期刊论文详细信息
Journal of Nanobiotechnology
Investigation of magnetically controlled water intake behavior of Iron Oxide Impregnated Superparamagnetic Casein Nanoparticles (IOICNPs)
Anil Kumar Bajpai1  Jaya Bajpai1  Anamika Singh1 
[1] BMRL, Department of Chemistry, Government Model Science College, Jabalpur, India
关键词: Magnetic drug targeting;    pH sensitive;    Swelling behaviour;    IOICNPs;    Casein;   
Others  :  1139428
DOI  :  10.1186/s12951-014-0038-4
 received in 2014-05-22, accepted in 2014-09-12,  发布年份 2014
PDF
【 摘 要 】

Iron oxide impregnated casein nanoparticles (IOICNPs) were prepared by in-situ precipitation of iron oxide within the casein matrix. The resulting iron oxide impregnated casein nanoparticles (IOICNPs) were characterized by Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FTIR), Vibrating sample magnetometer (VSM) and Raman spectroscopy. The FTIR analysis confirmed the impregnation of iron oxide into the casein matrix whereas XPS analysis indicated for complete oxidation of iron (II) to iron(III) as evident from the presence of the observed representative peaks of iron oxide. The nanoparticles were allowed to swell in phosphate buffer saline (PBS) and the influence of factors such as chemical composition of nanoparticles, pH and temperature of the swelling bath, and applied magnetic field was investigated on the water intake capacity of the nanoparticles. The prepared nanoparticles showed potential to function as a nanocarrier for possible applications in magnetically targeted delivery of anticancer drugs.

【 授权许可】

   
2014 Singh et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150321113737665.pdf 2935KB PDF download
Figure 9. 74KB Image download
Figure 8. 81KB Image download
Figure 7. 38KB Image download
Figure 6. 15KB Image download
Figure 5. 27KB Image download
Figure 4. 49KB Image download
Figure 3. 61KB Image download
Figure 2. 37KB Image download
Figure 1. 85KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

【 参考文献 】
  • [1]Indira TK, Lakhshmi PK: Magnetic nanoparticles. Int J Pharma Nanotechnol 2010, 3:1035-1042.
  • [2]Figuerola A, Corato RD, Manna L, Pellegrino T: From iron oxidenanoparticles towards advanced iron-based inorganic materials designed forbiomedical applications. Pharma Res 2010, 62:126-143.
  • [3]Monson TC, Venturini EL, Petkov V, Ren Y, Lavin JM, Huber DL: Large enhancements of magnetic anisotropy in oxide-free iron nanoparticles. J Magn Magn Mat 2013, 331:156-161.
  • [4]Jiang F, Fu Y, Zhu Y, Tang Z, Sheng P: Fabrication of iron oxide/silicacore¿shell nanoparticles and their magnetic characteristics. J Alloys Compd 2010, 543:43-48.
  • [5]Mohanraj VJ, Chen Y: Nanoparticles - a review. J Pharm Res 2006, 5:561-573.
  • [6]Esmaili M, Ghaffari SM, Moosavi-Movahedi Z: Beta casein¿micelle as a nano vehicle for solubility enhancement of curcumin; food industry application. LWT Food Sci Technol 2011, 44:2166-2172.
  • [7]Shapira A, Assaraf YG, Epstein D, Livney YD: Beta-casein nanoparticles as an oral delivery system for chemotherapeutic drugs: impact of drug structure and properties on co-assembly. Pharm Res 2010, 27(10):2175-2186.
  • [8]Bouchemal K, Briançon S, Perrier E, Fessi H: Nano-emulsion formulation using spontaneous emulsification: solvent, oil and surfactant optimisation. Int J Pharm 2004, 280:241-251.
  • [9]Lu AH, Salabas EL, Schüth F: Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Ed Engl 2007, 46:1222-1244.
  • [10]Petcharoena K, Sirivat A: Synthesis and characterization of magnetite nanoparticles via the chemical co-precipitation method. Mater Sci Eng B 2012, 177:421-427.
  • [11]Jiang W, Yang HC, Yang SY: Preparation and properties of superparamagnetic nanoparticles with narrow size distribution and biocompatible. J Magn Magn Mat 2004, 283:210-214.
  • [12]Choubey J, Bajpai AK: Investigation on magnetically controlled delivery of doxorubicin from superparamagnetic nanocarriers of gelatin crosslinked with genipin. J Mater Sci-Mater Med 2010, 21:1573-1586.
  • [13]Lien YH, Wu TM: Preparation and characterization of thermosensitive polymers grafted onto silica-coated, iron oxide nanoparticles. J Colloid Interface Sci 2008, 326:517-521.
  • [14]Sepulveda-guzman S, Lara L, Perez-Camacho O, Rodriguez-Fernandez O, Olivas A, Escudero R: Synthesis and characterization of an iron oxixe poly (styrene- co- carboxybutylmaliemide) ferromagnetic composites. Polymer 2007, 48:720-727.
  • [15]Deacon GB, Phillips RJ: Relationship between the carbon¿oxygen stretching frequencies of carboxylato complexes and the type of carboxylate coordination. Coord Chem Rev 1980, 33:227-250.
  • [16]Murthy PSK, Mohan YM, Varaprasad K, Sreedhar B, Raju KM: First successful design of semi-IPN hydrogel-silver nanocomposites: a facile approach for antibacterial application. J Colloid Interface Sci 2008, 318:217-224.
  • [17]Wei S, Wang Q, Zhu J, Sun L, Hongfei Line H, Guo Z: Multifunctional composite core¿shell nanoparticles. Nanoscale 2011, 3:4474.
  • [18]Zhang GI, Liao Y, Baker I: Surface engineering of core/shell iron/iron oxide nanoparticles from microemulsions for hyperthermia. Mater Sci Eng C 2010, 30:92-97.
  • [19]Chourpa I, Douziech-Eyrolles L, Ngaboni-Okassa L, Fouquenet JF, Cohen-Jonathan S, Souce M, Marchais H, Dubois P: Molecular composition of iron oxide nanoparticles, precursors for magnetic drug targeting, as characterized by confocal raman microspectroscopy. Analyst 2005, 130:1395-1403.
  • [20]De Faria DLA, Venâncio Silva S, De Oliveira MT: Raman microspectroscopy of some iron oxides and oxyhydroxides. J Raman DR2013228Spectro 1997, 28:873-878.
  • [21]Oh JK, Park JM: Iron oxide-based superparamagnetic polymeric nanomaterials: design, preparation, and biomedical application. Prog Poly Sci 2011, 36:168-189.
  • [22]Grüttner C, Teller J, Schütt W, Westphal F, Schümichen C, Paulke BR, Häfeli UO, Schütt W, Teller J, Zborowski M: Scientific and Clinical Applications of Magnetic Carriers editors. Plenum Press, New York; 1997.
  • [23]Shen G, Anand MFG, Levicky R: X-ray photoelectron spectroscopy and infrared spectroscopy study of maleimide-activated supports for immobilization of oligodeoxyribonucleotides. Nucleic Acids Res 2004, 32:5973-5980.
  • [24]Beamson G, Briggs D: High Resolution XPS of Organic Polymers. John Wiley & Sons, New York, NY; 1992.
  • [25]Alexander MR, Beamson G, Blomfield CJ, Leggett G, Duc TM: Interaction of carboxylic acids with the oxyhydroxide surface of aluminium: poly(acrylic acid), acetic acid, and propionic acid on pseudobo-hemite. J Electron Spectrosc Relat Phenom 2001, 121:19-32.
  • [26]Xuan SH, Fang QL, Hao LY, Jiang WQ, Gong XL, Hu Y, Chen ZY: Fabrication of spindle Fe2O3@polypyrrole core/shell particles by surface-modified hematite templating and conversion to spindle polypyrrole capsules and carbon capsules. J Colloid Interface Sci 2007, 314:502-509.
  • [27]Hu SH, Liu TY, Huang HY, Liu DM, Chen SY: Magnetic-sensitive silica nanospheres for controlled drug release. Langmuir 2008, 24:239-244.
  • [28]Hernandez R, Sacristan J, Nogales A, Fernandez M, Ezquerrab TA, Mijangos C: Structure and viscoelastic properties of hybrid ferrogels with iron oxide nanoparticles synthesized in situ. Soft Matter 2010, 6:3910-3917.
  • [29]Choubey J, Bajpai AK: Investigation on magnetic controlled delivery of doxorubincin from superparamagnetic nanocarriers of gelatin crosslinked with genipin. J Mater Scl Mater Med 2010, 21:1573-1586.
  • [30]Likhitkar S, Bajpai AK: Investigation of magnetically enhanced swelling behavior of superparamagnetic starch nanoparticles. Bulle Mater Sci 2013, 36(1):15-24.
  • [31]Chouhan R, Bajpai AK: A swellable in vitro release study of 5-Flurouracil (5-FU) from poly-(2-hydroxyethyl methacrylate) (PHEMA) nanoparticles. J Mater Scl Mater Med 2009, 20:1103-1114.
  • [32]Chairam S, Somsook E: Starch vermicelli template for synthesis of magnetic iron oxide nanoclusters. J Magn Magn Mater 2008, 320:2039-2043.
  • [33]Elzoghby AO, Helmy MW, Samy WM, Elingdy NA: Novel ionically crosslinked casein nanoparticles for flutamide delivery: formation, characterization and in-vivo pharmacokinetics. Int J Nanomedicine 2013, 8:1721-1732.
  • [34]Vimala K, Sivudu KS, Mohan YM, Sreedhar B, Raju KM: Controlled silver nanoparticles synthesis in semi-hydrogel networks of poly(acrylamide) and carbohydrates: rationalmethodology for antibacterial application. Carbohydr Polym 2009, 75:463-471.
  • [35]Sivudu KS, Rhee KY: Preparation and characterization of pH-responsive hydrogel magnetite nanocomposite. Colloids and Surfaces A: Physicochem Eng Aspects 2009, 349:29-34.
  • [36]Zhao Y, Qiu Z, Huang J: Preparation and analysis of Fe3O4 magnetic nanoparticles used as targeted-drug carriers. Chinese J Chem Eng 2008, 16:451-455.
  • [37]Choi CY, Chae SY, Nah JW: Theromosensititve poly (N- isopropylacrylamide)-b-poly (E-caprolactone) nanoparticles for efficient drug delivery system. J Polymer 2006, 47:4571.
  • [38]Pourjavadi A, Mahdavinia GR: Superabsorbency, pH-Sensitivity and swelling kinetics of partially hydrolyzed chitosan-g-poly (Acrylamide) Hydrogels. J Turk Chem 2006, 30:595.
  • [39]Gunasekaran S, Ko S, Xiao L: Use of whey proteins for encapsulation and controlled delivery applications. J Food Eng 2007, 83:31-40.
  • [40]Likhitkar S, Bajpai AK: Magnetically controlled release of cisplatin from superparamagnetic starch nanoparticles. Carbohydr Polym 2012, 87:300-308.
  • [41]Fernandez-Nieves A, Fernandez-Barbero A, Nieves FJ D l, Vincent B: Motion of microgel particles under an external electric field. J Phys Condens Matter 2000, 12:3605-3614.
  文献评价指标  
  下载次数:313次 浏览次数:42次