetate supplementation therapy for Canavan disease: glyceryl triacetate administration increases acetate, but not N-acetylaspartate, levels in brain. J Pharmacol Exp Ther 2005, 315:297-303.
  • [21]Arun P, Madhavarao CN, Moffett JR, Hamilton K, Grunberg NE, Ariyannur PS, Gahl WA, Anikster Y, Mog S, Hallows WC, Denu JM, Namboodiri AM: Metabolic acetate therapy improves phenotype in the tremor rat model of Canavan disease. J Inherit Metab Dis 2010, 33:195-210.
  • [22]Arun P, Ariyannur PS, Moffett JR, Xing G, Hamilton K, Grunberg NE, Ives JA, Namboodiri AM: Metabolic acetate therapy for the treatment of traumatic brain injury. J Neurotrauma 2010, 27:293-298.
  • [23]Soliman ML, Rosenberger TA: Acetate supplementation increases brain histone acetylation and inhibits histone deacetylase activity and expression. Mol Cell Biochem 2011, 352:173-180.
  • [24]Adcock IM: HDAC inhibitors as anti-inflammatory agents. Br J Pharmacol 2007, 150:829-831.
  • [25]Langley B, Gensert JM, Beal MF, Ratan RR: Remodeling chromatin and stress resistance in the central nervous system: histone deacetylase inhibitors as novel and broadly effective neuroprotective agents. Curr Drug Targets CNS Neurol Disord 2005, 4:41-50.
  • [26]Streit WJ, Walter SA, Pennell NA: Reactive microgliosis. Prog Neurobiol 1999, 57:563-581.
  • [27]Kargas G, Rudy T, Spennetta T, Takayama K, Querishi N, Shrago E: Separation and quantitation of long-chain free fatty acids in human serum by high-performance liquid chromatography. J Chromatogr 1990, 526:331-340.
  • [28]Sohrabji F, Peeples KW, Marroquin OA: Local and cortical effects of olfactory bulb lesions on trophic support and cholinergic function and their modulation by estrogen. J Neurobiol 2000, 45:61-74.
  • [29]Hulse RE, Kunkler PE, Fedynyshyn JP, Kraig RP: Optimization of multiplexed bead-based cytokine immunoassays for rat serum and brain tissue. J Neurosci Methods 2004, 136:87-98.
  • [30]Bradford MM: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976, 72:248-254.
  • [31]Romero-Calvo I, Ocon B, Martinez-Moya P, Suarez MD, Zarzuelo A, Martinez-Augustin O, de Medina FS: Reversible Ponceau staining as a loading control alternative to actin in western blots. Anal Biochem 2010, 401:318-320.
  • [32]Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25:402-408.
  • [33]Fraga MF, Ballestar E, Villar-Garea A, Boix-Chornet M, Espada J, Schotta G, Bonaldi T, Haydon C, Ropero S, Petrie K, Iyer NG, Pérez-Rosado A, Calvo E, Lopez JA, Cano A, Calasanz MJ, Colomer D, Piris MA, Ahn N, Imhof A, Caldas C, Jenuwein T, Esteller M: Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nat Genet 2005, 37:391-400.
  • [34]Fraga MF, Esteller M: Towards the human cancer epigenome: a first draft of histone modifications. Cell Cycle 2005, 4:1377-1381.
  • [35]Braunstein M, Sobel RE, Allis CD, Turner BM, Broach JR: Efficient transcriptional silencing in Saccharomyces cerevisiae requires a heterochromatin histone acetylation pattern. Mol Cell Biol 1996, 16:4349-4356.
  • [36]Zhang B, West EJ, Van KC, Gurkoff GG, Zhou J, Zhang XM, Kozikowski AP, Lyeth BG: HDAC inhibitor increases histone H3 acetylation and reduces microglia inflammatory response following traumatic brain injury in rats. Brain Res 2008, 1226:181-191.
  • [37]Kawakami K, Nakamura A, Ishigami A, Goto S, Takahashi R: Age-related difference of site-specific histone modifications in rat liver. Biogerontology 2009, 10:415-421.
  • [38]Saha RN, Pahan K: HATs and HDACs in neurodegeneration: a tale of disconcerted acetylation homeostasis. Cell Death Differ 2006, 13:539-550.
  • [39]Madhavarao CN, Arun P, Anikster Y, Mog SR, Staretz-Chacham O, Moffett JR, Grunberg NE, Gahl WA, Namboodiri AM: Glyceryl triacetate for Canavan disease: a low-dose trial in infants and evaluation of a higher dose for toxicity in the tremor rat model. J Inherit Metab Dis 2009, 32:640-650.
  • [40]Segel R, Anikster Y, Zevin S, Steinberg A, Gahl WA, Fisher D, Staretz-Chacham O, Zimran A, Altarescu G: A safety trial of high dose glyceryl triacetate for Canavan disease. Mol Genet Metab 2011, 103:203-206.
  • [41]Grossberg AJ, Zhu X, Leinninger GM, Levasseur PR, Braun TP, Myers MG Jr, Marks DL: Inflammation-induced lethargy is mediated by suppression of orexin neuron activity. J Neurosci 2011, 31:11376-11386.
  • [42]Huang KF, Huang WT, Lin KC, Lin MT, Chang CP: Interleukin-1 receptor antagonist inhibits the release of glutamate, hydroxyl radicals, and prostaglandin E(2) in the hypothalamus during pyrogen-induced fever in rabbits. Eur J Pharmacol 2010, 629:125-131.
  • [43]Vitkovic L, Bockaert J, Jacque C: "Inflammatory" cytokines: neuromodulators in normal brain? J Neurochem 2000, 74:457-471.
  • [44]Legos JJ, Whitmore RG, Erhardt JA, Parsons AA, Tuma RF, Barone FC: Quantitative changes in interleukin proteins following focal stroke in the rat. Neurosci Lett 2000, 282:189-192.
  • [45]Griffin WS, Stanley LC, Ling C, White L, MacLeod V, Perrot LJ, White CL, Araoz C: Brain interleukin 1 and S-100 immunoreactivity are elevated in Down syndrome and Alzheimer disease. Proc Natl Acad Sci USA 1989, 86:7611-7615.
  • [46]Shaftel SS, Griffin WS, O'Banion MK: The role of interleukin-1 in neuroinflammation and Alzheimer disease: an evolving perspective. J Neuroinflammation 2008, 5:7. BioMed Central Full Text
  • [47]McGuinness MC, Powers JM, Bias WB, Schmeckpeper BJ, Segal AH, Gowda VC, Wesselingh SL, Berger J, Griffin DE, Smith KD: Human leukocyte antigens and cytokine expression in cerebral inflammatory demyelinative lesions of X-linked adrenoleukodystrophy and multiple sclerosis. J Neuroimmunol 1997, 75:174-182.
  • [48]Parish CL, Finkelstein DI, Tripanichkul W, Satoskar AR, Drago J, Horne MK: The role of interleukin-1, interleukin-6, and glia in inducing growth of neuronal terminal arbors in mice. J Neurosci 2002, 22:8034-8041.
  • [49]Pernot F, Heinrich C, Barbier L, Peinnequin A, Carpentier P, Dhote F, Baille V, Beaup C, Depaulis A, Dorandeu F: Inflammatory changes during epileptogenesis and spontaneous seizures in a mouse model of mesiotemporal lobe epilepsy. Epilepsia 2011, 52:2315-2325.
  • [50]Meissner F, Molawi K, Zychlinsky A: Mutant superoxide dismutase 1-induced IL-1beta accelerates ALS pathogenesis. Proc Natl Acad Sci USA 2010, 107:13046-13050.
  • [51]Zhao ML, Kim MO, Morgello S, Lee SC: Expression of inducible nitric oxide synthase, interleukin-1 and caspase-1 in HIV-1 encephalitis. J Neuroimmunol 2001, 115:182-191.
  • [52]Basu A, Krady JK, Levison SW: Interleukin-1: a master regulator of neuroinflammation. J Neurosci Res 2004, 78:151-156.
  • [53]Ganter S, Northoff H, Mannel D, Gebicke-Harter PJ: Growth control of cultured microglia. J Neurosci Res 1992, 33:218-230.
  • [54]Kim JH, Min KJ, Seol W, Jou I, Joe EH: Astrocytes in injury states rapidly produce anti-inflammatory factors and attenuate microglial inflammatory responses. J Neurochem 2010, 115:1161-1171.
  • [55]Labow M, Shuster D, Zetterstrom M, Nunes P, Terry R, Cullinan EB, Bartfai T, Solorzano C, Moldawer LL, Chizzonite R, McIntyre KW: Absence of IL-1 signaling and reduced inflammatory response in IL-1 type I receptor-deficient mice. J Immunol 1997, 159:2452-2461.
  • [56]Li Y, Liu B, Zhao H, Sailhamer EA, Fukudome EY, Zhang X, Kheirbek T, Finkelstein RA, Velmahos GC, deMoya M, Hales CA, Alam HB: Protective effect of suberoylanilide hydroxamic acid against LPS-induced septic shock in rodents. Shock 2009, 32:517-523.
  • [57]Bachstetter AD, Xing B, de Almeida L, Dimayuga ER, Watterson DM, Van Eldik LJ: Microglial p38alpha MAPK is a key regulator of proinflammatory cytokine up-regulation induced by toll-like receptor (TLR) ligands or beta-amyloid (Abeta). J Neuroinflammation 2011, 8:79. BioMed Central Full Text
  • [58]Cao W, Bao C, Padalko E, Lowenstein CJ: Acetylation of mitogen-activated protein kinase phosphatase-1 inhibits Toll-like receptor signaling. J Exp Med 2008, 205:1491-1503.
  • [59]Kim JB, Yu YM, Kim SW, Lee JK: Anti-inflammatory mechanism is involved in ethyl pyruvate-mediated efficacious neuroprotection in the postischemic brain. Brain Res 2005, 1060:188-192.
  • [60]Lee JY, Kim YH, Koh JY: Protection by pyruvate against transient forebrain ischemia in rats. J Neurosci 2001, 21:RC171.
  • [61]Fukushima M, Lee SM, Moro N, Hovda DA, Sutton RL: Metabolic and histologic effects of sodium pyruvate treatment in the rat after cortical contusion injury. J Neurotrauma 2009, 26:1095-1110.
  文献评价指标  
  下载次数:14次 浏览次数:21次