期刊论文详细信息
Journal of Cardiovascular Magnetic Resonance
Myocardial arterial spin labeling perfusion imaging with improved sensitivity
Krishna S Nayak2  Terrence R Jao1  Hung Phi Do3 
[1] Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA;Ming Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, CA, USA;Department of Physics and Astronomy, University of Southern California, 3740 McClintock Ave, EEB 400, Los Angeles, CA 90089-2564, USA
关键词: Parallel imaging;    Sensitivity;    Physiological noise;    Myocardial perfusion;    Arterial spin labeling;   
Others  :  801768
DOI  :  10.1186/1532-429X-16-15
 received in 2013-09-18, accepted in 2014-01-22,  发布年份 2014
PDF
【 摘 要 】

Background

Myocardial arterial spin labeling (ASL) is a noninvasive MRI based technique that is capable of measuring myocardial blood flow (MBF) in humans. It suffers from poor sensitivity to MBF due to high physiological noise (PN). This study aims to determine if the sensitivity of myocardial ASL to MBF can be improved by reducing image acquisition time, via parallel imaging.

Methods

Myocardial ASL scans were performed in 7 healthy subjects at rest using flow-sensitive alternating inversion recovery (FAIR) tagging and balanced steady state free precession (SSFP) imaging. Sensitivity encoding (SENSE) with a reduction factor of 2 was used to shorten each image acquisition from roughly 300 ms per heartbeat to roughly 150 ms per heartbeat. A paired Student’s t-test was performed to compare measurements of myocardial blood flow (MBF) and physiological noise (PN) from the reference and accelerated methods.

Results

The measured PN (mean ± standard deviation) was 0.20 ± 0.08 ml/g/min for the reference method and 0.08 ± 0.05 ml/g/min for the accelerated method, corresponding to a 60% reduction. PN measured from the accelerated method was found to be significantly lower than that of the reference method (p = 0.0059). There was no significant difference between MBF measured from the accelerated and reference ASL methods (p = 0.7297).

Conclusions

In this study, significant PN reduction was achieved by shortening the acquisition window using parallel imaging with no significant impact on the measured MBF. This indicates an improvement in sensitivity to MBF and may also enable the imaging of subjects with higher heart rates and imaging during systole.

【 授权许可】

   
2014 Do et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140708012623321.pdf 461KB PDF download
Figure 4. 35KB Image download
Figure 3. 22KB Image download
Figure 2. 57KB Image download
Figure 1. 35KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Calamante F, Thomas DL, Pell GS, Wiersma J, Turner R: Measuring cerebral blood flow using magnetic resonance imaging techniques. J of Cereb Blood Flow & Metab 1999, 19(7):701-35.
  • [2]Detre JA, Wang J, Wang Z, Rao H: Arterial spin-labeled perfusion MRI in basic and clinical neuroscience. Curr Opin Neurol 2009, 22(4):348-55.
  • [3]Watts JM, Whitlow CT, Maldjian JA: Clinical applications of arterial spin labeling. NMR Biomed 2013, 26:892-900.
  • [4]Belle V, Kahler E, Waller C, Rommel E, Voll S, Hiller K, Bauer WR, Haase A: In Vivo quantitative mapping of cardiac perfusion in rats using a noninvasive MR spin-labeling method. J Magn Reson Imaging 1998, 8(6):1240-5.
  • [5]Waller C, Kahler E, Hiller K, Hu K, Nahrendorf M, Voll S, Haase A, Ertl G, Bauer WR: Myocardial perfusion and intracapillary blood volume in rats at rest and with coronary dilatation: MR imaging in vivo with use of a spin-labeling technique. Radiology 2000, 215(1):189-97.
  • [6]Streif JU, Nahrendorf M, Hiller K, Waller C, Wiesmann F, Rommel E, Haase A, Bauer WR: In vivo assessment of absolute perfusion and intracapillary blood volume in the murine myocardium by spin labeling magnetic resonance imaging. Magn Reson Med 2005, 53(3):584-92.
  • [7]Vandsburger MH, Janiczek RL, Xu Y, French BA, Meyer CH, Kramer CM, Epstein FH: Improved arterial spin labeling after myocardial infarction in mice using cardiac and respiratory gated Look-Locker imaging with fuzzy C-means clustering. Magn Reson Med 2010, 63(3):648-57.
  • [8]Campbell-Washburn AE, Price AN, Wells JA, Thomas DL, Ordidge RJ, Lythgoe MF: Cardiac arterial spin labeling using segmented ECG-gated look-locker FAIR: variability and repeatability in preclinical studies. Magn Reson Med 2013, 69(1):238-47.
  • [9]Kober F, Iltis I, Izquierdo M, Desrois M, Ibarrola D, Cozzone PJ, Bernard M: High-resolution myocardial perfusion mapping in small animals in vivo by spin-labeling gradient-echo imaging. Magn Reson Med 2004, 51(1):62-7.
  • [10]Poncelet B, Koelling T, Schmidt C, Kwong K, Reese T, Ledden P, Kantor H, Brady T, Weisskoff R: Measurement of human myocardial perfusion by double-gated flow alternating inversion recovery EPI. Magn Reson Med 1999, 41(3):510-9.
  • [11]Northrup BE, McCommis KS, Zhang H, Ray S, Woodard PK, Gropler RJ, Zheng J: Resting myocardial perfusion quantification with CMR arterial spin labeling at 1.5 T and 3.0 T. J Cardiovasc Magn Reson 2008, 10:53. BioMed Central Full Text
  • [12]Zun Z, Wong EC, Nayak KS: Assessment of myocardial blood flow (MBF) in humans using arterial spin labeling (ASL): Feasibility and noise analysis. Magn Reson Med 2009, 62(4):975-83.
  • [13]Wang DJJ, Bi X, Avants BB, Meng T, Zuehlsdorff S, Detre JA: Estimation of perfusion and arterial transit time in myocardium using free-breathing myocardial arterial spin labeling with navigator-echo. Magn Reson Med 2010, 64(5):1289-95.
  • [14]Wacker C, Fidler F, Dueren C, Hirn S, Jakob P, Ertl G, Haase A, Bauer W: Quantitative assessment of myocardial perfusion with a spin-labeling technique: Preliminary results in patients with coronary artery disease. J Magn Reson Imaging 2003, 18(5):555-60.
  • [15]Zun Z, Varadarajan P, Pai RG, Wong EC, Nayak KS: Arterial spin labeled CMR detects clinically relevant increase in myocardial blood flow with vasodilation. JACC Cardiovasc Imaging 2011, 4(12):1253-61.
  • [16]Epstein FH, Meyer CH: Myocardial perfusion using arterial spin labeling CMR: promise and challenges. JACC Cardiovasc Imaging 2011, 4(12):1262-4.
  • [17]Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P: SENSE: sensitivity encoding for fast MRI. Magn Reson Med 1999, 42(5):952-62.
  • [18]Kim S: Quantification of relative cerebral blood flow change by flow-sensitive alternating inversion recovery (FAIR) technique: application to functional mapping. Magn Reson Med 1995, 34(3):293-301.
  • [19]Kwong K, Chesler D, Wwisskoff R, Donahue K, Davis T, Ostergaard L, Campbell T, Rosen B: MR perfusion studies with T-1-weighted echo-planar imaging. Magn Reson Med 1995, 34(6):878-87.
  • [20]Le Roux P: Simplified model and stabilization of SSFP sequences. J Magn Reson 2003, 163(1):23-37.
  • [21]Otton JM, Phan J, Feneley M, Yu C, Sammel N, McCrohon J: Defining the mid-diastolic imaging period for cardiac CT – lessons from tissue Doppler echocardiography. BMC Med Imaging 2013, 13(1):5. BioMed Central Full Text
  • [22]Allen J, Murray A: Age-related changes in peripheral pulse timing characteristics at the ears, fingers and toes. J Hum Hypertens 2002, 16(10):711-7.
  • [23]Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK, Pennell DJ, Rumberger JA, Ryan T, Verani MS: AHA scientific statement. Circulation 2002, 105:539-42.
  • [24]Jao T, Zun Z, Varadarajan P, Pai RG, Nayak KS: Mapping of myocardial ASL perfusion and perfusion reserve data. In Proceedings of the 19th Annual Meeting of the International Society for Magnetic Resonance in Medicine. Montreal, Quebec, Canada; May 2011:1339.
  • [25]Buxton RB, Frank LR, Wong EC, Siewert B, Warach S, Edelman RR: A general kinetic model for quantitative perfusion imaging with arterial spin labeling. Magn Reson Med 1998, 40(3):383-96.
  • [26]Lu H, Clingman C, Golay X, van Zijl P: Determining the longitudinal relaxation time (T1) of blood at 3.0 Tesla. Magn Reson Med 2004, 52(3):679-82.
  • [27]Chareonthaitawee P, Kaufmann P, Rimoldi O, Camici P: Heterogeneity of resting and hyperemic myocardial blood flow in healthy humans. Cardiovasc Res 2001, 50(1):151-61.
  • [28]Griswold MA, Jakob PM, Heidemann RM, Nittka M, Jellus V, Wang J, Kiefer B, Haase A: Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med 2002, 47(6):1202-10.
  • [29]Griswold MA, Kannengiesser S, Heidemann RM, Wang J, Jakob PM: Field-of-view limitations in parallel imaging. Magn Reson Med 2004, 52(5):1118-26.
  • [30]Kellman P, Arai AE: Imaging sequences for first pass perfusion-A review. J Cardiovasc Magn Reson 2007, 9(3):525-37.
  文献评价指标  
  下载次数:21次 浏览次数:29次