期刊论文详细信息
Genome Biology
Epigenetic interplay between mouse endogenous retroviruses and host genes
Dixie L Mager1  Liane Gagnier1  Sharareh Farivar1  Ying Zhang1  Katharine Miceli-Royer1  Rita Rebollo1 
[1] Department of Medical Genetics, Faculty of Medicine, University of British Columbia, 675 West 10th Avenue, Vancouver, BC, V5Z1L3, Canada
关键词: transposable element;    mouse endogenous retroviruses;    heterochromatin spreading;    evolution;    epigenetics;    DNA methylation;   
Others  :  869556
DOI  :  10.1186/gb-2012-13-10-r89
 received in 2012-05-30, accepted in 2012-10-03,  发布年份 2012
PDF
【 摘 要 】

Background

Transposable elements are often the targets of repressive epigenetic modifications such as DNA methylation that, in theory, have the potential to spread toward nearby genes and induce epigenetic silencing. To better understand the role of DNA methylation in the relationship between transposable elements and genes, we assessed the methylation state of mouse endogenous retroviruses (ERVs) located near genes.

Results

We found that ERVs of the ETn/MusD family show decreased DNA methylation when near transcription start sites in tissues where the nearby gene is expressed. ERVs belonging to the IAP family, however, are generally heavily methylated, regardless of the genomic environment and the tissue studied. Furthermore, we found full-length ETn and IAP copies that display differential DNA methylation between their two long terminal repeats (LTRs), suggesting that the environment surrounding gene promoters can prevent methylation of the nearby LTR. Spreading from methylated ERV copies to nearby genes was rarely observed, with the regions between the ERVs and genes apparently acting as a boundary, enriched in H3K4me3 and CTCF, which possibly protects the unmethylated gene promoter. Furthermore, the flanking regions of unmethylated ERV copies harbor H3K4me3, consistent with spreading of euchromatin from the host gene toward ERV insertions.

Conclusions

We have shown that spreading of DNA methylation from ERV copies toward active gene promoters is rare. We provide evidence that genes can be protected from ERV-induced heterochromatin spreading by either blocking the invasion of repressive marks or by spreading euchromatin toward the ERV copy.

【 授权许可】

   
2012 Rebollo et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140730014849785.pdf 3295KB PDF download
47KB Image download
30KB Image download
43KB Image download
67KB Image download
78KB Image download
58KB Image download
46KB Image download
【 图 表 】

【 参考文献 】
  • [1]Cohen CJ, Lock WM, Mager DL: Endogenous retroviral LTRs as promoters for human genes: a critical assessment. Gene 2009, 448:105-114.
  • [2]Rebollo R, Romanish MT, Mager DL: Transposable elements : an abundant and natural source of regulatory sequences for host genes. Annu Rev Genet 2012, 46:21-42.
  • [3]Tsukahara S, Kobayashi A, Kawabe A, Mathieu O, Miura A, Kakutani T: Bursts of retrotransposition reproduced in Arabidopsis. Nature 2009, 461:423-426.
  • [4]Walsh CP, Chaillet JR, Bestor TH: Transcription of IAP endogenous retroviruses is constrained by cytosine methylation. Nat Genet 1998, 20:116-117.
  • [5]Rebollo R, Karimi MM, Bilenky M, Gagnier L, Miceli-Royer K, Zhang Y, Goyal P, Keane TM, Jones S, Hirst M, Lorincz MC, Mager DL: Retrotransposon-induced heterochromatin spreading in the mouse revealed by insertional polymorphisms. PLoS Genet 2011, 7:e1002301.
  • [6]Kinoshita Y, Saze H, Kinoshita T, Miura A, Soppe WJ, Koornneef M, Kakutani T: Control of FWA gene silencing in Arabidopsis thaliana by SINE-related direct repeats. Plant J 2007, 49:38-45.
  • [7]Martin A, Troadec C, Boualem A, Rajab M, Fernandez R, Morin H, Pitrat M, Dogimont C, Bendahmane A: A transposon-induced epigenetic change leads to sex determination in melon. Nature 2009, 461:1135-1138.
  • [8]Mummaneni P, Bishop PL, Turker MS: A Cis-acting element accounts for a conserved methylation pattern upstream of the mouse adenine phosphoribosyltransferase gene. J Biol Chem 1993, 268:552-558.
  • [9]Yates PA, Burman RW, Mummaneni P, Krussel S, Turker MS: Tandem B1 elements located in a mouse methylation center provide a target for de novo DNA methylation. J Biol Chem 1999, 274:36357-36361.
  • [10]Hasse A, Schulz WA: Enhancement of reporter gene de novo methylation by DNA fragments from the alpha-fetoprotein control region. J Biol Chem 1994, 269:1821-1826.
  • [11]Hollister JD, Gaut BS: Epigenetic silencing of transposable elements: a trade-off between reduced transposition and deleterious effects on neighboring gene expression. Genome Res 2009, 19:1419-1428.
  • [12]Bourc'his D, Bestor TH: Meiotic catastrophe and retrotransposon reactivation in male germ cells lacking Dnmt3L. Nature 2004, 431:96-99.
  • [13]Maksakova IA, Romanish MT, Gagnier L, Dunn CA, van de Lagemaat LN, Mager DL: Retroviral elements and their hosts: insertional mutagenesis in the mouse germ line. PLoS Genet 2006, 2:e2.
  • [14]Karimi MM, Goyal P, Maksakova IA, Bilenky M, Leung D, Tang JX, Shinkai Y, Mager DL, Jones S, Hirst M, Lorincz MC: DNA methylation and SETDB1/H3K9me3 regulate predominantly distinct sets of genes, retroelements, and chimeric transcripts in mESCs. Cell Stem Cell 2011, 8:676-687.
  • [15]Reiss D, Zhang Y, Rouhi A, Reuter M, Mager DL: Variable DNA methylation of transposable elements: the case study of mouse Early Transposons. Epigenetics 2010, 5:68-79.
  • [16]Zhang Y, Maksakova IA, Gagnier L, van de Lagemaat LN, Mager DL: Genome-wide assessments reveal extremely high levels of polymorphism of two active families of mouse endogenous retroviral elements. PLoS Genet 2008, 4:e1000007.
  • [17]Su AI, Cooke MP, Ching KA, Hakak Y, Walker JR, Wiltshire T, Orth AP, Vega RG, Sapinoso LM, Moqrich A, Patapoutian A, Hampton GM, Schultz PG, Hogenesch JB: Large-scale analysis of the human and mouse transcriptomes. Proc Natl Acad Sci USA 2002, 99:4465-4470.
  • [18]Wu C, Orozco C, Boyer J, Leglise M, Goodale J, Batalov S, Hodge CL, Haase J, Janes J, Huss JW, Su AI: BioGPS: an extensible and customizable portal for querying and organizing gene annotation resources. Genome Biol 2009, 10:R130. BioMed Central Full Text
  • [19]Ekram MB, Kang K, Kim H, Kim J: Retrotransposons as a major source of epigenetic variations in the mammalian genome. Epigenetics 2012, 7:370-382.
  • [20]Morgan HD, Sutherland HG, Martin DI, Whitelaw E: Epigenetic inheritance at the agouti locus in the mouse. Nat Genet 1999, 23:314-318.
  • [21]Li J, Akagi K, Hu Y, Trivett AL, Hlynialuk CJ, Swing DA, Volfovsky N, Morgan TC, Golubeva Y, Stephens RM, Smith DE, Symer DE: Mouse endogenous retroviruses can trigger premature transcriptional termination at a distance. Genome Res 2012, 22:870-884.
  • [22]Nellaker C, Keane TM, Yalcin B, Wong K, Agam A, Belgard TG, Flint J, Adams DJ, Frankel WN, Ponting CP: The genomic landscape shaped by selection on transposable elements across 18 mouse strains. Genome Biol 2012, 13:R45. BioMed Central Full Text
  • [23]Mikkelsen TS, Ku M, Jaffe DB, Issac B, Lieberman E, Giannoukos G, Alvarez P, Brockman W, Kim TK, Koche RP, Lee W, Mendenhall E, O'Donovan A, Presser A, Russ C, Xie X, Meissner A, Wernig M, Jaenisch R, Nusbaum C, Lander ES, Bernstein BE: Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 2007, 448:553-560.
  • [24]Okitsu CY, Hsieh CL: DNA methylation dictates histone H3K4 methylation. Mol Cell Biol 2007, 27:2746-2757.
  • [25]Ooi SK, Qiu C, Bernstein E, Li K, Jia D, Yang Z, Erdjument-Bromage H, Tempst P, Lin SP, Allis CD, Cheng X, Bestor TH: DNMT3L connects unmethylated lysine 4 of histone H3 to de novo methylation of DNA. Nature 2007, 448:714-717.
  • [26]Gaszner M, Felsenfeld G: Insulators: exploiting transcriptional and epigenetic mechanisms. Nat Rev Genet 2006, 7:703-713.
  • [27]Witcher M, Emerson BM: Epigenetic silencing of the p16(INK4a) tumor suppressor is associated with loss of CTCF binding and a chromatin boundary. Mol Cell 2009, 34:271-284.
  • [28]Bloom DC, Giordani NV, Kwiatkowski DL: Epigenetic regulation of latent HSV-1 gene expression. Biochim Biophys Acta 2010, 1799:246-256.
  • [29]Cuddapah S, Jothi R, Schones DE, Roh TY, Cui K, Zhao K: Global analysis of the insulator binding protein CTCF in chromatin barrier regions reveals demarcation of active and repressive domains. Genome Res 2009, 19:24-32.
  • [30]Consortium EP: The ENCODE (ENCyclopedia Of DNA Elements) Project. Science 2004, 306:636-640.
  • [31]Romanish MT, Lock WM, van de Lagemaat LN, Dunn CA, Mager DL: Repeated recruitment of LTR retrotransposons as promoters by the anti-apoptotic locus NAIP during mammalian evolution. PLoS Genet 2007, 3:e10.
  • [32]Edwards JR, O'Donnell AH, Rollins RA, Peckham HE, Lee C, Milekic MH, Chanrion B, Fu Y, Su T, Hibshoosh H, Gingrich JA, Haghighi F, Nutter R, Bestor TH: Chromatin and sequence features that define the fine and gross structure of genomic methylation patterns. Genome Res 2010, 20:972-980.
  • [33]Medstrand P, van de Lagemaat LN, Mager DL: Retroelement distributions in the human genome: variations associated with age and proximity to genes. Genome Res 2002, 12:1483-1495.
  • [34]Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W, Funke R, Gage D, Harris K, Heaford A, Howland J, Kann L, Lehoczky J, LeVine R, McEwan P, McKernan K, Meldrim J, Mesirov JP, Miranda C, Morris W, Naylor J, Raymond C, Rosetti M, Santos R, Sheridan A, Sougnez C, et al.: Initial sequencing and analysis of the human genome. Nature 2001, 409:860-921.
  • [35]Kashkush K, Khasdan V: Large-scale survey of cytosine methylation of retrotransposons and the impact of readout transcription from long terminal repeats on expression of adjacent rice genes. Genetics 2007, 177:1975-1985.
  • [36]Weber M, Hellmann I, Stadler MB, Ramos L, Paabo S, Rebhan M, Schubeler D: Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome. Nat Genet 2007, 39:457-466.
  • [37]Han H, Cortez CC, Yang X, Nichols PW, Jones PA, Liang G: DNA methylation directly silences genes with non-CpG island promoters and establishes a nucleosome occupied promoter. Hum Mol Genet 2011, 20:4299-4310.
  • [38]Rouhi A, Gagnier L, Takei F, Mager DL: Evidence for epigenetic maintenance of Ly49a monoallelic gene expression. J Immunol 2006, 176:2991-2999.
  • [39]Rouhi A, Lai CB, Cheng TP, Takei F, Yokoyama WM, Mager DL: Evidence for high bi-allelic expression of activating Ly49 receptors. Nucleic Acids Res 2009, 37:5331-5342.
  • [40]Fan S, Fang F, Zhang X, Zhang MQ: Putative zinc finger protein binding sites are over-represented in the boundaries of methylation-resistant CpG islands in the human genome. PLoS One 2007, 2:e1184.
  • [41]Deaton AM, Bird A: CpG islands and the regulation of transcription. Genes Dev 2011, 25:1010-1022.
  • [42]Zhou VW, Goren A, Bernstein BE: Charting histone modifications and the functional organization of mammalian genomes. Nat Rev Genet 2011, 12:7-18.
  • [43]Hejnar J, Hajkova P, Plachy J, Elleder D, Stepanets V, Svoboda J: CpG island protects Rous sarcoma virus-derived vectors integrated into nonpermissive cells from DNA methylation and transcriptional suppression. Proc Natl Acad Sci USA 2001, 98:565-569.
  • [44]Senigl F, Auxt M, Hejnar J: Transcriptional provirus silencing as a crosstalk of de novo DNA methylation and epigenomic features at the integration site. Nucleic Acids Res 2012.
  • [45]Meneghini MD, Wu M, Madhani HD: Conserved histone variant H2A.Z protects euchromatin from the ectopic spread of silent heterochromatin. Cell 2003, 112:725-736.
  • [46]Estecio MR, Gallegos J, Vallot C, Castoro RJ, Chung W, Maegawa S, Oki Y, Kondo Y, Jelinek J, Shen L, Hartung H, Aplan PD, Czerniak BA, Liang S, Issa JP: Genome architecture marked by retrotransposons modulates predisposition to DNA methylation in cancer. Genome Res 2010, 20:1369-1382.
  • [47]UCSC Genome Bioinformatics [http://genome.ucsc.edu] webcite
  • [48]Ozsolak F, Song JS, Liu XS, Fisher DE: High-throughput mapping of the chromatin structure of human promoters. Nat Biotechnol 2007, 25:244-248.
  • [49]Horard B, Eymery A, Fourel G, Vassetzky N, Puechberty J, Roizes G, Lebrigand K, Barbry P, Laugraud A, Gautier C, Simon EB, Devaux F, Magdinier F, Vourc'h C, Gilson E: Global analysis of DNA methylation and transcription of human repetitive sequences. Epigenetics 2009, 4:339-350.
  • [50]Gilson E, Horard B: Comprehensive DNA methylation profiling of human repetitive DNA elements using an MeDIP-on-RepArray assay. Methods Mol Biol 2012, 859:267-291.
  • [51]Reiss D, Zhang Y, Mager DL: Widely variable endogenous retroviral methylation levels in human placenta. Nucleic Acids Res 2007, 35:4743-4754.
  • [52]Kumaki Y, Oda M, Okano M: QUMA: quantification tool for methylation analysis. Nucleic Acids Res 2008, 36:W170-175.
  • [53]Liu T, Ortiz JA, Taing L, Meyer CA, Lee B, Zhang Y, Shin H, Wong SS, Ma J, Lei Y, Pape UJ, Poidinger M, Chen Y, Yeung K, Brown M, Turpaz Y, Liu XS: Cistrome: an integrative platform for transcriptional regulation studies. Genome Biol 2011, 12:R83. BioMed Central Full Text
  • [54]Transcription factor binding sites dataset [http://genome.ucsc.edu/cgi-bin/hgFileUi?db=mm9&g=wgEncodeLicrTfbs] webcite
  • [55]Histone dataset [http://genome.ucsc.edu/cgi-bin/hgFileUi?db=mm9&g=wgEncodeLicrHistone] webcite
  • [56]Wederell ED, Bilenky M, Cullum R, Thiessen N, Dagpinar M, Delaney A, Varhol R, Zhao Y, Zeng T, Bernier B, Ingham M, Hirst M, Robertson G, Marra MA, Jones S, Hoodless PA: Global analysis of in vivo Foxa2-binding sites in mouse adult liver using massively parallel sequencing. Nucleic Acids Res 2008, 36:4549-4564.
  文献评价指标  
  下载次数:43次 浏览次数:13次