期刊论文详细信息
Journal of Biomedical Science
Involvement of gelsolin in TGF-beta 1 induced epithelial to mesenchymal transition in breast cancer cells
Ying-Ming Liou3  Kuan-Ying Chiu4  Dar-Bin Shieh1  Pei-Wen Wang2  Zhi-Yuan Chen4 
[1] Institute of Oral Medicine, National Cheng Kung University, Tainan 701, Taiwan;Institute of Basic Medical Sciences, National Cheng Kung University, Tainan 701, Taiwan;Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung 40227, Taiwan;Department of Life Sciences, National Chung-Hsing University, Taichung 40227, Taiwan
关键词: DNA methyltransferases;    Methylation specific PCR;    EMT;    TGF-β1;    GSN;   
Others  :  1232282
DOI  :  10.1186/s12929-015-0197-0
 received in 2015-07-03, accepted in 2015-09-29,  发布年份 2015
PDF
【 摘 要 】

Background

Increasing evidence suggests that transforming growth factor-beta 1 (TGF-β1) triggers epithelial to mesenchymal transition (EMT) and facilitates breast cancer stem cell differentiation. Gelsolin (GSN) is a ubiquitous actin filament-severing protein. However, the relationship between the expression level of GSN and the TGF-β signaling for EMT progression in breast cancer cells is not clear.

Results

TGF-β1 acted on MDA-MB231 breast cancer cells by decreasing cell proliferation, changing cell morphology to a fibroblast-like shape, increasing expressions for CD44 and GSN, and increasing EMT expression and cell migration/invasion. Study with GSN overexpression (GSN op) in both MDA-MB231 and MCF-7 cells demonstrated that increased GSN expression resulted in alterations of cell proliferation and cell cycle progression, modification of the actin filament assembly associated with altering cell surface elasticity and cell detachment in these breast cancer cells. In addition, increased cell migration was found in GSN op MDA-MB231 cells. Studies with GSN op and silencing by small interfering RNA verified that GSN could modulate the expression of vimentin. Sorted by flow cytometry, TGF-β1 increased subpopulation of CD44+/CD22- cells increasing their expressions for GSN, Nanog, Sox2, Oct4, N-cadherin, and vimentin but decreasing the E-cadherin expression. Methylation specific PCR analysis revealed that TGF-β1 decreased 50 % methylation but increased 3-fold unmethylation on the GSN promoter in CD44+/CD22- cells. Two DNA methyltransferases, DNMT1and DNMT3B were also inhibited by TGF-β1.

Conclusions

TGF-β1 induced epigenetic modification of GSN could alter the EMT process in breast cancer cells.

【 授权许可】

   
2015 Chen et al.

【 预 览 】
附件列表
Files Size Format View
20151113091759194.pdf 2407KB PDF download
Fig. 6. 32KB Image download
Fig. 5. 44KB Image download
Fig. 4. 20KB Image download
Fig. 3. 60KB Image download
Fig. 2. 72KB Image download
Fig. 1. 57KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

【 参考文献 】
  • [1]Massagué J. TGFβ signalling in context. Nat Rev Mol Cell Biol. 2012; 13:616-30.
  • [2]Roberts AB, Wakefield LM. The two faces of transforming growth factor beta in carcinogenesis. Proc Natl Acad Sci U S A. 2003; 100:8621-3.
  • [3]Tian M, Neil JR, Schiemann WP. Transforming growth factor-β and the hallmarks of cancer. Cell Signal. 2011; 23:951-62.
  • [4]Schmierer B, Hill CS. TGFbeta-SMAD signal transduction: molecular specificity and functional flexibility. Nat Rev Mol Cell Biol. 2007; 8:970-82.
  • [5]Bruna A, Greenwood W, Le Quesne J, Teschendorff A, Miranda-Saavedra D, Rueda OM et al.. TGFβ induces the formation of tumour-initiating cells in claudinlow breast cancer. Nat Commun. 2012; 3:1055.
  • [6]Tan AR, Alexe G, Reiss M. Transforming growth factor-beta signaling: emerging stem cell target in metastatic breast cancer? Breast Cancer Res Treat. 2009; 115:453-95.
  • [7]Olson MF, Sahai E. The actin cytoskeleton in cancer cell motility. Clin Exp Metastasis. 2009; 26:273-87.
  • [8]Chhabra ES, Higgs HN. The many faces of actin: matching assembly factors with cellular structures. Nat Cell Biol. 2007; 9:1110-21.
  • [9]Bursac P, Lenormand G, Fabry B, Oliver M, Weitz DA, Viasnoff V et al.. Cytoskeletal remodelling and slow dynamics in the living cell. Nat Mater. 2005; 4:557-61.
  • [10]Lambrechts A, Van Troys M, Ampe C. The actin cytoskeleton in normal and pathological cell motility. Int J Biochem Cell Biol. 2004; 36:1890-909.
  • [11]Bakin AV, Safina A, Rinehart C, Daroqui C, Darbary H, Helfman DM. A critical role of tropomyosins in TGF-beta regulation of the actin cytoskeleton and cell motility in epithelial cells. Mol Biol Cell. 2009; 15:4682-94.
  • [12]Edlund S, Landström M, Heldin CH, Aspenström P. Transforming growth factor-beta-induced mobilization of actin cytoskeleton requires signaling by small GTPases Cdc42 and RhoA. Mol Biol Cell. 2002; 13:902-14.
  • [13]Kiselar JG, Janmey PA, Almo SC, Chance MR. Visualizing the Ca 2+ -dependent activation of gelsolin by using synchrotron footprinting. Proc Natl Acad Sci U S A. 2003; 100:3942-7.
  • [14]Yin HL, Stossel TP. Control of cytoplasmic actin gel–sol transformation by gelsolin, a calcium-dependent regulatory protein. Nature. 1979; 281:583-6.
  • [15]Marino N, Marshall JC, Collins JW, Zhou M, Qian Y, Veenstra T et al.. Nm23-h1 binds to gelsolin and inactivates its actin-severing capacity to promote tumor cell motility and metastasis. Cancer Res. 2013; 73:5949-62.
  • [16]Li GH, Arora PD, Chen Y, McCulloch CA, Liu P. Multifunctional roles of gelsolin in health and diseases. Med Res Rev. 2012; 32:999-1025.
  • [17]Kwiatkowski DJ. Functions of gelsolin: motility, signaling, apoptosis, cancer. Curr Opin Cell Biol. 1999; 11:103-8.
  • [18]Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A. 2003; 100:3983-8.
  • [19]Hwang-Verslues WW, Kuo WH, Chang PH, Pan CC, Wang HH, Tsai ST et al.. Multiple lineages of human breast cancer stem/progenitor cells identified by profiling with stem cell markers. PLoS ONE. 2009; 4:e8377.
  • [20]Giatromanolaki A, Sivridis E, Fiska A, Koukourakis MI. The CD44+/CD24- phenotype relates to ‘triple-negative’ state and unfavorable prognosis in breast cancer patients. Med Oncol. 2011; 28:745-52.
  • [21]Hennessy BT, Gonzalez-Angulo AM, Stemke-Hale K, Gilcrease MZ, Krishnamurthy S, Lee JS et al.. Characterization of a naturally occurring breast cancer subset enriched in epithelial-to-mesenchymal transition and stem cell characteristics. Cancer Res. 2009; 69:4116-24.
  • [22]Hsu YC, Liou YM. The anti-cancer effects of (−)-epigalocathine-3-gallate on the signaling pathways associated with membrane receptors in MCF-7 cells. J Cell Physiol. 2011; 226:2721-30.
  • [23]Shieh DB, Li RY, Liao JM, Chen GD, Liou YM. Effects of genistein on β-catenin signaling and subcellular distribution of actin-binding proteins in human umbilical CD105-positive stromal cells. J Cell Physiol. 2010; 223:423-34.
  • [24]Peng KW, Liou YM. Differential role of actin-binding proteins in controlling the adipogenic differentiation of human CD105-positive Wharton’s Jelly cells. Biochim Biophys Acta. 1820; 2012:469-81.
  • [25]Kwiatkowski DJ, Mehl R, Yin HL. Genomic organization and biosynthesis of secreted and cytoplasmic forms of gelsolin. J Cell Biol. 1988; 106:375-84.
  • [26]Gupta C, Kaur J, Tikoo K. Regulation of MDA-MB-231 cell proliferation by GSK-3β involves epigenetic modifications under high glucose conditions. Exp Cell Res. 2014; 324:75-83.
  • [27]Jacobs KM, Bhave SR, Ferraro DJ, Jaboin JJ, Hallahan DE, Thotala D. GSK-3β: A Bifunctional Role in Cell Death Pathways. Int J Cell Biol. 2012; 2012:930710.
  • [28]Luo J. Glycogen synthase kinase 3beta (GSK3beta) in tumorigenesis and cancer chemotherapy. Cancer Lett. 2009; 273:194-200.
  • [29]Takahashi-Yanaga F, Sasaguri T. GSK-3beta regulates cyclin D1 expression: a new target for chemotherapy. Cell Signal. 2008; 20:581-9.
  • [30]Yin S, Lockett J, Meng Y, Biliran H, Blouse GE, Li X et al.. Maspin retards cell detachment via a novel interaction with the urokinase-type plasminogen activator/urokinase-type plasminogen activator receptor system. Cancer Res. 2006; 66:4173-81.
  • [31]Van den Abbeele A, De Corte V, Van Impe K, Bruyneel E, Boucherie C, Bracke M et al.. Downregulation of gelsolin family proteins counteracts cancer cell invasion in vitro. Cancer Lett. 2007; 255:57-70.
  • [32]Mielnicki LM, Ying AM, Head KL, Asch HL, Asch BB. Epigenetic Regulation of Gelsolin Expression in Human Breast Cancer Cells. Exp Cell Res. 1999; 249:161-76.
  • [33]Haga K, Fujita H, Nomoto M, Sazawa A, Nakagawa K, Harabayashi T et al.. Gelsolin gene silencing involving unusual hypersensitivities to dimethylsulfate and KMnO4 in vivo footprinting on its promoter region. Int J Cancer. 2004; 111:873-80.
  • [34]Zhang Y, Fatima N, Dufau ML. Coordinated changes in DNA methylation and histone modifications regulate silencing/derepression of luteinizing hormone receptor gene transcription. Mol Cell Biol. 2005; 25:7929-39.
  • [35]Luo M, Brooks M, Wicha MS. Epithelial-mesenchymal plasticity of breast cancer stem cells: implications for metastasis and therapeutic resistance. Curr Pharm Des. 2015; 21:1301-10.
  • [36]Pinto CA, Widodo E, Waltham M, Thompson EW. Breast cancer stem cells and epithelial mesenchymal plasticity - Implications for chemoresistance. Cancer Lett. 2013; 341:56-62.
  • [37]Velasco-Velázquez MA, Popov VM, Lisanti MP, Pestell RG. The role of breast cancer stem cells in metastasis and therapeutic implications. Am J Pathol. 2011; 179:2-11.
  • [38]Litwin M, Nowak D, Mazur AJ, Baczyńska D, Mannherz HG, Malicka-Błaszkiewicz M. Gelsolin affects the migratory ability of human colon adenocarcinoma and melanoma cells. Life Sci. 2012; 90:851-61.
  • [39]Radwanska A, Litwin M, Nowak D, Baczynska D, Wegrowski Y, Maquart FX et al.. Overexpression of lumican affects the migration of human colon cancer cells through up-regulation of gelsolin and filamentous actin reorganization. Exp Cell Res. 2012; 318:2312-23.
  • [40]Deng R, Hao J, Han W, Ni Y, Huang X, Hu Q. Gelsolin regulates proliferation, apoptosis, migration and invasion in human oral carcinoma cells. Oncol Lett. 2015; 9:2129-34.
  • [41]Shieh DB, Chen IW, Wei TY, Shao CY, Chang HJ, Chung CH et al.. Tissue expression of gelsolin in oral carcinogenesis progression and its clinicopathological implications. Oral Oncol. 2006; 42:599-606.
  • [42]Liu J, Liu YG, Huang R, Yao C, Li S, Yang W et al.. Concurrent down-regulation of Egr-1 and gelsolin in the majority of human breast cancer cells. Cancer Genomics Proteomics. 2007; 4:377-85.
  • [43]Thor AD, Edgerton SM, Liu S, Moore DH, Kwiatkowski DJ. Gelsolin as a negative prognostic factor and effector of motility in erbB-2-positive epidermal growth factor receptor-positive breast cancers. Clin Cancer Res. 2001; 7:2415-24.
  • [44]Winston JS, Asch HL, Zhang PJ, Edge SB, Hyland A, Asch BB. Downregulation of gelsolin correlates with the progression to breast carcinoma. Breast Cancer Res Treat. 2001; 65:11-21.
  • [45]Asch HL, Winston JS, Edge SB, Stomper PC, Asch BB. Down-regulation of gelsolin expression in human breast ductal carcinoma in situ with and without invasion. Breast Cancer Res Treat. 1999; 55:179-88.
  • [46]Asch HL, Head K, Dong Y, Natoli F, Winston JS, Connolly JL et al.. Widespread loss of gelsolin in breast cancers of humans, mice, and rats. Cancer Res. 1996; 56:4841-5.
  • [47]Wang PW, Abedini MR, Yang LX, Ding AA, Figeys D, Chang JY et al.. Gelsolin regulates cisplatin sensitivity in human head-and-neck cancer. Int J Cancer. 2014; 135:2760-9.
  • [48]Abedini MR, Wang PW, Huang YF, Cao M, Chou CY, Shieh DB et al.. Cell fate regulation by gelsolin in human gynecologic cancers. Proc Natl Acad Sci U S A. 2014; 111:14442-7.
  • [49]Dong Y, Asch HL, Ying A, Asch BB. Molecular mechanism of transcriptional repression of gelsolin in human breast cancer cells. Exp Cell Res. 2002; 276:328-36.
  文献评价指标  
  下载次数:44次 浏览次数:13次