Environmental Evidence | |
What is the effect of phasing out long-chain per- and polyfluoroalkyl substances on the concentrations of perfluoroalkyl acids and their precursors in the environment? A systematic review protocol | |
Jonathan W Martin4  Jana Johansson3  Dorte Herzke2  Ian T Cousins3  Cynthia A de Wit3  Magnus Land1  | |
[1] Mistra EviEM, The Royal Swedish Academy of Sciences, Box 50005, SE-104 05 Stockholm, Sweden;Norwegian Inst Air Res, FRAM High North Res Ctr Climate & Environm, Tromso, Norway;Department of Environmental Science and Analytical Chemistry (ACES), Stockholm University, SE-106 91 Stockholm, Sweden;Division of Analytical and Environmental Toxicology, 10-102C Clinical Sciences, Edmonton, Alberta T6G 2G3, Canada | |
关键词: Concentration; Regulation; Environmental fate; Emission; Source; Phase-out; Temporal trends; PFOS; PFOA; Perfluoroalkane acids; Perfluoroalkyl acids; | |
Others : 1136294 DOI : 10.1186/2047-2382-4-3 |
|
received in 2014-09-02, accepted in 2014-11-24, 发布年份 2015 | |
【 摘 要 】
Background
There is a growing concern in Sweden and elsewhere that continued emissions of per- and polyfluoroalkyl substances (PFASs) may cause environmental as well as human health effects. PFASs are a broad class of man-made substances that have been produced and used in both commercial products and industrial processes for more than 60 years. Although the production and use of some PFASs has been phased-out in some parts of the world, it is not known what effect these actions to date have had on PFAS concentrations in the environment. Owing to the wide diversity of PFASs, it is difficult to generalize their properties, environmental fate and production histories. However, the strength and stability of the C-F bond renders the perfluoroalkyl moieties resistant to heat and environmental degradation. Several PFASs are now occurring even in very remote areas in large parts of the world, but the environmental transport and fate of substances within this group is not well understood. A systematic review may be able to determine whether the concentrations of these substances in different environments are changing in any particular direction with time, and whether the phase-outs have had any effects on the concentration trends.
Methods
Searches for primary research studies reporting on temporal variations of PFAS concentrations in the environment will be performed in the scientific literature as well as in other reports. Relevant samples include both abiotic and biological samples including humans. No particular time, document type, language or geographical constraints will be applied. Two authors will screen all retrieved articles. Double screening of about 10% of the articles will be performed by all authors at both title/abstract and full-text levels. Kappa tests will be used to test if the screening is consistent. Relevant articles will be critically appraised by four authors (double checking of 25% of the articles). Quality assessment will focus on selection bias, dating of samples, sample integrity and analytical procedures. Data synthesis will be based on statistical analysis of temporal concentration trends.
【 授权许可】
2015 Land et al.; licensee BioMed Central.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150312031104415.pdf | 1103KB | download | |
Figure 2. | 54KB | Image | download |
Figure 1. | 73KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
【 参考文献 】
- [1]Lindstrom AB, Strynar MJ, Libelo EL: Polyfluorinated compounds: past, present, and future. Environ Sci Technol 2011, 45:7954-61.
- [2]Kissa E: Fluorinated Surfactants and Repellents. 2nd edition. New York (NY): Marcel Dekker, Inc.; 2001.
- [3]Prevedouros K, Cousins IT, Buck RC, Korzeniowski SH: Sources, fate and transport of perfluorocarboxylates. Environ Sci Technol 2006, 40:32-44.
- [4]Wang Z, Cousins IT, Scheringer M, Buck RC, Hungerbühler K: Global emission inventories for C4–C14 perfluoroalkyl carboxylic acid (PFCA) homologues from 1951 to 2030, Part I: production and emissions from quantifiable sources. Environ Int 2014, 70:62-75.
- [5]Wang Z, Cousins IT, Scheringer M, Buck RC, Hungerbühler K: Global emission inventories for C4–C14 perfluoroalkyl carboxylic acid (PFCA) homologues from 1951 to 2030, part II: the remaining pieces of the puzzle. Environ Int 2014, 69:166-76.
- [6]Paul AG, Jones KC, Sweetman AJ: A first global production, emission, and environmental inventory for perfluorooctane sulfonate. Environ Sci Technol 2009, 43:386-92.
- [7]Armitage JM, MacLeod M, Cousins IT: Modeling the Global Fate and Transport of Perfluorooctanoic Acid (PFOA) and Perfluorooctanoate (PFO) Emitted from direct sources using a multispecies mass balance model. Environ Sci Technol 2009, 43:1134-40.
- [8]Smart BE, Dixon DA: Bond-energies and stabilities of poly(perfluoroethers). Abstr Pap Am Chem Soc 1994, 207:31-FLUO.
- [9]Buck RC, Franklin J, Berger U, Conder JM, Cousins IT, de Voogt P, et al.: Perfluoroalkyl and polyfluoroalkyl substances in the environment: terminology, classification, and origins. Integr Environ Assess Manag 2011, 7:513-41.
- [10]Becker AM, Gerstmann S, Frank H: Perfluorooctane surfactants in waste waters, the major source of river pollution. Chemosphere 2008, 72:115-21.
- [11]Li XY, Zhang PY, Jin L, Shao T, Li ZM, Cao JJ: Efficient photocatalytic decomposition of perfluorooctanoic acid by indium oxide and its mechanism. Environ Sci Technol 2012, 46:5528-34.
- [12]Igarashi S, Yotsuyanagi T: Homogeneous liquid-liquid-extraction by ph dependent phase-separation with a fluorocarbon ionic surfactant and its application to the preconcentration of porphyrin compounds. Mikrochim Acta 1992, 106:37-44.
- [13]Lopez-Fontan JL, Sarmiento F, Schulz PC: The aggregation of sodium perfluorooctanoate in water. Colloid Polym Sci 2005, 283:862-71.
- [14]Wang ZY, MacLeod M, Cousins IT, Scheringer M, Hungerbuhler K: Using COSMOtherm to predict physicochemical properties of poly- and perfluorinated alkyl substances (PFASs). Environ Chem 2011, 8:389-98.
- [15]Vierke L, Berger U, Cousins IT: Estimation of the acid dissociation constant of perfluoroalkyl carboxylic acids through an experimental investigation of their water-to-air transport. Environ Sci Technol 2013, 47:11032-9.
- [16]Higgins CP, Luthy RG: Sorption of perfluorinated surfactants on sediments. Environ Sci Technol 2006, 40:7251-6.
- [17]Gottschall N, Topp E, Edwards M, Russell P, Payne M, Kleywegt S, et al.: Polybrominated diphenyl ethers, perfluorinated alkylated substances, and metals in tile drainage and groundwater following applications of municipal biosolids to agricultural fields. Sci Total Environ 2010, 408:873-83.
- [18]Ahrens L, Yeung LWY, Taniyasu S, Lam PKS, Yamashita N: Partitioning of perfluorooctanoate (PFOA), perfluorooctane sulfonate (PFOS) and perfluorooctane sulfonamide (PFOSA) between water and sediment. Chemosphere 2011, 85:731-7.
- [19]Benskin JP, Ahrens L, Muir DCG, Scott BF, Spencer C, Rosenberg B, et al.: Manufacturing Origin of Perfluorooctanoate (PFOA) in Atlantic and Canadian Arctic Seawater. Environ Sci Technol 2012, 46:677-85.
- [20]Yamashita N, Taniyasu S, Petrick G, Wei S, Gamo T, Lam PKS, et al.: Perfluorinated acids as novel chemical tracers of global circulation of ocean waters. Chemosphere 2008, 70:1247-55.
- [21]Barton CA, Zarzecki CJ, Russell MH: A site-specific screening comparison of modeled and monitored air dispersion and deposition for perfluorooctanoate. J Air Waste Manage Assoc 2010, 60:402-11.
- [22]Ellis DA, Martin JW, De Silva AO, Mabury SA, Hurley MD, Sulbaek Andersen MP, et al.: Degradation of fluorotelomer alcohols: a likely atmospheric source of perfluorinated carboxylic acids. Environ Sci Technol 2004, 38:3316-21.
- [23]Armitage JM, MacLeod M, Cousins IT: Comparative Assessment of the Global Fate and Transport Pathways of Long-Chain Perfluorocarboxylic Acids (PFCAs) and Perfluorocarboxylates (PFCs) Emitted from Direct Sources. Environ Sci Technol 2009, 43:5830-6.
- [24]EFSA: Opinion of the Scientific Panel on Contaminants in the Food chain on Perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA) and their salts. FSA J 2008, 653:1-131.
- [25]Ahrens L, Herzke D, Huber S, Bustnes JO, Bangjord G, Ebinghaus R: Temporal trends and pattern of polyfluoroalkyl compounds in tawny owl (Strix aluco) eggs from Norway, 1986–2009. Environ Sci Technol 2011, 45:8090-7.
- [26]Holmstrom KE, Johansson AK, Bignert A, Lindberg P, Berger U: Temporal trends of perfluorinated surfactants in swedish peregrine falcon eggs (Falco peregrinus), 1974–2007. Environ Sci Technol 2010, 44:4083-8.
- [27]Vicente J, Bertolero A, Meyer J, Viana P, Lacorte S: Distribution of perfluorinated compounds in Yellow-legged gull eggs (Larus michahellis) from the Iberian Peninsula. Sci Total Environ 2012, 416:468-75.
- [28]Houde M, De Silva AO, Muir DCG, Letcher RJ: Monitoring of perfluorinated compounds in aquatic biota: an updated review PFCs in aquatic biota. Environ Sci Technol 2011, 45:7962-73.
- [29]Lindh CH, Rylander L, Toft G, Axmon A, Rignell-Hydbom A, Giwercman A, et al.: Blood serum concentrations of perfluorinated compounds in men from Greenlandic Inuit and European populations. Chemosphere 2012, 88:1269-75.
- [30]Sturm R, Ahrens L: Trends of polyfluoroalkyl compounds in marine biota and in humans. Environ Chem 2010, 7:457-84.
- [31]Conder JM, Hoke RA, De Wolf W, Russell MH, Buck RC: Are PFCAs bioaccumulative? A critical review and comparison with regulatory lipophilic compounds. Environ Sci Technol 2008, 42:995-1003.
- [32]Tomy GT, Pleskach K, Ferguson SH, Hare J, Stern G, Macinnis G, et al.: Trophodynamics of some PFCs and BFRs in a Western Canadian Arctic Marine Food Web. Environ Sci Technol 2009, 43:4076-81.
- [33]Kelly BC, Ikonomou MG, Blair JD, Surridge B, Hoover D, Grace R, et al.: Perfluoroalkyl contaminants in an arctic marine food web: trophic magnification and wildlife exposure. Environ Sci Technol 2009, 43:4037-43.
- [34]Loi EIH, Yeung LWY, Taniyasu S, Lam PKS, Kannan K, Yamashita N: Trophic magnification of poly- and perfluorinated compounds in a subtropical food web. Environ Sci Technol 2011, 45:5506-13.
- [35]Martin JW, Whittle DM, Muir DCG, Mabury SA: Perfluoroalkyl contaminants in a food web from lake Ontario. Environ Sci Technol 2004, 38:5379-85.
- [36]Muller CE, De Silva AO, Small J, Williamson M, Wang XW, Morris A, et al.: Biomagnification of perfluorinated compounds in a remote terrestrial food chain: lichen-caribou-wolf. Environ Sci Technol 2011, 45:8665-73.
- [37]Russell MH, Nilsson H, Buck RC: Elimination kinetics of perfluorohexanoic acid in humans and comparison with mouse, rat and monkey. Chemosphere 2013, 93:2419-25.
- [38]Du GZ, Huang HY, Hu JL, Qin YF, Wu D, Song L, et al.: Endocrine-related effects of perfluorooctanoic acid (PFOA) in zebrafish, H295R steroidogenesis and receptor reporter gene assays. Chemosphere 2013, 91:1099-106.
- [39]Joensen UN, Veyrand B, Antignac JP, Jensen MB, Petersen JH, Marchand P, et al.: PFOS (perfluorooctanesulfonate) in serum is negatively associated with testosterone levels, but not with semen quality, in healthy men. Hum Reprod 2013, 28:599-608.
- [40]Kjeldsen LS, Bonefeld-Jorgensen EC: Perfluorinated compounds affect the function of sex hormone receptors. Environ Sci Pollut Res 2013, 20:8031-44.
- [41]Ikeda T, Aiba K, Fukuda K, Tanaka M: The induction of peroxisome proliferation in rat-liver by perfluorinated fatty-acids, metabolically inert derivatives of fatty-acids. J Biochem 1985, 98:475-82.
- [42]Kudo N, Bandai N, Suzuki E, Katakura M, Kawashima Y: Induction by perfluorinated fatty acids with different carbon chain length of peroxisomal beta-oxidation in the liver of rats. Chem Biol Interact 2000, 124:119-32.
- [43]Upham BL, Deocampo ND, Wurl B, Trosko JE: Inhibition of gap junctional intercellular communication by perfluorinated fatty acids is dependent on the chain length of the fluorinated tail. Int J Cancer 1998, 78:491-5.
- [44]Vanden Heuvel JP: Perfluorodecanoic acid as a useful pharmacologic tool for the study of peroxisome proliferation. Gen Pharmacol Vasc Syst 1996, 27:1123-9.
- [45]3M: Letter to US EPA Re: phase-out plan for POSF-based products (226–0600). US EPA Adm Rec 2000, 226:1-11.
- [46]2010/2015: PFOA Stewardship Programme. http://www.epa.gov/oppt/pfoa/pubs/stewardship/index.html webcite
- [47]ECHA: Candidate list of substances of very high concern for authorisation. 2014. http://echa.europa.eu/web/guest/candidate-list-table webcite
- [48]Ritter S: Fluorochemicals go short. Chem Eng News 2010, 88:12-17.
- [49]Wang ZY, Cousins IT, Scheringer M, Hungerbuhler K: Fluorinated alternatives to long-chain perfluoroalkyl carboxylic acids (PFCAs), perfluoroalkane sulfonic acids (PFSAs) and their potential precursors. Environ Int 2013, 60:242-8.
- [50]Armitage JM, Schenker U, Scheringer M, Martin JW, MacLeod M, Cousins IT: Modeling the global fate and transport of perfluorooctane sulfonate (PFOS) and precursor compounds in relation to temporal trends in wildlife exposure. Environ Sci Technol 2009, 43:9274-80.
- [51]Martin JW, Asher BJ, Beesoon S, Benskin JP, Ross MS: PFOS or PreFOS? Are perfluorooctane sulfonate precursors (PreFOS) important determinants of human and environmental perfluorooctane sulfonate (PFOS) exposure? J Environ Monit 2010, 12:1979-2004.
- [52]Benskin JP, Muir DCG, Scott BF, Spencer C, De Silva AO, Kylin H, et al.: Perfluoroalkyl acids in the Atlantic and Canadian Arctic Oceans. Environ Sci Technol 2012, 46:5815-23.
- [53]Filipovic M, Berger U, McLachlan MS: Mass balance of perfluoroalkyl acids in the Baltic sea. Environ Sci Technol 2013, 47:4088-95.
- [54]Hu JY, Yu J, Tanaka S, Fujii S: Perfluorooctane Sulfonate (PFOS) and Perfluorooctanoic Acid (PFOA) in water environment of Singapore. Water Air Soil Pollut 2011, 216:179-91.
- [55]Kwok KY, Yamazaki E, Yamashita N, Taniyasu S, Murphy MB, Horii Y, et al.: Transport of Perfluoroalkyl substances (PFAS) from an arctic glacier to downstream locations: implications for sources. Sci Total Environ 2013, 447:46-55.
- [56]Wang X, Halsall C, Codling G, Xie Z, Xu B, Zhao Z, et al.: Accumulation of perfluoroalkyl compounds in tibetan mountain snow: temporal patterns from 1980 to 2010. Environ Sci Technol 2014, 48:173-81.
- [57]Ahrens L: Polyfluoroalkyl compounds in the aquatic environment: a review of their occurrence and fate. J Environ Monit 2011, 13:20-31.
- [58]Braune BM, Letcher RJ: Perfluorinated sulfonate and carboxylate compounds in eggs of seabirds breeding in the Canadian Arctic: temporal trends (1975–2011) and interspecies comparison. Environ Sci Technol 2013, 47:616-24.
- [59]Giesy JP, Kannan K: Global distribution of perfluorooctane sulfonate in wildlife. Environ Sci Technol 2001, 35:1339-42.
- [60]Hart K, Gill VA, Kannan K: Temporal trends (1992–2007) of perfluorinated chemicals in northern sea otters (Enhydra lutris kenyoni) from South-Central Alaska. Arch Environ Contam Toxicol 2009, 56:607-14.
- [61]Lofstrand K, Jorundsdottir H, Tomy G, Svavarsson J, Weihe P, Nygard T, et al.: Spatial trends of polyfluorinated compounds in guillemot (Uria aalge) eggs from North-Western Europe. Chemosphere 2008, 72:1475-80.
- [62]Shi YL, Pan YY, Yang RQ, Wang YW, Cai YQ: Occurrence of perfluorinated compounds in fish from Qinghai-Tibetan Plateau. Environ Int 2010, 36:46-50.
- [63]Calafat AM, Kuklenyik Z, Caudill SP, Reidy JA, Needham LL: Perfluorochemicals in pooled serum samples from United States residents in 2001 and 2002. Environ Sci Technol 2006, 40:2128-34.
- [64]Chen CL, Lu YL, Zhang X, Geng J, Wang TY, Shi YJ, et al.: A review of spatial and temporal assessment of PFOS and PFOA contamination in China. Chem Ecol 2009, 25:163-77.
- [65]Ericson I, Gomez M, Nadal M, van Bavel B, Lindstrom G, Domingo JL: Perfluorinated chemicals in blood of residents in Catalonia (Spain) in relation to age and gender: A pilot study. Environ Int 2007, 33:616-23.
- [66]Fromme H, Midasch O, Twardella D, Angerer J, Boehmer S, Liebl B: Occurrence of perfluorinated substances in an adult German population in southern Bavaria. Int Arch Occup Environ Health 2007, 80:313-9.
- [67]Ji K, Kim S, Kho Y, Paek D, Sakong J, Ha J, et al.: Serum concentrations of major perfluorinated compounds among the general population in Korea: dietary sources and potential impact on thyroid hormones. Environ Int 2012, 45:78-85.
- [68]Karrman A, Domingo JL, Llebaria X, Nadal M, Bigas E, van Bavel B, et al.: Biomonitoring perfluorinated compounds in Catalonia, Spain: concentrations and trends in human liver and milk samples. Environ Sci Pollut Res 2010, 17:750-8.
- [69]Kato K, Calafat AM, Wong LY, Wanigatunga AA, Caudill SP, Needham LL: Polyfluoroalkyl compounds in pooled sera from children participating in the national health and nutrition examination survey 2001–2002. Environ Sci Technol 2009, 43:2641-7.
- [70]Volkel W, Genzel-Boroviczeny O, Demmelmair H, Gebauer C, Koletzko B, Twardella D, et al.: Perfluorooctane sulphonate (PFOS) and perfluorooctanoic acid (PFOA) in human breast milk: results of a pilot study. Int J Hyg Environ Health 2008, 211:440-6.
- [71]Fernandez-Sanjuan M, Faria M, Lacorte S, Barata C: Bioaccumulation and effects of perfluorinated compounds (PFCs) in zebra mussels (Dreissena polymorpha). Environ Sci Pollut Res 2013, 20:2661-9.
- [72]Lasier PJ, Washington JW, Hassan SM, Jenkins TM: Perfluorinated chemicals in surface waters and sediments from northwest georgia, usa, and their bioaccumulation in lumbriculus variegatus. Environ Toxicol Chem 2011, 30:2194-201.
- [73]Fang S, Chen X, Zhao S, Zhang Y, Jiang W, Yang L, et al.: Trophic magnification and isomer fractionation of perfluoroalkyl substances in the food web of Taihu Lake, China. Environ Sci Technol 2014, 48:2173-82.
- [74]Kannan K, Tao L, Sinclair E, Pastva SD, Jude DJ, Giesy JP: Perfluorinated compounds in aquatic organisms at various trophic levels in a Great Lakes food chain. Arch Environ Contam Toxicol 2005, 48:559-66.
- [75]Martin JW, Mabury SA, Solomon KR, Muir DCG: Bioconcentration and tissue distribution of perfluorinated acids in rainbow trout (Oncorhynchus mykiss). Environ Toxicol Chem 2003, 22:196-204.
- [76]Martin JW, Mabury SA, Solomon KR, Muir DCG: Dietary accumulation of perfluorinated acids in juvenile rainbow trout (Oncorhynchus mykiss). Environ Toxicol Chem 2003, 22:189-95.
- [77]Zhao S, Zhu L, Liu L, Liu Z, Zhang Y: Bioaccumulation of perfluoroalkyl carboxylates (PFCAs) and perfluoroalkane sulfonates (PFSAs) by earthworms (Eisenia fetida) in soil. Environ Pollut 2013, 179:45-52.
- [78]Olsen GW, Mair DC, Church TR, Ellefson ME, Reagen WK, Boyd TM, et al.: Decline in perfluorooctanesulfonate and other polyfluoroalkyl chemicals in American Red Cross adult blood donors, 2000–2006. Environ Sci Technol 2008, 42:4989-95.
- [79]Zhang L, Liu JG, Hu JX, Liu C, Guo WG, Wang Q, et al.: The inventory of sources, environmental releases and risk assessment for perfluorooctane sulfonate in China. Environ Pollut 2012, 165:193-8.
- [80]Renner R: The long and the short of perfluorinated replacements. Environ Sci Technol 2006, 40:12-3.
- [81]Kirchgeorg T, Weinberg I, Dreyer A, Ebinghaus R: Perfluorinated compounds in marine surface waters: data from the Baltic Sea and methodological challenges for future studies. Environ Chem 2010, 7:429-34.
- [82]Zhou Z, Liang Y, Shi Y, Xu L, Cai Y: Occurrence and transport of perfluoroalkyl acids (PFAAs), including short-chain PFAAs in Tangxun Lake, China. Environ Sci Technol 2013, 47:9249-57.
- [83]Persson S, Rotander A, Karrman A, van Bavel B, Magnusson U: Perfluoroalkyl acids in subarctic wild male mink (Neovison vison) in relation to age, season and geographical area. Environ Int 2013, 59:425-30.
- [84]Glynn A, Berger U, Bignert A, Ullah S, Aune M, Lignell S, et al.: Perfluorinated alkyl acids in blood serum from primiparous women in Sweden: serial sampling during pregnancy and nursing, and temporal trends 1996–2010. Environ Sci Technol 2012, 46:9071-9.
- [85]The environmental objectives portal http://www.miljomal.se/Environmental-Objectives-Portal/ webcite
- [86]Borg D, Håkansson H: Environmental and Health Risk Assessment of Perfluoroalkylated and Polyfluoroalkylated Substances (PFASs) in Sweden. In Book Environmental and Health Risk Assessment of Perfluoroalkylated and Polyfluoroalkylated Substances (PFASs) in Sweden (Editor ed.^eds.), vol. 6513. City: Swedish Environmental Protection Agency; 2012.
- [87]Molina ED, Balander R, Fitzgerald SD, Giesy JP, Kannan K, Mitchell R, et al.: Effects of air cell injection of perfluorooctane sulfonate before incubation on development of the white leghorn chicken (Gallus domesticus) embryo. Environ Toxicol Chem 2006, 25:227-32.
- [88]Dietz R, Bossi R, Riget FF, Sonne C, Born EW: Increasing perfluoroalkyl contaminants in east Greenland polar bears (Ursus maritimus): a new toxic threat to the Arctic bears. Environ Sci Technol 2008, 42:2701-7.
- [89]Wania F: A global mass balance analysis of the source of perfluorocarboxylic acids in the Arctic ocean. Environ Sci Technol 2007, 41:4529-35.
- [90]Peltonen H, Kiljunen M, Kiviranta H, Vuorinen PJ, Verta M, Karjalainen J: Predicting effects of exploitation rate on weight-at-age, population dynamics, and bioaccumulation of PCDD/Fs and PCBs in herring (Clupea harengus L.) in the Northern Baltic Sea. Environ Sci Technol 2007, 41:1849-55.
- [91]Miller A, Hedman JE, Nyberg E, Haglund P, Cousins IT, Wiberg K, et al.: Temporal trends in dioxins (polychlorinated dibenzo-p-dioxin and dibenzofurans) and dioxin-like polychlorinated biphenyls in Baltic herring (Clupea harengus). Mar Pollut Bull 2013, 73:220-30.
- [92]Borenstein M, Hedges LV, Higgins JPT, Rothstein HR: Introduction to meta-analysis. John Wiley & Sons, Ltd; 2009.