期刊论文详细信息
Journal of Ovarian Research
ST6Gal-I sialyltransferase confers cisplatin resistance in ovarian tumor cells
Susan L Bellis2  Charles N Landen1  Elizabeth S Sztul2  John W Wright2  Amanda F Swindall2  Matthew J Schultz2 
[1] Department of Obstetrics and Gynecology, University of Alabama at Birmingham, Birmingham, AL, USA;Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
关键词: Glycosylation;    Apoptosis;    Ovarian cancer;    Cisplatin;    Sialic acid;   
Others  :  810766
DOI  :  10.1186/1757-2215-6-25
 received in 2013-02-11, accepted in 2013-03-29,  发布年份 2013
PDF
【 摘 要 】

Background

Platinum drugs, including cisplatin, are a frontline therapeutic in ovarian cancer treatment and acquired resistance to these agents is a major contributor to ovarian cancer morbidity and mortality. In this study a novel glycosylation-dependent mechanism for cisplatin resistance is described. Specifically, cisplatin-induced cell death is blocked by the activity of the ST6Gal-I sialyltransferase. ST6Gal-I modifies specific receptors by adding a negatively charged sialic acid sugar which influences diverse receptor functions. Overexpression of ST6Gal-I is a hallmark of ovarian and other cancers and its expression has been correlated to metastasis and poor prognosis.

Methods

Tumor cell viability and apoptotic induction were determined in cell lines with ST6Gal-I overexpression and knockdown. In addition, cell populations with acquired resistance to cisplatin were assayed for endogenous ST6Gal-I expression.

Results

We show that forced expression of ST6Gal-I in OV4 ovarian cancer cells that lack endogenous ST6Gal-I causes reduced activation of caspase 3 and increased cell viability following cisplatin treatment. Conversely, forced ST6Gal-I knockdown in Pa-1 cells with high endogenous ST6Gal-I increases cisplatin-induced caspase activation and cell death. A2780 ovarian cancer cells selected for stable cisplatin resistance display upregulated endogenous ST6Gal-I when compared with parental, cisplatin-sensitive, A2780 cells. Similarly, extended low dose cisplatin treatment of a Pa-1 polyclonal ST6Gal-I shRNA knockdown population led to selection for subclones with elevated ST6Gal-I expression.

Conclusions

Receptor sialylation by ST6Gal-I confers a survival advantage for tumor cells in the presence of cisplatin. These collective findings support a role for ST6Gal-I in chemoresistance and highlight ST6Gal-I as a potential therapeutic target for platinum resistant tumors.

【 授权许可】

   
2013 Schultz et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140709051512223.pdf 1334KB PDF download
Figure 5. 67KB Image download
Figure 4. 27KB Image download
Figure 3. 63KB Image download
Figure 2. 27KB Image download
Figure 1. 68KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Martin LT, Marth JD, Varki A, Varki NM: Genetically altered mice with different sialyltransferase deficiencies show tissue-specific alterations in sialylation and sialic acid 9-O-acetylation. J Biol Chem 2002, 277:32930-32938.
  • [2]Hennet T, Chui D, Paulson JC, Marth JD: Immune regulation by the ST6Gal sialyltransferase. Proc Natl Acad Sci U S A 1998, 95:4504-4509.
  • [3]Schultz MJ, Swindall AF, Bellis SL: Regulation of the metastatic cell phenotype by sialylated glycans. Cancer Metastasis Rev 2012, 31:501-518.
  • [4]Zhuo Y, Bellis SL: Emerging role of alpha2,6-sialic acid as a negative regulator of galectin binding and function. J Biol Chem 2010, 286:5935-5941.
  • [5]Boscher C, Dennis JW, Nabi IR: Glycosylation, galectins and cellular signaling. Curr Opin Cell Biol 2011, 23:383-392.
  • [6]Grigorian A, Torossian S, Demetriou M: T-cell growth, cell surface organization, and the galectin-glycoprotein lattice. Immunol Rev 2009, 230:232-246.
  • [7]Garner OB, Baum LG: Galectin-glycan lattices regulate cell-surface glycoprotein organization and signalling. Biochem Soc Trans 2008, 36:1472-1477.
  • [8]Swindall AF, Bellis SL: Sialylation of the Fas death receptor by ST6Gal-I provides protection against Fas-mediated apoptosis in colon carcinoma cells. J Biol Chem 2011, 286:22982-22990.
  • [9]Seales EC, Jurado GA, Singhal A, Bellis SL: Ras oncogene directs expression of a differentially sialylated, functionally altered beta1 integrin. Oncogene 2003, 22:7137-7145.
  • [10]Dalziel M, Dall'Olio F, Mungul A, Piller V, Piller F: Ras oncogene induces beta-galactoside alpha2,6-sialyltransferase (ST6Gal I) via a RalGEF-mediated signal to its housekeeping promoter. Eur J Biochem 2004, 271:3623-3634.
  • [11]Lise M, Belluco C, Perera SP, Patel R, Thomas P, Ganguly A: Clinical correlations of alpha2,6-sialyltransferase expression in colorectal cancer patients. Hybridoma 2000, 19:281-286.
  • [12]Recchi MA, Hebbar M, Hornez L, Harduin-Lepers A, Peyrat JP, Delannoy P: Multiplex reverse transcription polymerase chain reaction assessment of sialyltransferase expression in human breast cancer. Cancer Res 1998, 58:4066-4070.
  • [13]Christie DR, Shaikh FM, Lucas JA 4th, Lucas JA 3rd, Bellis SL: ST6Gal-I expression in ovarian cancer cells promotes an invasive phenotype by altering integrin glycosylation and function. J Ovarian Res 2008, 1:3. BioMed Central Full Text
  • [14]Seales EC, Jurado GA, Brunson BA, Wakefield JK, Frost AR, Bellis SL: Hypersialylation of beta1 integrins, observed in colon adenocarcinoma, may contribute to cancer progression by up-regulating cell motility. Cancer Res 2005, 65:4645-4652.
  • [15]Shaikh FM, Seales EC, Clem WC, Hennessy KM, Zhuo Y, Bellis SL: Tumor cell migration and invasion are regulated by expression of variant integrin glycoforms. Exp Cell Res 2008, 314:2941-2950.
  • [16]Fukumori T, Takenaka Y, Yoshii T, Kim HR, Hogan V, Inohara H: CD29 and CD7 mediate galectin-3-induced type II T-cell apoptosis. Cancer Res 2003, 63:8302-8311.
  • [17]Zhuo Y, Chammas R, Bellis SL: Sialylation of beta1 integrins blocks cell adhesion to galectin-3 and protects cells against galectin-3-induced apoptosis. J Biol Chem 2008, 283:22177-22185.
  • [18]Earl LA, Bi S, Baum LG: N- and O-glycans modulate galectin-1 binding, CD45 signaling, and T cell death. J Biol Chem 2010, 285:2232-2244.
  • [19]Liu Z, Swindall AF, Kesterson RA, Schoeb TR, Bullard DC, Bellis SL: ST6Gal-I regulates macrophage apoptosis via alpha2-6 sialylation of the TNFR1 death receptor. J Biol Chem 2011, 286:39654-39662.
  • [20]Lee M, Lee HJ, Bae S, Lee YS: Protein sialylation by sialyltransferase involves radiation resistance. Mol Cancer Res 2008, 6:1316-1325.
  • [21]Markman M: Combination versus sequential cytotoxic chemotherapy in recurrent ovarian cancer: time for an evidence-based comparison. Gynecol Oncol 2010, 118:6-7.
  • [22]Blair BG, Larson CA, Safaei R, Howell SB: Copper transporter 2 regulates the cellular accumulation and cytotoxicity of Cisplatin and Carboplatin. Clin Cancer Res 2009, 15:4312-4321.
  • [23]Jansen BA, Brouwer J, Reedijk J: Glutathione induces cellular resistance against cationic dinuclear platinum anticancer drugs. J Inorg Biochem 2002, 89:197-202.
  • [24]Chock KL, Allison JM, Shimizu Y, ElShamy WM: BRCA1-IRIS overexpression promotes cisplatin resistance in ovarian cancer cells. Cancer Res 2010, 70:8782-8791.
  • [25]Gonzalez VM, Fuertes MA, Alonso C, Perez JM: Is cisplatin-induced cell death always produced by apoptosis? Mol Pharmacol 2001, 59:657-663.
  • [26]Jamieson ER, Lippard SJ: Structure, recognition, and processing of cisplatin-DNA adducts. Chem Rev 1999, 99:2467-2498.
  • [27]Landen CN Jr, Goodman B, Katre AA, Steg AD, Nick AM, Stone RL: Targeting aldehyde dehydrogenase cancer stem cells in ovarian cancer. Mol Cancer Ther 2010, 9:3186-3199.
  • [28]Wang PH, Lee WL, Juang CM: Altered mRNA expressions of sialyltransferases in ovarian cancers. Gynecol Oncol 2005, 99:631-639.
  • [29]Liang XJ, Shen DW, Garfield S, Gottesman MM: Mislocalization of membrane proteins associated with multidrug resistance in cisplatin-resistant cancer cell lines. Cancer Res 2003, 63:5909-5916.
  • [30]Nakagawa H, Ohira M, Hayashi S, Abe S, Saito S, Nagahori N: Alterations in the glycoform of cisplatin-resistant human carcinoma cells are caused by defects in the endoplasmic reticulum-associated degradation system. Cancer Lett 2008, 270:295-301.
  • [31]Nicol BM, Prasad SB: Sialic acid changes in Dalton's lymphoma-bearing mice after cyclophosphamide and cisplatin treatment. Braz J Med Biol Res 2002, 35:549-553.
  • [32]Sodhi A, Prasad SB: Differential binding of conA and WGA on the cell surface, the role of sialic acid in their expression and the increased activity of sialidase after cis-Platin treatment. Experientia 1985, 41:93-95.
  • [33]Sarna S, Bhola RK, Sodhi A: Release of protein bound sialic acid from fibrosarcoma cells after cis-dichlorodiammine platinum (II) treatment: the possible role in tumor regression. Pol J Pharmacol Pharm 1988, 40:295-302.
  • [34]Fan J, Banerjee D, Stambrook PJ, Bertino JR: Modulation of cytotoxicity of chemotherapeutic drugs by activated H-ras. Biochem Pharmacol 1997, 53:1203-1209.
  • [35]Dempke W, Voigt W, Grothey A, Hill BT, Schmoll HJ: Cisplatin resistance and oncogenes–a review. Anticancer Drugs 2000, 11:225-236.
  • [36]Swindall AF, Londono-Joshi AI, Schultz MJ, Fineberg N, Buchsbaum DJ, Bellis SL: ST6Gal-I protein expression is upregulated in human epithelial tumors and correlates with stem cell markers in normal tissues and colon cancer cell lines. Cancer Res 2013, 73:2368-2378.
  • [37]Micheau O, Solary E, Hammann A, Dimanche-Boitrel MT: Fas ligand-independent, FADD-mediated activation of the Fas death pathway by anticancer drugs. J Biol Chem 1999, 274:7987-7992.
  • [38]Müller M, Strand S, Hug H, Heinemann EM, Walczak H, Hofmann WJ: Drug-induced apoptosis in hepatoma cells is mediated by the CD95 (APO-1/Fas) receptor/ligand system and involves activation of wild-type p53. J Clin Invest 1997, 99:403-413.
  • [39]Matsuzaki I, Suzuki H, Kitamura M, Minamiya Y, Kawai H, Ogawa J: Cisplatin induces fas expression in esophageal cancer cell lines and enhanced cytotoxicity in combination with LAK cells. Oncology 2000, 59:336-343.
  • [40]Muller M, Wilder S, Bannasch D, Israeli D, Lehlbach K, Li-Weber M: p53 activates the CD95 (APO-1/Fas) gene in response to DNA damage by anticancer drugs. J Exp Med 1998, 188:2033-2045.
  • [41]Micheau O, Solary E, Hammann A, Martin F, Dimanche-Boitrel MT: Sensitization of cancer cells treated with cytotoxic drugs to fas-mediated cytotoxicity. J Natl Cancer Inst 1997, 89:783-789.
  • [42]Stewart JH 4th, Nguyen DM, Chen GA, Schrump DS: Induction of apoptosis in malignant pleural mesothelioma cells by activation of the Fas (Apo-1/CD95) death-signal pathway. J Thorac Cardiovasc Surg 2002, 123:295-302.
  • [43]Merritt RE, Mahtabifard A, Yamada RE, Crystal RG, Korst RJ: Cisplatin augments cytotoxic T-lymphocyte-mediated antitumor immunity in poorly immunogenic murine lung cancer. J Thorac Cardiovasc Surg 2003, 126:1609-1617.
  • [44]Rebillard A, Tekpli X, Meurette O, Sergent O, LeMoigne-Muller G, Vernhet L: Cisplatin-induced apoptosis involves membrane fluidification via inhibition of NHE1 in human colon cancer cells. Cancer Res 2007, 67:7865-7874.
  • [45]Lacour S, Hammann A, Grazide S, Lagadic-Gossmann D, Athias A, Sergent O: Cisplatin-induced CD95 redistribution into membrane lipid rafts of HT29 human colon cancer cells. Cancer Res 2004, 64:3593-3598.
  • [46]Schutze S, Tchikov V, Schneider-Brachert W: Regulation of TNFR1 and CD95 signalling by receptor compartmentalization. Nat Rev Mol Cell Biol 2008, 9:655-662.
  • [47]Niedner H, Christen R, Lin X, Kondo A, Howell SB: Identification of genes that mediate sensitivity to cisplatin. Mol Pharmacol 2001, 60:1153-1160.
  • [48]Perego P, Gatti L, Beretta GL: The ABC of glycosylation. Nat Rev Cancer 2010, 10:523.
  • [49]Beretta GL, Benedetti V, Cossa G: Increased levels and defective glycosylation of MRPs in ovarian carcinoma cells resistant to oxaliplatin. Biochem Pharmacol 2010, 79:1108-1117.
  • [50]Wakabayashi-Nakao K, Tamura A, Furukawa T, Nakagawa H, Ishikawa T: Quality control of human ABCG2 protein in the endoplasmic reticulum: ubiquitination and proteasomal degradation. Adv Drug Deliv Rev 2009, 61:66-72.
  文献评价指标  
  下载次数:33次 浏览次数:7次