期刊论文详细信息
BMC Veterinary Research
First isolation, identification, phenotypic and genotypic characterization of Brucella abortus biovar 3 from dairy cattle in Tanzania
J. Godfroid3  D. Fretin1  L. Escobar1  P. Michel1  G. Mwamengele5  R. H. Mdegela5  S. Klevar2  T. B. Johansen2  M. Stokstad4  C. Mathew5 
[1] Veterinary and Agrochemical Research Center, Brussels, Belgium;National Veterinary Institute, Oslo, Norway;Department of Arctic and Marine Biology, University of Tromsø - the Arctic University of Norway, Faculty of Biosciences, Fisheries and Economics, Research Group of Arctic Infection Biology, Langnes, Tromsø, 9037, Norway;Department of Production Animals Clinical Sciences, Norwegian University of Life Science, Oslo, Norway;Sokoine University of Agriculture, Morogoro, Tanzania
关键词: Zoonosis;    Small ruminants;    Prevalence;    MLVA;    Genotyping;    Dog;    Brucella;    Biotyping;    Bovine;    Abortion;   
Others  :  1223806
DOI  :  10.1186/s12917-015-0476-8
 received in 2014-11-12, accepted in 2015-07-13,  发布年份 2015
PDF
【 摘 要 】

Background

Brucellosis is a disease of worldwide public health and economic importance. Successful control is based on knowledge of epidemiology and strains present in an area. In developing countries, most investigations are based on serological assays. This study aimed at investigating a dairy herd experiencing abortions in order to establish within-herd seroprevalence to Brucella spp., identify, characterize Brucella strains by Multiple Loci Variable Number of Tandem Repeats Analysis (MLVA-VNTR) and investigate possible spillover to other species.

Results

The within-herd seroprevalence in cattle (n = 200) was 48 % (95 % CI 41–55), using an indirect ELISA, while the Rose Bengal Test (RBT) yielded lower prevalence (21.5 %; 95 % CI 16–27). Two sheep (n = 35) and one goat (n = 50) were seropositive using ELISA while none of the dogs (n = 6) was positive with the RBT. Three Brucella were isolated from an aborted fetus and associated membranes. Real time PCR (IS711), Bruce-ladder and classical biotyping classified the isolates as B. abortus biovar 3. MLVA-VNTR revealed two different but closely related genotypes. The isolates showed unique profiles, providing the first genotypic data from Tanzania. These genotypes were not related to B. abortus biovar 3 reference strain Tulya originally isolated from a human patient in Uganda in 1958, unlike the genotypes isolated and characterized recently in Kenya. High within-herd prevalence, isolation of the pathogen and abortion confirm that B. abortus is circulating in this herd with cattle as reservoir hosts. A low seroprevalence in sheep and goats suggests a spillover of B. abortus from cattle to small ruminants in the herd.

Conclusions

This is the first isolation and characterization of B. abortus biovar 3 from a dairy cow with abortion in Tanzania. The origin of the Tanzanian genotypes remain elusive, although they seem to be related to genotypes found in Europe, Turkey and China but not related to B. abortus biovar 3 reference strain or genotypes from Kenya. Importantly, replacement heifers are commonly sourced from large farms like this to smallholder farmers, which poses risk of spread of bacteria to other herds. B. abortus is a significant zoonotic risk and animal health problem in this production system, therefore further studies on humans is recommended.

【 授权许可】

   
2015 Mathew et al.

【 预 览 】
附件列表
Files Size Format View
20150905033939452.pdf 729KB PDF download
Fig. 2. 24KB Image download
Fig. 1. 50KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

【 参考文献 】
  • [1]Chapter 2.4.3. Bovine Brucellosis. Manual of diagnostic test and vaccines for terrestrial animals OIE, Paris. 2009.1-35.
  • [2]Pappas G, Papadimitriou P, Akritidis N, Christou L, Tsianos EV. The new global map of human brucellosis. Lancet Infect Dis. 2006; 6:91-9.
  • [3]Ocholi RA, Kwaga JK, Ajogi I, Bale JO. Phenotypic characterization of Brucella strains isolated from livestock in Nigeria. Vet Microbiol. 2004; 103:47-53.
  • [4]Bankole AA, Saegerman C, Berkvens D, Fretin D, Geerts S, Ieven G et al.. Phenotypic and genotypic characterisation of Brucella strains isolated from cattle in the Gambia. Vet Rec. 2010; 166:753-6.
  • [5]Godfroid J, Nielsen K, Saegerman C. Diagnosis of brucellosis in livestock and wildlife. Croat Med J. 2010; 51:296-305.
  • [6]Godfroid J, Scholz HC, Barbier T, Nicolas C, Wattiau P, Fretin D et al.. Brucellosis at the animal/ecosystem/human interface at the beginning of the 21st century. Prev Vet Med. 2011; 102:118-31.
  • [7]Muendo EN, Mbatha PM, Macharia J, Abdoel TH, Janszen PV, Pastoor R et al.. Infection of cattle in Kenya with Brucella abortus biovar 3 and Brucella melitensis biovar 1 genotypes. Trop Anim Health Prod. 2012; 44:17-20.
  • [8]Schelling E, Diguimbaye C, Daoud S, Nicolet J, Boerlin P, Tanner M et al.. Brucellosis and Q-fever seroprevalences of nomadic pastoralists and their livestock in Chad. Prev Vet Med. 2003; 61:279-93.
  • [9]Godfroid J, Al DS, Pappas G, Roth F, Matope G, Muma J et al.. A “One Health” surveillance and control of brucellosis in developing countries: moving away from improvisation. Comp Immunol Microbiol Infect Dis. 2013; 36:241-8.
  • [10]Scholz HC, Hofer E, Vergnaud G, Le FP, Whatmore AM, Al DS et al.. Isolation of Brucella microti from mandibular lymph nodes of red foxes, Vulpes vulpes, in lower Austria. Vector Borne Zoonotic Dis. 2009; 9:153-6.
  • [11]Foster G, Osterman BS, Godfroid J, Jacques I, Cloeckaert A. Brucella ceti sp. nov. and Brucella pinnipedialis sp. nov. for Brucella strains with cetaceans and seals as their preferred hosts. Int J Syst Evol Microbiol. 2007; 57:2688-93.
  • [12]Whatmore AM, Davison N, Cloeckaert A, Al DS, Zygmunt MS, Brew SD et al.. Brucella papionis sp. nov., isolated from baboons (Papio spp.). Int J Syst Evol Microbiol. 2014; 64:4120-8.
  • [13]Ocampo-Sosa AA, Aguero-Balbin J, Garcia-Lobo JM. Development of a new PCR assay to identify Brucella abortus biovars 5, 6 and 9 and the new subgroup 3b of biovar 3. Vet Microbiol. 2005; 110:41-51.
  • [14]Le Fleche P, Jacques I, Grayon M, Al DS, Bouchon P, Denoeud F et al.. Evaluation and selection of tandem repeat loci for a Brucella MLVA typing assay. BMC Microbiol. 2006; 6:9. BioMed Central Full Text
  • [15]Menshawy AM, Perez-Sancho M, Garcia-Seco T, Hosein HI, Garcia N, Martinez I et al.. Assessment of genetic diversity of zoonotic Brucella spp. recovered from livestock in Egypt using multiple locus VNTR analysis. Biomed Res Int. 2014; 2014:353876.
  • [16]McDermott JJ, Arimi SM. Brucellosis in sub-Saharan Africa: epidemiology, control and impact. Vet Microbiol. 2002; 90:111-34.
  • [17]John K, Fitzpatrick J, French N, Kazwala R, Kambarage D, Mfinanga GS et al.. Quantifying risk factors for human brucellosis in rural northern Tanzania. PLoS One. 2010; 5: Article ID e9968
  • [18]Swai ES, Schoonman L. The use of rose bengal plate test to asses cattle exposure to Brucella infection in traditional and smallholder dairy production systems of Tanga region of Tanzania. Vet Med Int. 2010;2010. doi:. 10. 4061/2010/837950 webcite
  • [19]Mahlau EA. Further brucellosis surveys in Tanzania. Bull Epizoot Dis Afr. 1967; 15:373-8.
  • [20]Makita K, Fevre EM, Waiswa C, Eisler MC, Thrusfield M, Welburn SC. Herd prevalence of bovine brucellosis and analysis of risk factors in cattle in urban and peri-urban areas of the Kampala economic zone, Uganda. BMC Vet Res. 2011; 7:60. BioMed Central Full Text
  • [21]Alton GG, Jones LM, Angus RD, Verger JM. Techniques for the brucellosis laboratory. Institut National de la Recherche Agronomique, Paris; 1988.
  • [22]Probert WS, Schrader KN, Khuong NY, Bystrom SL, Graves MH. Real-time multiplex PCR assay for detection of Brucella spp., B. abortus, and B. melitensis. J Clin Microbiol. 2004; 42:1290-3.
  • [23]Lopez-Goni I, Garcia-Yoldi D, Marin CM, De Miguel MJ, Munoz PM, Blasco JM et al.. Evaluation of a multiplex PCR assay (Bruce-ladder) for molecular typing of all Brucella species, including the vaccine strains. J Clin Microbiol. 2008; 46:3484-7.
  • [24]Lopez-Goni I, Garcia-Yoldi D, Marin CM, De Miguel MJ, Barquero-Calvo E, Guzman-Verri C et al.. New Bruce-ladder multiplex PCR assay for the biovar typing of Brucella suis and the discrimination of Brucella suis and Brucella canis. Vet Microbiol. 2011; 154:152-5.
  • [25]Mai HM, Irons PC, Kabir J, Thompson PN. Herd-level risk factors for Campylobacter fetus infection, Brucella seropositivity and within-herd seroprevalence of brucellosis in cattle in northern Nigeria. Prev Vet Med. 2013; 111:256-67.
  • [26]Bernard F, Vincent C, Matthieu L, David R, James D. Tuberculosis and brucellosis prevalence survey on dairy cattle in Mbarara milk basin (Uganda). Prev Vet Med. 2004; 67:267-81.
  • [27]Ducrotoy MJ, Bertu WJ, Ocholi RA, Gusi AM, Bryssinckx W, Welburn S et al.. Brucellosis as an emerging threat in developing economies: lessons from Nigeria. PLoS Negl Trop Dis. 2014; 8: Article ID e3008
  • [28]Racloz V, Schelling E, Chitnis N, Roth F, Zinsstag J. Persistence of brucellosis in pastoral systems. Rev Sci Tech. 2013; 32:61-70.
  • [29]Kabagambe EK, Elzer PH, Geaghan JP, Opuda-Asibo J, Scholl DT, Miller JE. Risk factors for Brucella seropositivity in goat herds in eastern and western Uganda. Prev Vet Med. 2001; 52:91-108.
  • [30]Bekele M, Mohammed H, Tefera M, Tolosa T. Small ruminant brucellosis and community perception in Jijiga District, Somali Regional State, Eastern Ethiopia. Trop Anim Health Prod. 2011; 43:893-8.
  • [31]Dean AS, Bonfoh B, Kulo AE, Boukaya GA, Amidou M, Hattendorf J et al.. Epidemiology of brucellosis and q Fever in linked human and animal populations in northern togo. PLoS One. 2013; 8: Article ID e71501
  • [32]Gumaa MM, Osman HM, Omer MM, El Sanousi EM, Godfroid J, Ahmed AM. Seroprevalence of brucellosis in sheep and isolation of Brucella abortus biovar 6 in Kassala State, Eastern Sudan. Rev Sci tech Off Int Epiz. 2014; 33:957-65.
  • [33]Forbes LB. Brucella abortus infection in 14 farm dogs. J Am Vet Med Assoc. 1990; 196:911-6.
  • [34]Greiner M, Verloo D, de Massis F. Meta-analytical equivalence studies on diagnostic tests for bovine brucellosis allowing assessment of a test against a group of comparative tests. Prev Vet Med. 2009; 92:373-81.
  • [35]Meyer ME, Morgan WJB. Designation of neotype strains and of biotype reference strains for species of the genus Brucella Meyer and Shaw. Int J Syst Evol Microbiol. 1973; 23:135-41.
  • [36]Dean AS, Schelling E, Bonfoh B, Kulo AE, Boukaya GA, Pilo P. Deletion in the gene BruAb2_0168 of Brucella abortus strains: diagnostic challenges. Clin Microbiol Infect. 2014; 20:O550-3.
  • [37]Matope G, Bhebhe E, Muma JB, Skjerve E, Djonne B. Characterization of some Brucella species from Zimbabwe by biochemical profiling and AMOS-PCR. BMC Res Notes. 2009; 2:261. BioMed Central Full Text
  • [38]Mugizi DR, Muradrasoli S, Boqvist S, Erume J, Nasinyama GW, Wiswa C et al.. Isolation and molecular characterization of Brucella isolates in cattle milk in Uganda. Biomed Res Int. 2015; 2015:720413.
  • [39]Sanogo M, Abatih E, Thys E, Fretin D, Berkvens D, Saegerman C. Importance of identification and typing of Brucellae from West African cattle: a review. Vet Microbiol. 2013; 164:202-11.
  • [40]Samaha H, Al-Rowaily M, Khoudair RM, Ashour HM. Multicenter study of brucellosis in Egypt. Emerg Infect Dis. 2008; 14:1916-8.
  • [41]Jennifer AZ, Maves RC, Nydam DV, Ayvar V, Cepeda D, Castillo R et al.. Effect of storage temperature and sample volume on Brucella melitensis isolation from goat milk. Int J Tropical Dis Health. 2012; 2:207-13.
  文献评价指标  
  下载次数:41次 浏览次数:44次