期刊论文详细信息
Cancer Cell International
Antitumor activity of the selective cyclooxygenase-2 inhibitor, celecoxib, on breast cancer in Vitro and in Vivo
Xi-Jing Wang1  Wang-Feng Lu1  Yan Diao1  Hai-Tao Guan1  Wei-Li Min1  Jie Gao1  Hua-Feng Kang1  Xiao-Bin Ma1  Zhi-Jun Dai1 
[1] Department of Oncology, the Second Affiliated Hospital, Medical School of Xi’an Jiaotong University, Xi’an, 710004, China
关键词: DMBA;    Anti-tumor;    Cyclooxygenase-2;    Breast cancer;   
Others  :  794575
DOI  :  10.1186/1475-2867-12-53
 received in 2012-09-05, accepted in 2012-12-18,  发布年份 2012
PDF
【 摘 要 】

Background

Cyclooxygenase-2(COX-2) promotes carcinogenesis, tumor proliferation, angiogenesis, prevention of apoptosis, and immunosuppression. Meanwhile, COX-2 over-expression has been associated with tumor behavior and prognosis in several cancers. This study investigated the antitumor effects of the selective COX-2 inhibitor, Celecoxib, on breast cancer in vitro and in vivo.

Methods

Human breast cancer MCF-7 and MDA-MB-231 cells were cultured with different concentration (10, 20, 40 μmol/L) of celecoxib after 0-96 hours in vitro. MTT assay was used to determine the growth inhibition of breast cancer cells in vitro. The expression of COX-2 on mRNA was measured by real-time quantitive PCR analysis. Flow cytometry was performed to analyze the cell cycle of MCF-7 cells. Levels of PGE2 were measured by ELISA method. The in vivo therapeutic effects of celecoxib were determined using rat breast cancer chemically induced by 7,12-dimethylben anthracene (DMBA).

Results

The inhibition of proliferation of both MCF-7 and MDA-MB-231 cells in vitro by celecoxib was observerd in time and dose dependent manner. Celecoxib effectively down-regulated the expression of COX-2. The cell cycle was arrested at G0/G1, and rate of cells in S phase was obviously decreased. Levels of PGE2 were inhibited by Celecoxib. The tumor incidence rate of the celecoxib group was lower than that of the control group. In addition, the tumor latency period of the celecoxib group was longer than that of the control group.

Conclusions

Celecoxib inhibited the proliferation of breast cancer cell lines in vitro, and prevented the occurrence of rat breast cancer chemically induced by DMBA. Therefore, celecoxib exhibits an antitumor activity and seems to be effective in anti-tumor therapy.

【 授权许可】

   
2012 Dai et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140705070901443.pdf 1389KB PDF download
Figure 6. 165KB Image download
Figure 5. 51KB Image download
Figure 4. 21KB Image download
Figure 3. 46KB Image download
Figure 2. 21KB Image download
Figure 1. 78KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Tsujii M, Kawano S, Tsuji S, Sawaoka H, Hori M, Dubois RN: Cyclooxygenase regulates angiogenesis induced by colon cancer cells. Cell 1998, 93:705-716.
  • [2]Gately S: The contributions of cyclooxygenase-2 to tumor angiogenesis. Cancer Metastasis Rev 2000, 19:19-27.
  • [3]Sheng H, Shao J, Morrow JD, Beauchamp RD, Dubois RN: Modulation of apoptosis and Bcl-2 expression by prostaglandin E2 in human colon cancer cells. Cancer Res 1998, 58:362-366.
  • [4]Tsujii M, Kawano S, DuBois RN: Cyclooxygenase-2 expression in human colon cancer cells increases metastatic potential. Proc Natl Acad Sci USA 1997, 94:3336-3340.
  • [5]Koki AT, Masferrer JL: Celecoxib: a specific COX-2 inhibitor with anticancer properties. Cancer Control 2002, 9:28-35.
  • [6]Choy H, Milas L: Enhancing radiotherapy with cyclooxygenase-2 enzyme inhibitors: a rational advance? J Natl Cancer Inst 2003, 95:1440-1452.
  • [7]Kobayashi H, Gonda T, Uetake H, Higuchi T, Enomoto M, Sugihara K: JTE-522, a selective COX-2 inhibitor, interferes with the growth of lung metastases from colorectal cancer in rats due to inhibition of neovascularization: a vascular cast model study. Int J Cancer 2004, 112:920-926.
  • [8]Lou J, Fatima N, Xiao Z, Stauffer S, Smythers G, Greenwald P, Ali IU: Proteomic profiling identifies cyclooxygenase-2-independent global proteomic changes by celecoxib in colorectal cancer cells. Cancer Epidemiol Biomarkers Prev. 2006, 15:1598-1606.
  • [9]Abou-Issa HM, Alshafie GA, Seibert K, Koki AT, Masferrer JL, Harris RE: Dose-response effects of the COX-2 inhibitor, celecoxib, on the chemoprevention of mammary carcinogenesis. Anticancer Res 2001, 21:3425-3432.
  • [10]Park W, Oh TY, Han JH, Pyo H: Antitumor enhancement of celecoxib, a selective Cyclooxygenase-2 inhibitor, in a Lewis lung carcinoma expressing Cyclooxygenase-2. J Exp Clin Cancer Res 2008, 27:66-74. BioMed Central Full Text
  • [11]Müller-Decker K, Fürstenberger G: The cyclooxygenase-2-mediated prostaglandin signaling is causally related to epithelial carcinogenesis. Mol Carcinog 2007, 46:705-710.
  • [12]Grösch S, Maier TJ, Schiffmann S, Geisslinger G: Cyclooxygenase-2 (COX-2)-independent anticarcinogenic effects of selective COX-2 inhibitors. J Natl Cancer Inst 2006, 98:736-747.
  • [13]Reddy BS, Hirose Y, Lubet R, Steele V, Kelloff G, Paulson S, Seibert K, Rao CV: Chemoprevention of colon cancer by specific cyclooxygenase-2 inhibitor, celecoxib, administered during different stages of carcinogenesis. Cancer Res 2000, 60:293-297.
  • [14]Jang TJ, Jung HG, Jung KH, O MK: Chemopreventive effect of celecoxib and expression of cyclooxygenase-1 and cyclooxygenase-2 on chemically-induced rat mammary tumours. Int J Exp Pathol 2002, 83:173-182.
  • [15]Keller JJ, Giardiello FM: Chemoprevention strategies using NSAIDs and COX-2 inhibitors. Cancer Biol Ther 2003, 2:1-9.
  • [16]Hilmi I, Goh KL: Chemoprevention of colorectal cancer with nonsteroidal anti-inflammatory drugs. Chin J Dig Dis 2006, 7:1-6.
  • [17]Dai ZJ, Gao J, Li ZF, Ji ZZ, Kang HF, Guan HT, Diao Y, Wang BF, Wang XJ: In Vitro and In Vivo Antitumor Activity of Scutellaria barbate Extract on Murine Liver Cancer. Molecules 2011, 16:4389-4400.
  • [18]Zhang JQ, Li YM, Liu T, He WT, Chen YT, Chen XH, Li X, Zhou WC, Yi JF, Ren ZJ: Antitumor effect of matrine in human hepatoma G2 cells by inducing apoptosis and autophagy. World J Gastroenterol 2010, 16:4281-4290.
  • [19]Tai MH, Weng CH, Mon DP, Hu CY, Wu MH: Ultraviolet C Irradiation Induces Different Expression of Cyclooxygenase 2 in NIH 3T3 Cells and A431 Cells: The Roles of COX-2 Are Different in Various Cell Lines. Int J Mol Sci 2012, 13:4351-4366.
  • [20]Whitsett T, Carpenter M, Lamartiniere CA: Resveratrol, but not EGCG, in the diet suppresses DMBA-induced mammary cancer in rats. J Carcinog 2006, 5:15. BioMed Central Full Text
  • [21]Nakatsugi S, Ohta T, Kawamori T, Mutoh M, Tanigawa T, Watanabe K, Sugie S, Sugimura T, Wakabayashi K: Chemoprevention by nimesulide, a selective cyclooxygenase-2 inhibitor, of 2-amino-1-methyl-6 -phenylimidazo[4,5-b]pyridine (PhIP)- induced mammary gland carcinogenesis in rats. Jpn J Cancer Res 2000, 91:886-892.
  • [22]Russo J, Russo IH: Atlas and histologic classification of tumors of the rat mammary gland. J Mammary Gland Biol Neoplasia 2000, 5:187-200.
  • [23]Barnes NL, Flint PJ, Knox WF, Clarke RB, Bundred NJ: Celecoxib decreases COX-2 protein expression and increases apoptosis in ductal carcinoma in situ of the breast in vivo. Meeting Abstracts: AACR 2005, 532.
  • [24]Basu GD, Pathangey LB, Tinder TL, Gendler SJ, Mukherjee P: Celecoxib, a selective COX-2 inhibitor, induces apoptosis and reduces VEGF levels in a preclinical model of metastatic breast cancer. Meeting Abstracts: AACR; 2004:317.
  • [25]Ding H, Han C, Zhu J, Chen CS, D'Ambrosio SM: Celecoxib derivatives induce apoptosis via the disruption of mitochondrial membrane potential and activation of caspase 9. Int J Cancer 2005, 113:803-810.
  • [26]Susan LJ, Sheldon M, John F, Kathleen G, Constantine D, Masferrer JL, Ben SZ, Harjeet S, Irma HR: The Cyclooxygenase-2 Inhibitor, Celecoxib, Prevents the Development of Mammary Tumors in HER-2/neu Mice. Cancer Epidemiol Biomarkers Prev 2003, 12:1486-1491.
  • [27]Howe LR, Subbaramaiah K, Patel J, Masferrer JL, Deora A, Hudis C, Thaler HT, Muller WJ, Du B, Brown AM, Dannenberg AJ: Celecoxib, a Selective Cyclooxygenase 2 Inhibitor, Protects against Human Epidermal Growth Factor Receptor 2 (HER-2)/ neu-induced Breast Cancer. Cancer Res 2002, 62:5405-5407.
  • [28]Rasmuson A, Kock A, Fuskevåg OM, Kruspig B, Simón-Santamaría J, Gogvadze V, Johnsen JI, Kogner P, Sveinbjörnsson B: Autocrine prostaglandin E2 signaling promotes tumor cell survival and proliferation in childhood neuroblastoma. PLoS One 2012, 7:e29331.
  • [29]Pockaj BA, Basu GD, Pathangey LB, Gray RJ, Hernandez JL, Gendler SJ, Mukherjee P: Reduced T-cell and dendritic cell function is related to cyclooxygenase-2 overexpression and prostaglandin E2 secretion in patients with breast cancer. Ann Surg Oncol 2004, 11:328-339.
  • [30]Tari AM, Simeone AM, Li YJ, Gutierrez-Puente Y, Lai S, Symmans WF: Cyclooxygenase-2 protein reduces tamoxifen and N-(4-hydroxyphenyl) retinamide inhibitory effects in breast cancer cells. Lab Invest 2005, 85:1357-1367.
  • [31]Shin YK, Park JS, Kim HS, Jun HJ, Kim GE, Suh CO, Yun YS, Pyo H: Radiosensitivity enhancement by celecoxib, a cyclooxygenase (COX)-2 selective inhibitor, via COX-2-dependent cell cycle regulation on human cancer cells expressing differential COX-2 levels. Cancer Res 2005, 65:9501-9509.
  • [32]Dvory-Sobol H, Cohen-Noyman E, Kazanov D, Figer A, Birkenfeld S, Madar-Shapiro L, Benamouzig R, Arber N: Celecoxib leads to G2/M arrest by induction of p21 and down-regulation of cyclin B1 expression in a p53-independent manner. Eur J Cancer 2006, 42:422-426.
  • [33]Liu DB, Hu GY, Long GX, Qiu H, Mei Q, Hu GQ: Celecoxib induces apoptosis and cell-cycle arrest in nasopharyngeal carcinoma cell lines via inhibition of STAT3 phosphorylation. Acta Pharmacol Sin 2012, 33:682-690.
  • [34]Márquez-Rosado L, Trejo-Solís MC, García-Cuéllar CM, Villa-Treviño S: Celecoxib, a cyclooxygenase-2 inhibitor, prevents induction of liver preneoplastic lesions in rats. J Hepatol 2005, 43:653-660.
  • [35]Li WZ, Wang XY, Li ZG, Zhang JH, Ding YQ: Celecoxib enhances the inhibitory effect of cisplatin on Tca8113 cells in human tongue squamous cell carcinoma in vivo and in vitro. J Oral Pathol Med 2010, 39:579-584.
  文献评价指标  
  下载次数:41次 浏览次数:14次