期刊论文详细信息
Clinical Epigenetics
DNA methylation and gene expression profiles show novel regulatory pathways in hepatocellular carcinoma
Simonetta Friso2  Sang-Woon Choi4  Massimo Delledonne1  Roberto Corrocher2  Oliviero Olivieri2  Simone Conci3  Tommaso Campagnaro3  Sara Moruzzi2  Patrizia Pattini2  Paola Tononi1  Valentina Lotto2  Alfredo Guglielmi3  Alberto Ferrarini1  Andrea Ruzzenente3  Patrizia Guarini2  Silvia Udali2 
[1] Department of Biotechnology, Genetics and Heredity Section, University of Verona School of Agroindustrial Biotechnology, Ca’ Vignal 1, Strada Le Grazie 15, Verona, 37134, Italy;Department of Medicine, University of Verona School of Medicine, Policlinico ‘G.B. Rossi’, P.le L.A. Scuro, 10, Verona, 37134, Italy;Department of Surgery, University of Verona School of Medicine, Policlinico ‘G.B. Rossi’, P.le L.A. Scuro, 10, Verona, 37134, Italy;Chaum Life Center, CHA University, 4-1, Cheongdam-dong, Gangnam-gu, Seoul, 135-948, Korea
关键词: Retinol metabolism;    One-carbon metabolism;    MeDIP-chip;    Hepatocellular carcinoma;    Gene expression array;    Epigenetics;    DNA methylation;    Candidate tumor-suppressor genes;    Alcohol;   
Others  :  1210211
DOI  :  10.1186/s13148-015-0077-1
 received in 2015-03-23, accepted in 2015-03-26,  发布年份 2015
PDF
【 摘 要 】

Background

Alcohol is a well-known risk factor for hepatocellular carcinoma (HCC), but the mechanisms underlying the alcohol-related hepatocarcinogenesis are still poorly understood. Alcohol alters the provision of methyl groups within the hepatic one-carbon metabolism, possibly inducing aberrant DNA methylation. Whether specific pathways are epigenetically regulated in alcohol-associated HCC is, however, unknown. The aim of the present study was to investigate the genome-wide promoter DNA methylation and gene expression profiles in non-viral, alcohol-associated HCC. From eight HCC patients undergoing curative surgery, array-based DNA methylation and gene expression data of all annotated genes were analyzed by comparing HCC tissue and homologous cancer-free liver tissue.

Results

After merging the DNA methylation with gene expression data, we identified 159 hypermethylated-repressed, 30 hypomethylated-induced, 49 hypermethylated-induced, and 56 hypomethylated-repressed genes. Notably, promoter DNA methylation emerged as a novel regulatory mechanism for the transcriptional repression of genes controlling the retinol metabolism (ADH1A, ADH1B, ADH6, CYP3A43, CYP4A22, RDH16), iron homeostasis (HAMP), one-carbon metabolism (SHMT1), and genes with a putative, newly identified function as tumor suppressors (FAM107A, IGFALS, MT1G, MT1H, RNF180).

Conclusions

A genome-wide DNA methylation approach merged with array-based gene expression profiles allowed identifying a number of novel, epigenetically regulated candidate tumor-suppressor genes in alcohol-associated hepatocarcinogenesis. Retinol metabolism genes and SHMT1 are also epigenetically regulated through promoter DNA methylation in alcohol-associated HCC.

Due to the reversibility of epigenetic mechanisms by environmental/nutritional factors, these findings may open up to novel interventional strategies for hepatocarcinogenesis prevention in HCC related to alcohol, a modifiable dietary component.

【 授权许可】

   
2015 Udali et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150603035404523.pdf 722KB PDF download
Figure 1. 50KB Image download
【 图 表 】

Figure 1.

【 参考文献 】
  • [1]Poschl G, Seitz HK: Alcohol and cancer. Alcohol Alcohol 2004, 39:155-65.
  • [2]Seitz HK, Homann N: The role of acetaldehyde in alcohol-associated cancer of the gastrointestinal tract. Novartis Found Symp 2007, 285:110-9.
  • [3]Seitz HK, Stickel F: Molecular mechanisms of alcohol-mediated carcinogenesis. Nat Rev Cancer 2007, 7:599-612.
  • [4]Jones PA, Takai D: The role of DNA methylation in mammalian epigenetics. Science 2001, 293:1068-70.
  • [5]Esteller M: Epigenetics in cancer. N Engl J Med 2008, 358:1148-59.
  • [6]Friso S, Udali S, Guarini P, Pellegrini C, Pattini P, Moruzzi S, et al.: Global DNA hypomethylation in peripheral blood mononuclear cells as a biomarker of cancer risk. Cancer Epidemiol Biomarkers Prev 2013, 22:348-55.
  • [7]Ehrlich M: Cancer-linked DNA, hypomethylation and its relationship to hypermethylation. Curr Top Microbiol Immunol 2006, 310:251-74.
  • [8]Jones PA: The DNA, methylation paradox. Trends Genet 1999, 15:34-7.
  • [9]Pogribny IP, Rusyn I: Role of epigenetic aberrations in the development and progression of human hepatocellular carcinoma. Cancer Lett 2014, 342:223-30.
  • [10]Kim KC, Friso S, Choi SW: DNA methylation, an epigenetic mechanism connecting folate to healthy embryonic development and aging. J Nutr Biochem 2009, 20:917-26.
  • [11]Hernandez-Vargas H, Lambert MP, Le Calvez-Kelm F, Gouysse G, McKay-Chopin S, Tavtigian SV, et al.: Hepatocellular carcinoma displays distinct DNA methylation signatures with potential as clinical predictors. PLoS One 2010., 5Article ID e9749
  • [12]Shen J, Wang S, Zhang YJ, Kappil M, Wu HC, Kibriya MG, et al.: Genome-wide DNA methylation profiles in hepatocellular carcinoma. Hepatology 2012, 55:1799-808.
  • [13]Lu SC, Mato JM: S-adenosylmethionine in cell growth, apoptosis and liver cancer. J Gastroenterol Hepatol 2008, 23(Suppl 1):S73-7.
  • [14]Varela-Rey M, Woodhoo A, Martinez-Chantar ML, Mato JM, Lu SC: Alcohol, DNA methylation, and cancer. Alcohol Res 2013, 35:25-35.
  • [15]Sauer J, Jang H, Zimmerly EM, Kim KC, Liu Z, Chanson A, et al.: Ageing, chronic alcohol consumption and folate are determinants of genomic DNA methylation, p16 promoter methylation and the expression of p16 in the mouse colon. Br J Nutr 2010, 104:24-30.
  • [16]Shukla SD, Velazquez J, French SW, Lu SC, Ticku MK, Zakhari S: Emerging role of epigenetics in the actions of alcohol. Alcohol Clin Exp Res 2008, 32:1525-34.
  • [17]Choi SW, Stickel F, Baik HW, Kim YI, Seitz HK, Mason JB: Chronic alcohol consumption induces genomic but not p53-specific DNA hypomethylation in rat colon. J Nutr 1999, 129:1945-50.
  • [18]Medici V, Schroeder DI, Woods R, Lasalle JM, Geng Y, Shibata NM, et al. Methylation and gene expression responses to ethanol feeding and betaine supplementation in the cystathionine beta synthase-deficient mouse. Alcohol Clin Exp Res. 2014. doi:10.1111/acer.12405
  • [19]Esfandiari F, Medici V, Wong DH, Jose S, Dolatshahi M, Quinlivan E, et al.: Epigenetic regulation of hepatic endoplasmic reticulum stress pathways in the ethanol-fed cystathionine beta synthase-deficient mouse. Hepatology 2010, 51:932-41.
  • [20]Nishida N, Kudo M, Nagasaka T, Ikai I, Goel A: Characteristic patterns of altered DNA methylation predict emergence of human hepatocellular carcinoma. Hepatology 2012, 56:994-1003.
  • [21]Gao W, Kondo Y, Shen L, Shimizu Y, Sano T, Yamao K, et al.: Variable DNA methylation patterns associated with progression of disease in hepatocellular carcinomas. Carcinogenesis 2008, 29:1901-10.
  • [22]Zhang YJ, Wu HC, Shen J, Ahsan H, Tsai WY, Yang HI, et al.: Predicting hepatocellular carcinoma by detection of aberrant promoter methylation in serum DNA. Clin Cancer Res 2007, 13:2378-84.
  • [23]Kanda M, Nomoto S, Okamura Y, Nishikawa Y, Sugimoto H, Kanazumi N, et al.: Detection of metallothionein 1G as a methylated tumor suppressor gene in human hepatocellular carcinoma using a novel method of double combination array analysis. Int J Oncol 2009, 35:477-83.
  • [24]Neumann O, Kesselmeier M, Geffers R, Pellegrino R, Radlwimmer B, Hoffmann K, et al. Methylome analysis and integrative profiling of human HCCs identify novel protumorigenic factors. Hepatology. 2012. doi:10.1002/hep.25870
  • [25]Awakura Y, Nakamura E, Ito N, Kamoto T, Ogawa O: Methylation-associated silencing of TU3A in human cancers. Int J Oncol 2008, 33:893-9.
  • [26]Bell A, Bell D, Weber RS, El-Naggar AK: CpG island methylation profiling in human salivary gland adenoid cystic carcinoma. Cancer 2011, 117:2898-909.
  • [27]Cheung KF, Lam CN, Wu K, Ng EK, Chong WW, Cheng AS, et al.: Characterization of the gene structure, functional significance, and clinical application of RNF180, a novel gene in gastric cancer. Cancer 2012, 118:947-59.
  • [28]Liu Q, Zhao XY, Bai RZ, Liang SF, Nie CL, Yuan Z, et al.: Induction of tumor inhibition and apoptosis by a candidate tumor suppressor gene DRR1 on 3p21.1. Oncol Rep 2009, 22:1069-75.
  • [29]Cherian MG, Jayasurya A, Bay BH: Metallothioneins in human tumors and potential roles in carcinogenesis. Mutat Res 2003, 533:201-9.
  • [30]Sakamoto LH, DE Camargo B, Cajaiba M, Soares FA, Vettore AL: MT1G hypermethylation: a potential prognostic marker for hepatoblastoma. Pediatr Res 2010, 67:387-93.
  • [31]Wang XD: Alcohol, vitamin A, and cancer. Alcohol 2005, 35:251-8.
  • [32]Herbig K, Chiang EP, Lee LR, Hills J, Shane B, Stover PJ: Cytoplasmic serine hydroxymethyltransferase mediates competition between folate-dependent deoxyribonucleotide and S-adenosylmethionine biosyntheses. J Biol Chem 2002, 277:38381-9.
  • [33]Friso S, Choi SW: Gene-nutrient interactions and DNA methylation. J Nutr 2002, 132:2382S-7.
  • [34]Park CH, Valore EV, Waring AJ, Ganz T: Hepcidin, a urinary antimicrobial peptide synthesized in the liver. J Biol Chem 2001, 276:7806-10.
  • [35]Kijima H, Sawada T, Tomosugi N, Kubota K: Expression of hepcidin mRNA is uniformly suppressed in hepatocellular carcinoma. BMC Cancer 2008, 8:167. BioMed Central Full Text
  • [36]36. Costa-Matos L, Batista P, Monteiro N, Simoes M, Egas C, Pereira J, et al. Liver hepcidin mRNA expression is inappropriately low in alcoholic patients compared with healthy controls. Eur J Gastroenterol Hepatol. 2012. doi:10.1097/MEG.0b013e328355cfd0
  • [37]Kang YH, Ji NY, Lee CI, Lee HG, Kim JW, Yeom YI, et al.: ESM-1 silencing decreased cell survival, migration, and invasion and modulated cell cycle progression in hepatocellular carcinoma. Amino Acids 2011, 40:1003-13.
  • [38]Marshall A, Lukk M, Kutter C, Davies S, Alexander G, Odom DT: Global gene expression profiling reveals SPINK1 as a potential hepatocellular carcinoma marker. PLoS One 2013., 8Article ID e59459
  • [39]Carmona-Cuenca I, Roncero C, Sancho P, Caja L, Fausto N, Fernandez M, et al.: Upregulation of the NADPH oxidase NOX4 by TGF-beta in hepatocytes is required for its pro-apoptotic activity. J Hepatol 2008, 49:965-76.
  • [40]Jones PA, Baylin SB: The epigenomics of cancer. Cell 2007, 128:683-92.
  • [41]Singal R, Ginder GD: DNA methylation. Blood 1999, 93:4059-70.
  • [42]Keyes MK, Jang H, Mason JB, Liu Z, Crott JW, Smith DE, et al.: Older age and dietary folate are determinants of genomic and p16-specific DNA methylation in mouse colon. J Nutr 2007, 137:1713-7.
  • [43]Friso S, Choi SW, Girelli D, Mason JB, Dolnikowski GG, Bagley PJ, et al.: A common mutation in the 5,10-methylenetetrahydrofolate reductase gene affects genomic DNA methylation through an interaction with folate status. Proc Natl Acad Sci U S A 2002, 99:5606-11.
  • [44]Weber M, Davies JJ, Wittig D, Oakeley EJ, Haase M, Lam WL, et al.: Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nat Genet 2005, 37:853-62.
  • [45]Magdalena J, Goval JJ: Methyl DNA immunoprecipitation. Methods Mol Biol 2009, 567:237-47.
  • [46]Boujedidi H, Bouchet-Delbos L, Cassard-Doulcier AM, Njike-Nakseu M, Maitre S, Prevot S, et al.: Housekeeping gene variability in the liver of alcoholic patients. Alcohol Clin Exp Res 2012, 36:258-66.
  • [47]Down TA, Rakyan VK, Turner DJ, Flicek P, Li H, Kulesha E, et al.: A Bayesian deconvolution strategy for immunoprecipitation-based DNA methylome analysis. Nat Biotechnol 2008, 26:779-85.
  • [48]Feber A, Wilson GA, Zhang L, Presneau N, Idowu B, Down TA, et al.: Comparative methylome analysis of benign and malignant peripheral nerve sheath tumors. Genome Res 2011, 21:515-24.
  • [49]Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, et al.: Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 2003, 4:249-64.
  • [50]Smyth GK: Limma: linear models for microarray data. In Bioinformatics and computational biology solutions using R and bioconductor. Edited by Gentleman R, Carey V, Dudoit S, Irizarry R, Huber W. Springer, New York; 2005:397-420.
  • [51]Thomas PD, Kejariwal A, Campbell MJ, Mi H, Diemer K, Guo N, et al.: PANTHER: a browsable database of gene products organized by biological function, using curated protein family and subfamily classification. Nucleic Acids Res 2003, 31:334-41.
  • [52]Friso S, Lotto V, Choi SW, Girelli D, Pinotti M, Guarini P, et al.: Promoter methylation in coagulation F7 gene influences plasma FVII concentrations and relates to coronary artery disease. J Med Genet 2012, 49:192-9.
  文献评价指标  
  下载次数:10次 浏览次数:13次