期刊论文详细信息
Epigenetics & Chromatin
Epigenetic regulatory functions of DNA modifications: 5-methylcytosine and beyond
Frank Lyko1  Achim Breiling1 
[1] Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Im Neuenheimer Feld 580, Heidelberg, 69120, Germany
关键词: DNA demethylation;    N6-methyladenine;    5-Hydroxymethylcytosine;    5-Methylcytosine;    Inheritance;    Chromatin;    Gene regulation;    Epigenetic marks;    DNA methylation;    Modified DNA bases;    DNA modification;   
Others  :  1221298
DOI  :  10.1186/s13072-015-0016-6
 received in 2015-05-28, accepted in 2015-07-07,  发布年份 2015
PDF
【 摘 要 】

The chemical modification of DNA bases plays a key role in epigenetic gene regulation. While much attention has been focused on the classical epigenetic mark, 5-methylcytosine, the field garnered increased interest through the recent discovery of additional modifications. In this review, we focus on the epigenetic regulatory roles of DNA modifications in animals. We present the symmetric modification of 5-methylcytosine on CpG dinucleotide as a key feature, because it permits the inheritance of methylation patterns through DNA replication. However, the distribution patterns of cytosine methylation are not conserved in animals and independent molecular functions will likely be identified. Furthermore, the discovery of enzymes that catalyse the hydroxylation of 5-methylcytosine to 5-hydroxymethylcytosine not only identified an active demethylation pathway, but also a candidate for a new epigenetic mark associated with activated transcription. Most recently, N6-methyladenine was described as an additional eukaryotic DNA modification with epigenetic regulatory potential. Interestingly, this modification is also present in genomes that lack canonical cytosine methylation patterns, suggesting independent functions. This newfound diversity of DNA modifications and their potential for combinatorial interactions indicates that the epigenetic DNA code is substantially more complex than previously thought.

【 授权许可】

   
2015 Breiling and Lyko.

【 预 览 】
附件列表
Files Size Format View
20150729035811120.pdf 1765KB PDF download
Figure3. 64KB Image download
Figure2. 55KB Image download
Figure1. 31KB Image download
【 图 表 】

Figure1.

Figure2.

Figure3.

【 参考文献 】
  • [1]Bird A. Perceptions of epigenetics. Nature. 2007; 447:396-398.
  • [2]Kouzarides T. Chromatin modifications and their function. Cell. 2007; 128(4):693-705.
  • [3]Sexton T, Cavalli G. The role of chromosome domains in shaping the functional genome. Cell. 2015; 160(6):1049-1059.
  • [4]Smith ZD, Meissner A. DNA methylation: roles in mammalian development. Nat Rev Genet. 2013; 14(3):204-220.
  • [5]Baubec T, Schubeler D. Genomic patterns and context specific interpretation of DNA methylation. Curr Opin Genet Dev. 2014; 25C:85-92.
  • [6]Klose RJ, Bird AP. Genomic DNA methylation: the mark and its mediators. Trends Biochem Sci. 2006; 31(2):89-97.
  • [7]Xie W, Schultz MD, Lister R, Hou Z, Rajagopal N, Ray P et al.. Epigenomic analysis of multilineage differentiation of human embryonic stem cells. Cell. 2013; 153(5):1134-1148.
  • [8]Gifford CA, Ziller MJ, Gu H, Trapnell C, Donaghey J, Tsankov A et al.. Transcriptional and epigenetic dynamics during specification of human embryonic stem cells. Cell. 2013; 153(5):1149-1163.
  • [9]Roadmap Epigenomics C, Kundaje A, Meuleman W, Ernst J, Bilenky M, Yen A et al.. Integrative analysis of 111 reference human epigenomes. Nature. 2015; 518(7539):317-330.
  • [10]Feng S, Jacobsen SE. Epigenetic modifications in plants: an evolutionary perspective. Curr Opin Plant Biol. 2011; 14(2):179-186.
  • [11]Bemer M, Grossniklaus U. Dynamic regulation of Polycomb group activity during plant development. Curr Opin Plant Biol. 2012; 15(5):523-529.
  • [12]Pikaard CS, Mittelsten Scheid O. Epigenetic regulation in plants. Cold Spring Harb Perspect Biol. 2014; 6(12):a019315.
  • [13]Jones PA. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet. 2012; 13(7):484-492.
  • [14]Goll MG, Bestor TH. Eukaryotic cytosine methyltransferases. Annu Rev Biochem. 2005; 74:481-514.
  • [15]Lister R, Pelizzola M, Dowen RH, Hawkins RD, Hon G, Tonti-Filippini J et al.. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature. 2009; 462(7271):315-322.
  • [16]Xie W, Barr CL, Kim A, Yue F, Lee AY, Eubanks J et al.. Base-resolution analyses of sequence and parent-of-origin dependent DNA methylation in the mouse genome. Cell. 2012; 148(4):816-831.
  • [17]Lister R, Mukamel EA, Nery JR, Urich M, Puddifoot CA, Johnson ND et al.. Global epigenomic reconfiguration during mammalian brain development. Science. 2013; 341(6146):1237905.
  • [18]Guo JU, Su Y, Shin JH, Shin J, Li H, Xie B et al.. Distribution, recognition and regulation of non-CpG methylation in the adult mammalian brain. Nat Neurosci. 2014; 17(2):215-222.
  • [19]Gabel HW, Kinde B, Stroud H, Gilbert CS, Harmin DA, Kastan NR et al.. Disruption of DNA-methylation-dependent long gene repression in Rett syndrome. Nature. 2015; 522(7554):89-93.
  • [20]Feng S, Cokus SJ, Zhang X, Chen PY, Bostick M, Goll MG et al.. Conservation and divergence of methylation patterning in plants and animals. Proc Natl Acad Sci USA. 2010; 107(19):8689-8694.
  • [21]Zemach A, McDaniel IE, Silva P, Zilberman D. Genome-wide evolutionary analysis of eukaryotic DNA methylation. Science. 2010; 328(5980):916-919.
  • [22]Lyko F, Foret S, Kucharski R, Wolf S, Falckenhayn C, Maleszka R. The honey bee epigenomes: differential methylation of brain DNA in queens and workers. PLoS Biol. 2010; 8(11):e1000506.
  • [23]Kucharski R, Maleszka J, Foret S, Maleszka R. Nutritional control of reproductive status in honeybees via DNA methylation. Science. 2008; 319(5871):1827-1830.
  • [24]Raddatz G, Guzzardo PM, Olova N, Fantappie MR, Rampp M, Schaefer M et al.. Dnmt2-dependent methylomes lack defined DNA methylation patterns. Proc Natl Acad Sci USA. 2013; 110(21):8627-8631.
  • [25]Beisel C, Paro R. Silencing chromatin: comparing modes and mechanisms. Nat Rev Genet. 2011; 12(2):123-135.
  • [26]Lejeune E, Allshire RC. Common ground: small RNA programming and chromatin modifications. Curr Opin Cell Biol. 2011; 23(3):258-265.
  • [27]Reyes-Turcu FE, Grewal SI. Different means, same end-heterochromatin formation by RNAi and RNAi-independent RNA processing factors in fission yeast. Curr Opin Genet Dev. 2012; 22(2):156-163.
  • [28]Li E, Bestor TH, Jaenisch R. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell. 1992; 69:915-926.
  • [29]Okano M, Bell DW, Haber DA, Li E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell. 1999; 99:247-257.
  • [30]Li E, Beard C, Jaenisch R. Role for DNA methylation in genomic imprinting. Nature. 1993; 366:362-365.
  • [31]Panning B, Jaenisch R. DNA hypomethylation can activate Xist expression and silence X-linked genes. Genes Dev. 1996; 10:1991-2002.
  • [32]Walsh CP, Chaillet JR, Bestor TH. Transcription of IAP endogenous retroviruses is constrained by cytosine methylation. Nat Genet. 1998; 20:116-117.
  • [33]Wu H, Coskun V, Tao J, Xie W, Ge W, Yoshikawa K et al.. Dnmt3a-dependent nonpromoter DNA methylation facilitates transcription of neurogenic genes. Science. 2010; 329(5990):444-448.
  • [34]Jin B, Ernst J, Tiedemann RL, Xu H, Sureshchandra S, Kellis M et al.. Linking DNA methyltransferases to epigenetic marks and nucleosome structure genome-wide in human tumor cells. Cell Rep. 2012; 2(5):1411-1424.
  • [35]Baubec T, Colombo DF, Wirbelauer C, Schmidt J, Burger L, Krebs AR et al.. Genomic profiling of DNA methyltransferases reveals a role for DNMT3B in genic methylation. Nature. 2015; 520(7546):243-247.
  • [36]Liao J, Karnik R, Gu H, Ziller MJ, Clement K, Tsankov AM et al.. Targeted disruption of DNMT1, DNMT3A and DNMT3B in human embryonic stem cells. Nat Genet. 2015; 47(5):469-478.
  • [37]Li Z, Dai H, Martos SN, Xu B, Gao Y, Li T et al.. Distinct roles of DNMT1-dependent and DNMT1-independent methylation patterns in the genome of mouse embryonic stem cells. Genome Biol. 2015; 16(1):115. BioMed Central Full Text
  • [38]Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y et al.. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science. 2009; 324(5929):930-935.
  • [39]Ito S, D’Alessio AC, Taranova OV, Hong K, Sowers LC, Zhang Y. Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature. 2010; 466(7310):1129-1133.
  • [40]Penn NW, Suwalski R, O’Riley C, Bojanowski K, Yura R. The presence of 5-hydroxymethylcytosine in animal deoxyribonucleic acid. Biochem J. 1972; 126(4):781-790.
  • [41]Kriaucionis S, Heintz N. The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science. 2009; 324(5929):929-930.
  • [42]Globisch D, Munzel M, Muller M, Michalakis S, Wagner M, Koch S et al.. Tissue distribution of 5-hydroxymethylcytosine and search for active demethylation intermediates. PLoS One. 2010; 5(12):e15367.
  • [43]He YF, Li BZ, Li Z, Liu P, Wang Y, Tang Q et al.. Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science. 2011; 333(6047):1303-1307.
  • [44]Ito S, Shen L, Dai Q, Wu SC, Collins LB, Swenberg JA et al.. Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science. 2011; 333:1300-1303.
  • [45]Wu H, D’Alessio AC, Ito S, Wang Z, Cui K, Zhao K et al.. Genome-wide analysis of 5-hydroxymethylcytosine distribution reveals its dual function in transcriptional regulation in mouse embryonic stem cells. Genes Dev. 2011; 25(7):679-684.
  • [46]Dawlaty MM, Ganz K, Powell BE, Hu YC, Markoulaki S, Cheng AW et al.. Tet1 is dispensable for maintaining pluripotency and its loss is compatible with embryonic and postnatal development. Cell Stem Cell. 2011; 9(2):166-175.
  • [47]Koh KP, Yabuuchi A, Rao S, Huang Y, Cunniff K, Nardone J et al.. Tet1 and Tet2 regulate 5-hydroxymethylcytosine production and cell lineage specification in mouse embryonic stem cells. Cell Stem Cell. 2011; 8(2):200-213.
  • [48]Ko M, Bandukwala HS, An J, Lamperti ED, Thompson EC, Hastie R et al.. Ten-Eleven-Translocation 2 (TET2) negatively regulates homeostasis and differentiation of hematopoietic stem cells in mice. Proc Natl Acad Sci USA. 2011; 108(35):14566-14571.
  • [49]Li Z, Cai X, Cai CL, Wang J, Zhang W, Petersen BE et al.. Deletion of Tet2 in mice leads to dysregulated hematopoietic stem cells and subsequent development of myeloid malignancies. Blood. 2011; 118(17):4509-4518.
  • [50]Gu TP, Guo F, Yang H, Wu HP, Xu GF, Liu W et al.. The role of Tet3 DNA dioxygenase in epigenetic reprogramming by oocytes. Nature. 2011; 477(7366):606-610.
  • [51]Dawlaty MM, Breiling A, Le T, Raddatz G, Barrasa MI, Cheng AW et al.. Combined deficiency of Tet1 and Tet2 causes epigenetic abnormalities but is compatible with postnatal development. Dev Cell. 2013; 24(3):310-323.
  • [52]Dawlaty MM, Breiling A, Le T, Barrasa MI, Raddatz G, Gao Q et al.. Loss of Tet enzymes compromises proper differentiation of embryonic stem cells. Dev Cell. 2014; 29(1):102-111.
  • [53]Hu X, Zhang L, Mao SQ, Li Z, Chen J, Zhang RR et al.. Tet and TDG mediate DNA demethylation essential for mesenchymal-to-epithelial transition in somatic cell reprogramming. Cell Stem Cell. 2014; 14(4):512-522.
  • [54]Lu F, Liu Y, Jiang L, Yamaguchi S, Zhang Y. Role of Tet proteins in enhancer activity and telomere elongation. Genes Dev. 2014; 28(19):2103-2119.
  • [55]Hon GC, Song CX, Du T, Jin F, Selvaraj S, Lee AY et al.. 5mC oxidation by Tet2 modulates enhancer activity and timing of transcriptome reprogramming during differentiation. Mol Cell. 2014; 56:286-297.
  • [56]Serandour AA, Avner S, Oger F, Bizot M, Percevault F, Lucchetti-Miganeh C et al.. Dynamic hydroxymethylation of deoxyribonucleic acid marks differentiation-associated enhancers. Nucleic Acids Res. 2012; 40(17):8255-8265.
  • [57]Jin C, Lu Y, Jelinek J, Liang S, Estecio MR, Barton MC et al.. TET1 is a maintenance DNA demethylase that prevents methylation spreading in differentiated cells. Nucleic Acids Res. 2014; 42(11):6956-6971.
  • [58]Pastor WA, Aravind L, Rao A. TETonic shift: biological roles of TET proteins in DNA demethylation and transcription. Nat Rev Mol Cell Biol. 2013; 14(6):341-356.
  • [59]Wu H, Zhang Y. Mechanisms and functions of Tet protein-mediated 5-methylcytosine oxidation. Genes Dev. 2011; 25(23):2436-2452.
  • [60]Raiber EA, Beraldi D, Ficz G, Burgess HE, Branco MR, Murat P et al.. Genome-wide distribution of 5-formylcytosine in embryonic stem cells is associated with transcription and depends on thymine DNA glycosylase. Genome Biol. 2012; 13(8):R69. BioMed Central Full Text
  • [61]Shen L, Wu H, Diep D, Yamaguchi S, D’Alessio AC, Fung HL et al.. Genome-wide analysis reveals TET- and TDG-dependent 5-methylcytosine oxidation dynamics. Cell. 2013; 153(3):692-706.
  • [62]Song CX, Szulwach KE, Dai Q, Fu Y, Mao SQ, Lin L et al.. Genome-wide profiling of 5-formylcytosine reveals its roles in epigenetic priming. Cell. 2013; 153(3):678-691.
  • [63]Spruijt CG, Gnerlich F, Smits AH, Pfaffeneder T, Jansen PW, Bauer C et al.. Dynamic readers for 5-(hydroxy)methylcytosine and its oxidized derivatives. Cell. 2013; 152(5):1146-1159.
  • [64]Iurlaro M, Ficz G, Oxley D, Raiber EA, Bachman M, Booth MJ et al.. A screen for hydroxymethylcytosine and formylcytosine binding proteins suggests functions in transcription and chromatin regulation. Genome Biol. 2013; 14(10):R119. BioMed Central Full Text
  • [65]Yildirim O, Li R, Hung JH, Chen PB, Dong X, Ee LS et al.. Mbd3/NURD complex regulates expression of 5-hydroxymethylcytosine marked genes in embryonic stem cells. Cell. 2011; 147(7):1498-1510.
  • [66]Mellen M, Ayata P, Dewell S, Kriaucionis S, Heintz N. MeCP2 binds to 5hmC enriched within active genes and accessible chromatin in the nervous system. Cell. 2012; 151(7):1417-1430.
  • [67]Bachman M, Uribe-Lewis S, Yang X, Williams M, Murrell A, Balasubramanian S. 5-Hydroxymethylcytosine is a predominantly stable DNA modification. Nature chemistry. 2014; 6(12):1049-1055.
  • [68]Song CX, Szulwach KE, Fu Y, Dai Q, Yi C, Li X et al.. Selective chemical labeling reveals the genome-wide distribution of 5-hydroxymethylcytosine. Nat Biotechnol. 2011; 29(1):68-72.
  • [69]Szulwach KE, Li X, Li Y, Song CX, Wu H, Dai Q et al.. 5-hmC-mediated epigenetic dynamics during postnatal neurodevelopment and aging. Nat Neurosci. 2011; 14(12):1607-1616.
  • [70]Hahn MA, Qiu R, Wu X, Li AX, Zhang H, Wang J et al.. Dynamics of 5-hydroxymethylcytosine and chromatin marks in Mammalian neurogenesis. Cell Rep. 2013; 3(2):291-300.
  • [71]Bocker MT, Tuorto F, Raddatz G, Musch T, Yang FC, Xu M et al.. Hydroxylation of 5-methylcytosine by TET2 maintains the active state of the mammalian HOXA cluster. Nat Commun. 2012; 3:818.
  • [72]Etchegaray JP, Chavez L, Huang Y, Ross KN, Choi J, Martinez-Pastor B et al.. The histone deacetylase SIRT6 controls embryonic stem cell fate via TET-mediated production of 5-hydroxymethylcytosine. Nat Cell Biol. 2015; 17(5):545-557.
  • [73]Pfaffeneder T, Spada F, Wagner M, Brandmayr C, Laube SK, Eisen D et al.. Tet oxidizes thymine to 5-hydroxymethyluracil in mouse embryonic stem cell DNA. Nat Chem Biol. 2014; 10(7):574-581.
  • [74]Cortellino S, Xu J, Sannai M, Moore R, Caretti E, Cigliano A et al.. Thymine DNA glycosylase is essential for active DNA demethylation by linked deamination-base excision repair. Cell. 2011; 146(1):67-79.
  • [75]Casadesus J, Low D. Epigenetic gene regulation in the bacterial world. Microbiol Mol Biol Rev MMBR. 2006; 70(3):830-856.
  • [76]Ratel D, Ravanat JL, Berger F, Wion D. N6-methyladenine: the other methylated base of DNA. BioEssays. 2006; 28(3):309-315.
  • [77]Fu Y, Luo GZ, Chen K, Deng X, Yu M, Han D et al.. N-Methyldeoxyadenosine marks active transcription start sites in chlamydomonas. Cell. 2015; 161:879-892.
  • [78]Greer EL, Blanco MA, Gu L, Sendinc E, Liu J, Aristizabal-Corrales D et al.. DNA Methylation on N-Adenine in C. elegans. Cell. 2015; 161:868-878.
  • [79]Iyer LM, Abhiman S, Aravind L. Natural history of eukaryotic DNA methylation systems. Prog Mol Biol Transl Sci. 2011; 101:25-104.
  • [80]Takayama S, Dhahbi J, Roberts A, Mao G, Heo SJ, Pachter L et al.. Genome methylation in D. melanogaster is found at specific short motifs and is independent of DNMT2 activity. Genome Res. 2014; 24(5):821-830.
  • [81]Zhang G, Huang H, Liu D, Cheng Y, Liu X, Zhang W et al.. N-methyladenine DNA modification in Drosophila. Cell. 2015; 161:893-906.
  • [82]Buck-Koehntop BA, Defossez PA. On how mammalian transcription factors recognize methylated DNA. Epigenetics. 2013; 8(2):131-137.
  • [83]Spruijt CG, Vermeulen M. DNA methylation: old dog, new tricks? Nat Struct Mol Biol. 2014; 21(11):949-954.
  • [84]Fong YW, Cattoglio C, Tjian R. The intertwined roles of transcription and repair proteins. Mol Cell. 2013; 52(3):291-302.
  • [85]Ratel D, Ravanat JL, Charles MP, Platet N, Breuillaud L, Lunardi J et al.. Undetectable levels of N6-methyl adenine in mouse DNA: cloning and analysis of PRED28, a gene coding for a putative mammalian DNA adenine methyltransferase. FEBS Lett. 2006; 580(13):3179-3184.
  文献评价指标  
  下载次数:19次 浏览次数:14次