【 摘 要 】
Serological testing for anti-neural autoantibodies is important in patients presenting with idiopathic cerebellar ataxia, since these autoantibodies may indicate cancer, determine treatment and predict prognosis. While some of them target nuclear antigens present in all or most CNS neurons (e.g. anti-Hu, anti-Ri), others more specifically target antigens present in the cytoplasm or plasma membrane of Purkinje cells (PC). In this series of articles, we provide a detailed review of the clinical and paraclinical features, oncological, therapeutic and prognostic implications, pathogenetic relevance, and differential laboratory diagnosis of the 12 most common PC autoantibodies (often referred to as ‘Medusa-head antibodies’ due to their characteristic somatodendritic binding pattern when tested by immunohistochemistry). To assist immunologists and neurologists in diagnosing these disorders, typical high-resolution immunohistochemical images of all 12 reactivities are presented, diagnostic pitfalls discussed and all currently available assays reviewed. Of note, most of these antibodies target antigens involved in the mGluR1/calcium pathway essential for PC function and survival. Many of the antigens also play a role in spinocerebellar ataxia. Part 1 focuses on anti-metabotropic glutamate receptor 1-, anti-Homer protein homolog 3-, anti-Sj/inositol 1,4,5-trisphosphate receptor- and anti-carbonic anhydrase-related protein VIII-associated autoimmune cerebellar ataxia (ACA); part 2 covers anti-protein kinase C gamma-, anti-glutamate receptor delta-2-, anti-Ca/RhoGTPase-activating protein 26- and anti-voltage-gated calcium channel-associated ACA; and part 3 reviews the current knowledge on anti-Tr/delta notch-like epidermal growth factor-related receptor-, anti-Nb/AP3B2-, anti-Yo/cerebellar degeneration-related protein 2- and Purkinje cell antibody 2-associated ACA, discusses differential diagnostic aspects and provides a summary and outlook.
【 授权许可】
2015 Jarius and Wildemann.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150927091247424.pdf | 11238KB | download | |
Fig. 9. | 113KB | Image | download |
Fig. 8. | 124KB | Image | download |
Fig. 7. | 210KB | Image | download |
Fig. 6. | 131KB | Image | download |
Fig. 5. | 103KB | Image | download |
Fig. 4. | 126KB | Image | download |
Fig. 3. | 126KB | Image | download |
Fig. 2. | 124KB | Image | download |
Fig. 1. | 128KB | Image | download |
【 图 表 】
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
【 参考文献 】
- [1]Finch EA, Augustine GJ: Local calcium signalling by inositol-1,4,5-trisphosphate in Purkinje cell dendrites. Nature 1998, 396:753-6.
- [2]Hirota J, Ando H, Hamada K, Mikoshiba K: Carbonic anhydrase-related protein is a novel binding protein for inositol 1,4,5-trisphosphate receptor type 1. Biochem J 2003, 372:435-41.
- [3]Bell RM: Protein kinase C activation by diacylglycerol second messengers. Cell 1986, 45:631-2.
- [4]Hofmann T, Obukhov AG, Schaefer M, Harteneck C, Gudermann T, Schultz G: Direct activation of human TRPC6 and TRPC3 channels by diacylglycerol. Nature 1999, 397:259-63.
- [5]Hartmann J, Dragicevic E, Adelsberger H, Henning HA, Sumser M, Abramowitz J, et al.: TRPC3 channels are required for synaptic transmission and motor coordination. Neuron 2008, 59:392-8.
- [6]Venkatachalam K, Zheng F, Gill DL: Regulation of canonical transient receptor potential (TRPC) channel function by diacylglycerol and protein kinase C. J Biol Chem 2003, 278:29031-40.
- [7]Adachi N, Kobayashi T, Takahashi H, Kawasaki T, Shirai Y, Ueyama T, et al.: Enzymological analysis of mutant protein kinase Cgamma causing spinocerebellar ataxia type 14 and dysfunction in Ca2+ homeostasis. J Biol Chem 2008, 283:19854-63.
- [8]Kato AS, Knierman MD, Siuda ER, Isaac JT, Nisenbaum ES, Bredt DS: Glutamate receptor delta2 associates with metabotropic glutamate receptor 1 (mGluR1), protein kinase Cgamma, and canonical transient receptor potential 3 and regulates mGluR1-mediated synaptic transmission in cerebellar Purkinje neurons. J Neurosci 2012, 32:15296-308.
- [9]Trebak M, St JBG, McKay RR, Birnbaumer L, Putney JW Jr: Signaling mechanism for receptor-activated canonical transient receptor potential 3 (TRPC3) channels. J Biol Chem 2003, 278:16244-52.
- [10]Glitsch MD: Activation of native TRPC3 cation channels by phospholipase D. FASEB J 2010, 24:318-25.
- [11]Doherty AJ, Coutinho V, Collingridge GL, Henley JM: Rapid internalization and surface expression of a functional, fluorescently tagged G-protein-coupled glutamate receptor. Biochem J 1999, 341(Pt 2):415-22.
- [12]Mundell SJ, Matharu AL, Pula G, Roberts PJ, Kelly E: Agonist-induced internalization of the metabotropic glutamate receptor 1a is arrestin- and dynamin-dependent. J Neurochem 2001, 78:546-51.
- [13]Graus F, Lang B, Pozo-Rosich P, Saiz A, Casamitjana R, Vincent A: P/Q type calcium-channel antibodies in paraneoplastic cerebellar degeneration with lung cancer. Neurology 2002, 59:764-6.
- [14]Burk K, Wick M, Roth G, Decker P, Voltz R: Antineuronal antibodies in sporadic late-onset cerebellar ataxia. J Neurol 2010, 257:59-62.
- [15]Schubert M, Panja D, Haugen M, Bramham CR, Vedeler CA: Paraneoplastic CDR2 and CDR2L antibodies affect Purkinje cell calcium homeostasis. Acta Neuropathol 2014, 128:835-52.
- [16]Kitano J, Nishida M, Itsukaichi Y, Minami I, Ogawa M, Hirano T, et al.: Direct interaction and functional coupling between metabotropic glutamate receptor subtype 1 and voltage-sensitive Cav2.1 Ca2+ channel. J Biol Chem 2003, 278:25101-8.
- [17]Beqollari D, Kammermeier PJ: The interaction between mGluR1 and the calcium channel Cav(2). (1) preserves coupling in the presence of long Homer proteins. Neuropharmacology 2013, 66:302-10.
- [18]Ohtani Y, Miyata M, Hashimoto K, Tabata T, Kishimoto Y, Fukaya M, et al.: The synaptic targeting of mGluR1 by its carboxyl-terminal domain is crucial for cerebellar function. J Neurosci 2014, 34:2702-12.
- [19]Choi S, Lovinger DM: Metabotropic glutamate receptor modulation of voltage-gated Ca2+ channels involves multiple receptor subtypes in cortical neurons. J Neurosci 1996, 16:36-45.
- [20]Stefani A, Spadoni F, Bernardi G: Group I mGluRs modulate calcium currents in rat GP: functional implications. Synapse 1998, 30:424-32.
- [21]Guergueltcheva V, Azmanov DN, Angelicheva D, Smith KR, Chamova T, Florez L, et al.: Autosomal-recessive congenital cerebellar ataxia is caused by mutations in metabotropic glutamate receptor 1. Am J Hum Genet 2012, 91:553-64.
- [22]Offermanns S, Hashimoto K, Watanabe M, Sun W, Kurihara H, Thompson RF, et al.: Impaired motor coordination and persistent multiple climbing fiber innervation of cerebellar Purkinje cells in mice lacking Galphaq. Proc Natl Acad Sci U S A 1997, 94:14089-94.
- [23]Hartmann J, Blum R, Kovalchuk Y, Adelsberger H, Kuner R, Durand GM, et al.: Distinct roles of Galpha(q) and Galpha11 for Purkinje cell signaling and motor behavior. J Neurosci 2004, 24:5119-30.
- [24]Miyata M, Kim HT, Hashimoto K, Lee TK, Cho SY, Jiang H, et al.: Deficient long-term synaptic depression in the rostral cerebellum correlated with impaired motor learning in phospholipase C beta4 mutant mice. Eur J Neurosci 2001, 13:1945-54.
- [25]van de Leemput J, Chandran J, Knight MA, Holtzclaw LA, Scholz S, Cookson MR, et al.: Deletion at ITPR1 underlies ataxia in mice and spinocerebellar ataxia 15 in humans. PLoS Genet 2007, 3:e108.
- [26]Chen DH, Brkanac Z, Verlinde CL, Tan XJ, Bylenok L, Nochlin D, et al.: Missense mutations in the regulatory domain of PKC gamma: a new mechanism for dominant nonepisodic cerebellar ataxia. Am J Hum Genet 2003, 72:839-49.
- [27]Skinner PJ, Vierra-Green CA, Clark HB, Zoghbi HY, Orr HT: Altered trafficking of membrane proteins in purkinje cells of SCA1 transgenic mice. Am J Pathol 2001, 159:905-13.
- [28]Ikeda Y, Dick KA, Weatherspoon MR, Gincel D, Armbrust KR, Dalton JC, et al.: Spectrin mutations cause spinocerebellar ataxia type 5. Nat Genet 2006, 38:184-90.
- [29]Maier A, Klopocki E, Horn D, Tzschach A, Holm T, Meyer R, et al.: De novo partial deletion in GRID2 presenting with complicated spastic paraplegia. Muscle Nerve 2014, 49:289-92.
- [30]Zhuchenko O, Bailey J, Bonnen P, Ashizawa T, Stockton DW, Amos C, et al.: Autosomal dominant cerebellar ataxia (SCA6) associated with small polyglutamine expansions in the alpha 1A-voltage-dependent calcium channel. Nat Genet 1997, 15:62-9.
- [31]Ishikawa K, Tanaka H, Saito M, Ohkoshi N, Fujita T, Yoshizawa K, et al.: Japanese families with autosomal dominant pure cerebellar ataxia map to chromosome 19p13.1-p13.2 and are strongly associated with mild CAG expansions in the spinocerebellar ataxia type 6 gene in chromosome 19p13.1. Am J Hum Genet 1997, 61:336-46.
- [32]Kordasiewicz HB, Gomez CM: Molecular pathogenesis of spinocerebellar ataxia type 6. Neurotherapeutics 2007, 4:285-94.
- [33]Sillevis Smitt P, Kinoshita A, De Leeuw B, Moll W, Coesmans M, Jaarsma D, et al.: Paraneoplastic cerebellar ataxia due to autoantibodies against a glutamate receptor. N Engl J Med 2000, 342:21-7.
- [34]Iorio R, Damato V, Mirabella M, Vita MG, Hulsenboom E, Plantone D, et al.: Cerebellar degeneration associated with mGluR1 autoantibodies as a paraneoplastic manifestation of prostate adenocarcinoma. J Neuroimmunol 2013, 263:155-8.
- [35]Marignier R, Chenevier F, Rogemond V, Sillevis Smitt P, Renoux C, Cavillon G, et al.: Metabotropic glutamate receptor type 1 autoantibody-associated cerebellitis: a primary autoimmune disease? Arch Neurol 2010, 67:627-30.
- [36]Lancaster E, Martinez-Hernandez E, Titulaer MJ, Boulos M, Weaver S, Antoine JC, et al.: Antibodies to metabotropic glutamate receptor 5 in the Ophelia syndrome. Neurology 2011, 77:1698-701.
- [37]Hermans E, Challiss RA: Structural, signalling and regulatory properties of the group I metabotropic glutamate receptors: prototypic family C G-protein-coupled receptors. Biochem J 2001, 359:465-84.
- [38]Stephan D, Bon C, Holzwarth JA, Galvan M, Pruss RM: Human metabotropic glutamate receptor 1: mRNA distribution, chromosome localization and functional expression of two splice variants. Neuropharmacology 1996, 35:1649-60.
- [39]Makoff AJ, Phillips T, Pilling C, Emson P: Expression of a novel splice variant of human mGluR1 in the cerebellum. Neuroreport 1997, 8:2943-7.
- [40]Kammermeier PJ, Ikeda SR: Expression of RGS2 alters the coupling of metabotropic glutamate receptor 1a to M-type K+ and N-type Ca2+ channels. Neuron 1999, 22:819-29.
- [41]Ango F, Prezeau L, Muller T, Tu JC, Xiao B, Worley PF, et al.: Agonist-independent activation of metabotropic glutamate receptors by the intracellular protein Homer. Nature 2001, 411:962-5.
- [42]Tu JC, Xiao B, Yuan JP, Lanahan AA, Leoffert K, Li M, et al.: Homer binds a novel proline-rich motif and links group 1 metabotropic glutamate receptors with IP3 receptors. Neuron 1998, 21:717-26.
- [43]Xiao B, Tu JC, Petralia RS, Yuan JP, Doan A, Breder CD, et al.: Homer regulates the association of group 1 metabotropic glutamate receptors with multivalent complexes of homer-related, synaptic proteins. Neuron 1998, 21:707-16.
- [44]Brakeman PR, Lanahan AA, O’Brien R, Roche K, Barnes CA, Huganir RL, et al.: Homer: a protein that selectively binds metabotropic glutamate receptors. Nature 1997, 386:284-8.
- [45]Aiba A, Chen C, Herrup K, Rosenmund C, Stevens CF, Tonegawa S: Reduced hippocampal long-term potentiation and context-specific deficit in associative learning in mGluR1 mutant mice. Cell 1994, 79:365-75.
- [46]Aiba A, Kano M, Chen C, Stanton ME, Fox GD, Herrup K, et al.: Deficient cerebellar long-term depression and impaired motor learning in mGluR1 mutant mice. Cell 1994, 79:377-88.
- [47]Anwyl R: Metabotropic glutamate receptor-dependent long-term potentiation. Neuropharmacology 2009, 56:735-40.
- [48]Kim SJ, Kim YS, Yuan JP, Petralia RS, Worley PF, Linden DJ: Activation of the TRPC1 cation channel by metabotropic glutamate receptor mGluR1. Nature 2003, 426:285-91.
- [49]Tabata T, Araishi K, Hashimoto K, Hashimotodani Y, van der Putten H, Bettler B, et al.: Ca2+ activity at GABAB receptors constitutively promotes metabotropic glutamate signaling in the absence of GABA. Proc Natl Acad Sci U S A 2004, 101:16952-7.
- [50]Jarius S, Steinmeyer F, Knobel A, Streitberger K, Hotter B, Horn S, et al.: GABAB receptor antibodies in paraneoplastic cerebellar ataxia. J Neuroimmunol 2013, 256:94-6.
- [51]Lancaster E, Lai M, Peng X, Hughes E, Constantinescu R, Raizer J, et al.: Antibodies to the GABA(B) receptor in limbic encephalitis with seizures: case series and characterisation of the antigen. Lancet Neurol 2010, 9:67-76.
- [52]Boronat A, Sabater L, Saiz A, Dalmau J, Graus F: GABA(B) receptor antibodies in limbic encephalitis and anti-GAD-associated neurologic disorders. Neurology 2011, 76:795-800.
- [53]Skeberdis VA, Lan J, Opitz T, Zheng X, Bennett MV, Zukin RS: mGluR1-mediated potentiation of NMDA receptors involves a rise in intracellular calcium and activation of protein kinase C. Neuropharmacology 2001, 40:856-65.
- [54]Calo L, Bruno V, Spinsanti P, Molinari G, Korkhov V, Esposito Z, et al.: Interactions between ephrin-B and metabotropic glutamate 1 receptors in brain tissue and cultured neurons. J Neurosci 2005, 25:2245-54.
- [55]Dalmau J, Gleichman AJ, Hughes EG, Rossi JE, Peng X, Lai M, et al.: Anti-NMDA-receptor encephalitis: case series and analysis of the effects of antibodies. Lancet Neurol 2008, 7:1091-8.
- [56]Ciruela F, Escriche M, Burgueno J, Angulo E, Casado V, Soloviev MM, et al. Metabotropic glutamate 1alpha and adenosine A1 receptors assemble into functionally interacting complexes. J Biol Chem 2001;276:18345-18351.
- [57]Shipley MT, Ennis M: Functional organization of olfactory system. J Neurobiol 1996, 30:123-76.
- [58]Baude A, Nusser Z, Roberts JD, Mulvihill E, McIlhinney RA, Somogyi P: The metabotropic glutamate receptor (mGluR1 alpha) is concentrated at perisynaptic membrane of neuronal subpopulations as detected by immunogold reaction. Neuron 1993, 11:771-87.
- [59]Ebling FJ: The role of glutamate in the photic regulation of the suprachiasmatic nucleus. Prog Neurobiol 1996, 50:109-32.
- [60]Johnson MP, Kelly G, Chamberlain M: Changes in rat serum corticosterone after treatment with metabotropic glutamate receptor agonists or antagonists. J Neuroendocrinol 2001, 13:670-7.
- [61]Vidnyanszky Z, Gorcs TJ, Negyessy L, Borostyankio Z, Knopfel T, Hamori J: Immunocytochemical visualization of the mGluR1a metabotropic glutamate receptor at synapses of corticothalamic terminals originating from area 17 of the rat. Eur J Neurosci 1996, 8:1061-71.
- [62]Turner JP, Salt TE: Synaptic activation of the group I metabotropic glutamate receptor mGlu1 on the thalamocortical neurons of the rat dorsal lateral geniculate nucleus in vitro. Neuroscience 2000, 100:493-505.
- [63]Neugebauer V, Chen PS, Willis WD: Role of metabotropic glutamate receptor subtype mGluR1 in brief nociception and central sensitization of primate STT cells. J Neurophysiol 1999, 82:272-82.
- [64]Neugebauer V: Metabotropic glutamate receptors—important modulators of nociception and pain behavior. Pain 2002, 98:1-8.
- [65]Martin LJ, Blackstone CD, Huganir RL, Price DL: Cellular localization of a metabotropic glutamate receptor in rat brain. Neuron 1992, 9:259-70.
- [66]Shigemoto R, Nakanishi S, Mizuno N: Distribution of the mRNA for a metabotropic glutamate receptor (mGluR1) in the central nervous system: an in situ hybridization study in adult and developing rat. J Comp Neurol 1992, 322:121-35.
- [67]Russo RE, Nagy F, Hounsgaard J: Modulation of plateau properties in dorsal horn neurones in a slice preparation of the turtle spinal cord. J Physiol 1997, 499(Pt 2):459-74.
- [68]Berthele A, Boxall SJ, Urban A, Anneser JM, Zieglgansberger W, Urban L, et al.: Distribution and developmental changes in metabotropic glutamate receptor messenger RNA expression in the rat lumbar spinal cord. Brain Res Dev Brain Res 1999, 112:39-53.
- [69]Zhong J, Gerber G, Kojic L, Randic M: Dual modulation of excitatory synaptic transmission by agonists at group I metabotropic glutamate receptors in the rat spinal dorsal horn. Brain Res 2000, 887:359-77.
- [70]Shigemoto R, Kinoshita A, Wada E, Nomura S, Ohishi H, Takada M, et al.: Differential presynaptic localization of metabotropic glutamate receptor subtypes in the rat hippocampus. J Neurosci 1997, 17:7503-22.
- [71]Mateos JM, Benitez R, Elezgarai I, Azkue JJ, Lazaro E, Osorio A, et al.: Immunolocalization of the mGluR1b splice variant of the metabotropic glutamate receptor 1 at parallel fiber-Purkinje cell synapses in the rat cerebellar cortex. J Neurochem 2000, 74:1301-9.
- [72]Grandes P, Mateos JM, Ruegg D, Kuhn R, Knopfel T: Differential cellular localization of three splice variants of the mGluR1 metabotropic glutamate receptor in rat cerebellum. Neuroreport 1994, 5:2249-52.
- [73]Ango F, Albani-Torregrossa S, Joly C, Robbe D, Michel JM, Pin JP, et al.: A simple method to transfer plasmid DNA into neuronal primary cultures: functional expression of the mGlu5 receptor in cerebellar granule cells. Neuropharmacology 1999, 38:793-803.
- [74]Jarius S, Wandinger KP, Horn S, Heuer H, Wildemann B: A new Purkinje cell antibody (anti-Ca) associated with subacute cerebellar ataxia: immunological characterization. J Neuroinflammation 2010, 7:21.
- [75]Coesmans M, Smitt PA, Linden DJ, Shigemoto R, Hirano T, Yamakawa Y, et al.: Mechanisms underlying cerebellar motor deficits due to mGluR1-autoantibodies. Ann Neurol 2003, 53:325-36.
- [76]Copani A, Bruno V, Battaglia G, Leanza G, Pellitteri R, Russo A, et al.: Activation of metabotropic glutamate receptors protects cultured neurons against apoptosis induced by beta-amyloid peptide. Mol Pharmacol 1995, 47:890-7.
- [77]Copani A, Bruno VM, Barresi V, Battaglia G, Condorelli DF, Nicoletti F: Activation of metabotropic glutamate receptors prevents neuronal apoptosis in culture. J Neurochem 1995, 64:101-8.
- [78]Maiese K, Vincent A, Lin SH, Shaw T: Group I and group III metabotropic glutamate receptor subtypes provide enhanced neuroprotection. J Neurosci Res 2000, 62:257-272.
- [79]Sachs AJ, Schwendinger JK, Yang AW, Haider NB, Nystuen AM: The mouse mutants recoil wobbler and nmf373 represent a series of Grm1 mutations. Mamm Genome 2007, 18:749-56.
- [80]Conquet F, Bashir ZI, Davies CH, Daniel H, Ferraguti F, Bordi F, et al.: Motor deficit and impairment of synaptic plasticity in mice lacking mGluR1. Nature 1994, 372:237-43.
- [81]Kano M, Hashimoto K, Kurihara H, Watanabe M, Inoue Y, Aiba A, et al.: Persistent multiple climbing fiber innervation of cerebellar Purkinje cells in mice lacking mGluR1. Neuron 1997, 18:71-9.
- [82]Levenes C, Daniel H, Jaillard D, Conquet F, Crepel F: Incomplete regression of multiple climbing fibre innervation of cerebellar Purkinje cells in mGLuR1 mutant mice. Neuroreport 1997, 8:571-4.
- [83]Gil-Sanz C, Delgado-Garcia JM, Fairen A, Gruart A: Involvement of the mGluR1 receptor in hippocampal synaptic plasticity and associative learning in behaving mice. Cereb Cortex 2008, 18:1653-63.
- [84]Ichise T, Kano M, Hashimoto K, Yanagihara D, Nakao K, Shigemoto R, et al.: mGluR1 in cerebellar Purkinje cells essential for long-term depression, synapse elimination, and motor coordination. Science 2000, 288:1832-5.
- [85]Zuliani L, Sabater L, Saiz A, Baiges JJ, Giometto B, Graus F: Homer 3 autoimmunity in subacute idiopathic cerebellar ataxia. Neurology 2007, 68:239-40.
- [86]Hoftberger R, Sabater L, Ortega A, Dalmau J, Graus F: Patient with homer-3 antibodies and cerebellitis. JAMA Neurol 2013, 70:506-9.
- [87]Kato A, Ozawa F, Saitoh Y, Fukazawa Y, Sugiyama H, Inokuchi K: Novel members of the Vesl/Homer family of PDZ proteins that bind metabotropic glutamate receptors. J Biol Chem 1998, 273:23969-75.
- [88]Sun J, Tadokoro S, Imanaka T, Murakami SD, Nakamura M, Kashiwada K, et al.: Isolation of PSD-Zip45, a novel Homer/vesl family protein containing leucine zipper motifs, from rat brain. FEBS Lett 1998, 437:304-8.
- [89]Shiraishi-Yamaguchi Y, Furuichi T: The Homer family proteins. Genome Biol 2007, 8:206.
- [90]Kato A, Ozawa F, Saitoh Y, Hirai K, Inokuchi K: vesl, a gene encoding VASP/Ena family related protein, is upregulated during seizure, long-term potentiation and synaptogenesis. FEBS Lett 1997, 412:183-9.
- [91]Kammermeier PJ: Surface clustering of metabotropic glutamate receptor 1 induced by long Homer proteins. BMC Neurosci 2006, 7:1.
- [92]Kammermeier PJ, Xiao B, Tu JC, Worley PF, Ikeda SR: Homer proteins regulate coupling of group I metabotropic glutamate receptors to N-type calcium and M-type potassium channels. J Neurosci 2000, 20:7238-45.
- [93]Prezeau L, Gomeza J, Ahern S, Mary S, Galvez T, Bockaert J, et al.: Changes in the carboxyl-terminal domain of metabotropic glutamate receptor 1 by alternative splicing generate receptors with differing agonist-independent activity. Mol Pharmacol 1996, 49:422-9.
- [94]Roche KW, Tu JC, Petralia RS, Xiao B, Wenthold RJ, Worley PF: Homer 1b regulates the trafficking of group I metabotropic glutamate receptors. J Biol Chem 1999, 274:25953-7.
- [95]Mizutani A, Kuroda Y, Futatsugi A, Furuichi T, Mikoshiba K: Phosphorylation of Homer3 by calcium/calmodulin-dependent kinase II regulates a coupling state of its target molecules in Purkinje cells. J Neurosci 2008, 28:5369-82.
- [96]Hayashi MK, Tang C, Verpelli C, Narayanan R, Stearns MH, Xu RM, et al.: The postsynaptic density proteins Homer and Shank form a polymeric network structure. Cell 2009, 137:159-71.
- [97]Kammermeier PJ, Worley PF: Homer 1a uncouples metabotropic glutamate receptor 5 from postsynaptic effectors. Proc Natl Acad Sci U S A 2007, 104:6055-60.
- [98]Tu JC, Xiao B, Naisbitt S, Yuan JP, Petralia RS, Brakeman P, et al.: Coupling of mGluR/Homer and PSD-95 complexes by the Shank family of postsynaptic density proteins. Neuron 1999, 23:583-92.
- [99]Sheng M: The postsynaptic NMDA-receptor—PSD-95 signaling complex in excitatory synapses of the brain. J Cell Sci 2001, 114:1251.
- [100]Jarius S, Scharf M, Begemann N, Stocker W, Probst C, Serysheva II, et al.: Antibodies to the inositol 1,4,5-trisphosphate receptor type 1 (ITPR1) in cerebellar ataxia. J Neuroinflammation 2014, 11:206.
- [101]Uhlen M, Fagerberg L, Hallstrom BM, Lindskog C, Oksvold P, Mardinoglu A, et al.: Proteomics. Tissue-based map of the human proteome. Science 2015, 347:1260419.
- [102]Otsu H, Yamamoto A, Maeda N, Mikoshiba K, Tashiro Y: Immunogold localization of inositol 1, 4, 5-trisphosphate (InsP3) receptor in mouse cerebellar Purkinje cells using three monoclonal antibodies. Cell Struct Funct 1990, 15:163-73.
- [103]Satoh T, Ross CA, Villa A, Supattapone S, Pozzan T, Snyder SH, et al.: The inositol 1,4,5,-trisphosphate receptor in cerebellar Purkinje cells: quantitative immunogold labeling reveals concentration in an ER subcompartment. J Cell Biol 1990, 111:615-24.
- [104]Furuichi T, Simon-Chazottes D, Fujino I, Yamada N, Hasegawa M, Miyawaki A, et al.: Widespread expression of inositol 1,4,5-trisphosphate receptor type 1 gene (Insp3r1) in the mouse central nervous system. Receptors Channels 1993, 1:11-24.
- [105]Nucifora FC Jr, Li SH, Danoff S, Ullrich A, Ross CA: Molecular cloning of a cDNA for the human inositol 1,4,5-trisphosphate receptor type 1, and the identification of a third alternatively spliced variant. Brain Res Mol Brain Res 1995, 32:291-6.
- [106]Vanderheyden V, Devogelaere B, Missiaen L, De Smedt H, Bultynck G, Parys JB: Regulation of inositol 1,4,5-trisphosphate-induced Ca2+ release by reversible phosphorylation and dephosphorylation. Biochim Biophys Acta 2009, 1793:959-70.
- [107]Orrenius S, Zhivotovsky B, Nicotera P: Regulation of cell death: the calcium-apoptosis link. Nat Rev Mol Cell Biol 2003, 4:552-65.
- [108]Boehning D, Patterson RL, Sedaghat L, Glebova NO, Kurosaki T, Snyder SH: Cytochrome c binds to inositol (1,4,5) trisphosphate receptors, amplifying calcium-dependent apoptosis. Nat Cell Biol 2003, 5:1051-61.
- [109]Boehning D, Patterson RL, Snyder SH: Apoptosis and calcium: new roles for cytochrome c and inositol 1,4,5-trisphosphate. Cell Cycle 2004, 3:252-4.
- [110]Akimzhanov AM, Barral JM, Boehning D: Caspase 3 cleavage of the inositol 1,4,5-trisphosphate receptor does not contribute to apoptotic calcium release. Cell Calcium 2013, 53:152-8.
- [111]Jayaraman T, Marks AR: T cells deficient in inositol 1,4,5-trisphosphate receptor are resistant to apoptosis. Mol Cell Biol 1997, 17:3005-12.
- [112]Boehning D, van Rossum DB, Patterson RL, Snyder SH: A peptide inhibitor of cytochrome c/inositol 1,4,5-trisphosphate receptor binding blocks intrinsic and extrinsic cell death pathways. Proc Natl Acad Sci U S A 2005, 102:1466-71.
- [113]Szlufcik K, Bultynck G, Callewaert G, Missiaen L, Parys JB, De Smedt H: The suppressor domain of inositol 1,4,5-trisphosphate receptor plays an essential role in the protection against apoptosis. Cell Calcium 2006, 39:325-36.
- [114]Matsumoto M, Nakagawa T, Inoue T, Nagata E, Tanaka K, Takano H, et al.: Ataxia and epileptic seizures in mice lacking type 1 inositol 1,4,5-trisphosphate receptor. Nature 1996, 379:168-71.
- [115]Peng YW, Sharp AH, Snyder SH, Yau KW: Localization of the inositol 1,4,5-trisphosphate receptor in synaptic terminals in the vertebrate retina. Neuron 1991, 6:525-31.
- [116]Fadool DA, Ache BW: Plasma membrane inositol 1,4,5-trisphosphate-activated channels mediate signal transduction in lobster olfactory receptor neurons. Neuron 1992, 9:907-18.
- [117]Restrepo D, Teeter JH, Honda E, Boyle AG, Marecek JF, Prestwich GD, et al.: Evidence for an InsP3-gated channel protein in isolated rat olfactory cilia. Am J Physiol 1992, 263:C667-73.
- [118]Cunningham AM, Ryugo DK, Sharp AH, Reed RR, Snyder SH, Ronnett GV: Neuronal inositol 1,4,5-trisphosphate receptor localized to the plasma membrane of olfactory cilia. Neuroscience 1993, 57:339-52.
- [119]Jarius S, Stich O, Speck J, Rasiah C, Wildemann B, Meinck HM, et al.: Qualitative and quantitative evidence of anti-glutamic acid decarboxylase-specific intrathecal antibody synthesis in patients with stiff person syndrome. J Neuroimmunol 2010, 229:219-24.
- [120]Stich O, Jarius S, Kleer B, Rasiah C, Voltz R, Rauer S: Specific antibody index in cerebrospinal fluid from patients with central and peripheral paraneoplastic neurological syndromes. J Neuroimmunol 2007, 183:220-4.
- [121]Jarius S, Stich O, Rasiah C, Voltz R, Rauer S: Qualitative evidence of Ri specific IgG-synthesis in the cerebrospinal fluid from patients with paraneoplastic neurological syndromes. J Neurol Sci 2008, 268:65-8.
- [122]Stich O, Graus F, Rasiah C, Rauer S: Qualitative evidence of anti-Yo-specific intrathecal antibody synthesis in patients with paraneoplastic cerebellar degeneration. J Neuroimmunol 2003, 141:165-9.
- [123]Kumar MA, Jain A, Dechant VE, Saito T, Rafael T, Aizawa H, et al.: Anti-N-methyl-D-aspartate receptor encephalitis during pregnancy. Arch Neurol 2010, 67:884-7.
- [124]Tanimura A, Tojyo Y, Turner RJ: Evidence that type I, II, and III inositol 1,4,5-trisphosphate receptors can occur as integral plasma membrane proteins. J Biol Chem 2000, 275:27488-93.
- [125]Lischka FW, Zviman MM, Teeter JH, Restrepo D: Characterization of inositol-1,4,5-trisphosphate-gated channels in the plasma membrane of rat olfactory neurons. Biophys J 1999, 76:1410-22.
- [126]Vermassen E, Parys JB, Mauger JP: Subcellular distribution of the inositol 1,4,5-trisphosphate receptors: functional relevance and molecular determinants. Biol Cell 2004, 96:3-17.
- [127]Taylor CW, Dellis O: Plasma membrane IP3 receptors. Biochem Soc Trans 2006, 34:910-2.
- [128]Dellis O, Dedos SG, Tovey SC, Taufiq Ur R, Dubel SJ, Taylor CW: Ca2+ entry through plasma membrane IP3 receptors. Science 2006, 313:229-33.
- [129]Iwaki A, Kawano Y, Miura S, Shibata H, Matsuse D, Li W, et al.: Heterozygous deletion of ITPR1, but not SUMF1, in spinocerebellar ataxia type 16. J Med Genet 2008, 45:32-5.
- [130]Synofzik M, Beetz C, Bauer C, Bonin M, Sanchez-Ferrero E, Schmitz-Hubsch T, et al.: Spinocerebellar ataxia type 15: diagnostic assessment, frequency, and phenotypic features. J Med Genet 2011, 48:407-12.
- [131]Marelli C, van de Leemput J, Johnson JO, Tison F, Thauvin-Robinet C, Picard F, et al.: SCA15 due to large ITPR1 deletions in a cohort of 333 white families with dominant ataxia. Arch Neurol 2011, 68:637-43.
- [132]Hara K, Shiga A, Nozaki H, Mitsui J, Takahashi Y, Ishiguro H, et al.: Total deletion and a missense mutation of ITPR1 in Japanese SCA15 families. Neurology 2008, 71:547-51.
- [133]Huang L, Chardon JW, Carter MT, Friend KL, Dudding TE, Schwartzentruber J, et al.: Missense mutations in ITPR1 cause autosomal dominant congenital nonprogressive spinocerebellar ataxia. Orphanet J Rare Dis 2012, 7:67.
- [134]Bataller L, Sabater L, Saiz A, Serra C, Claramonte B, Graus F: Carbonic anhydrase-related protein VIII: autoantigen in paraneoplastic cerebellar degeneration. Ann Neurol 2004, 56:575-9.
- [135]Hoftberger R, Sabater L, Velasco F, Ciordia R, Dalmau J, Graus F: Carbonic anhydrase-related protein VIII antibodies and paraneoplastic cerebellar degeneration. Neuropathol Appl Neurobiol 2014, 40:650-3.
- [136]Aspatwar A, Tolvanen ME, Parkkila S: Phylogeny and expression of carbonic anhydrase-related proteins. BMC Mol Biol 2010, 11:25.
- [137]Kato K: Sequence of a novel carbonic anhydrase-related polypeptide and its exclusive presence in Purkinje cells. FEBS Lett 1990, 271:137-40.
- [138]Skaggs LA, Bergenhem NC, Venta PJ, Tashian RE: The deduced amino acid sequence of human carbonic anhydrase-related protein (CARP) is 98 % identical to the mouse homologue. Gene 1993, 126:291-2.
- [139]Nogradi A, Jonsson N, Walker R, Caddy K, Carter N, Kelly C: Carbonic anhydrase II and carbonic anhydrase-related protein in the cerebellar cortex of normal and lurcher mice. Brain Res Dev Brain Res 1997, 98:91-101.
- [140]Lakkis MM, O’Shea KS, Tashian RE: Differential expression of the carbonic anhydrase genes for CA VII (Car7) and CA-RP VIII (Car8) in mouse brain. J Histochem Cytochem 1997, 45:657-62.
- [141]Taniuchi K, Nishimori I, Takeuchi T, Fujikawa-Adachi K, Ohtsuki Y, Onishi S: Developmental expression of carbonic anhydrase-related proteins VIII, X, and XI in the human brain. Neuroscience 2002, 112:93-9.
- [142]Turkmen S, Guo G, Garshasbi M, Hoffmann K, Alshalah AJ, Mischung C, et al.: CA8 mutations cause a novel syndrome characterized by ataxia and mild mental retardation with predisposition to quadrupedal gait. PLoS Genet 2009, 5:e1000487.
- [143]Najmabadi H, Hu H, Garshasbi M, Zemojtel T, Abedini SS, Chen W, et al.: Deep sequencing reveals 50 novel genes for recessive cognitive disorders. Nature 2011, 478:57-63.
- [144]Jiao Y, Yan J, Zhao Y, Donahue LR, Beamer WG, Li X, et al.: Carbonic anhydrase-related protein VIII deficiency is associated with a distinctive lifelong gait disorder in waddles mice. Genetics 2005, 171:1239-46.
- [145]Hirasawa M, Xu X, Trask RB, Maddatu TP, Johnson BA, Naggert JK, et al.: Carbonic anhydrase related protein 8 mutation results in aberrant synaptic morphology and excitatory synaptic function in the cerebellum. Mol Cell Neurosci 2007, 35:161-70.
- [146]Kelly C, Nogradi A, Walker R, Caddy K, Peters J, Carter N: Lurching, reeling, waddling and staggering in mice—is carbonic anhydrase (CA) VIII a candidate gene? Biochem Soc Trans 1994, 22:359S.
- [147]Sabater L, Bataller L, Carpentier AF, Aguirre-Cruz ML, Saiz A, Benyahia B, et al.: Protein kinase Cgamma autoimmunity in paraneoplastic cerebellar degeneration and non-small-cell lung cancer. J Neurol Neurosurg Psychiatry 2006, 77:1359-62.
- [148]Hoftberger R, Kovacs GG, Sabater L, Nagy P, Racz G, Miquel R, et al.: Protein kinase Cgamma antibodies and paraneoplastic cerebellar degeneration. J Neuroimmunol 2013, 256:91-3.
- [149]Sugiyama N, Hamano S, Mochizuki M, Tanaka M, Takahashi Y: A case of chronic cerebellitis with anti-glutamate receptor delta 2 antibody. No To Hattatsu 2004, 36:60-3.
- [150]Shimokaze T, Kato M, Yoshimura Y, Takahashi Y, Hayasaka K: A case of acute cerebellitis accompanied by autoantibodies against glutamate receptor delta2. Brain Dev 2007, 29:224-6.
- [151]Shiihara T, Kato M, Konno A, Takahashi Y, Hayasaka K: Acute cerebellar ataxia and consecutive cerebellitis produced by glutamate receptor delta2 autoantibody. Brain Dev 2007, 29:254-6.
- [152]Jarius S, Martinez-Garcia P, Hernandez AL, Brase JC, Borowski K, Regula JU, et al.: Two new cases of anti-Ca (anti-ARHGAP26/GRAF) autoantibody-associated cerebellar ataxia. J Neuroinflammation 2013, 10:7.
- [153]Doss S, Numann A, Ziegler A, Siebert E, Borowski K, Stocker W, et al.: Anti-Ca/anti-ARHGAP26 antibodies associated with cerebellar atrophy and cognitive decline. J Neuroimmunol 2014, 267:102-4.
- [154]Vernino S, Lennon VA: New Purkinje cell antibody (PCA-2): marker of lung cancer-related neurological autoimmunity. Ann Neurol 2000, 47:297-305.
- [155]Lennon VA, Kryzer TJ, Griesmann GE, O’Suilleabhain PE, Windebank AJ, Woppmann A, et al.: Calcium-channel antibodies in the Lambert-Eaton syndrome and other paraneoplastic syndromes. N Engl J Med 1995, 332:1467-74.
- [156]Mason WP, Graus F, Lang B, Honnorat J, Delattre JY, Valldeoriola F, et al.: Small-cell lung cancer, paraneoplastic cerebellar degeneration and the Lambert-Eaton myasthenic syndrome. Brain 1997, 120(Pt 8):1279-300.
- [157]Motomura M, Lang B, Johnston I, Palace J, Vincent A, Newsom-Davis J. ncidence of serum anti-P/O-type and anti-N-type calcium channel autoantibodies in the Lambert-Eaton myasthenic syndrome. J Neurol Sci. 1997;147:35–42.
- [158]Greenlee JE, Brashear HR: Antibodies to cerebellar Purkinje cells in patients with paraneoplastic cerebellar degeneration and ovarian carcinoma. Ann Neurol 1983, 14:609-13.
- [159]Peterson K, Rosenblum MK, Kotanides H, Posner JB: Paraneoplastic cerebellar degeneration. I. A clinical analysis of 55 anti-Yo antibody-positive patients. Neurology 1992, 42:1931-7.
- [160]Greenlee JE, Clawson SA, Hill KE, Wood BL, Tsunoda I, Carlson NG: Purkinje cell death after uptake of anti-Yo antibodies in cerebellar slice cultures. J Neuropathol Exp Neurol 2010, 69:997-1007.
- [161]Darnell RB, Posner JB: Paraneoplastic syndromes. Oxford University Press, Oxford, New York; 2011.
- [162]Eichler TW, Totland C, Haugen M, Qvale TH, Mazengia K, Storstein A, et al.: CDR2L Antibodies: a new player in paraneoplastic cerebellar degeneration. PLoS One 2013, 8:e66002.
- [163]Darnell RB, Furneaux HM, Posner JB: Characterization of antigens bound by CSF and serum of a patient with cerebellar degeneration: co-expression in Purkinje cells and tumor lines of neuroectodermal origin. Neurology 1989, 39(Suppl):260.
- [164]Darnell RB, Furneaux HM, Posner JB: Antiserum from a patient with cerebellar degeneration identifies a novel protein in Purkinje cells, cortical neurons, and neuroectodermal tumors. J Neurosci 1991, 11:1224-30.
- [165]Trotter JL, Hendin BA, Osterland CK: Cerebellar degeneration with Hodgkin disease. An immunological study. Arch Neurol 1976, 33:660-1.
- [166]Graus F, Dalmau J, Valldeoriola F, Ferrer I, Rene R, Marin C, et al.: Immunological characterization of a neuronal antibody (anti-Tr) associated with paraneoplastic cerebellar degeneration and Hodgkin’s disease. J Neuroimmunol 1997, 74:55-61.
- [167]Bernal F, Shams’ili S, Rojas I, Sanchez-Valle R, Saiz A, Dalmau J, et al.: Anti-Tr antibodies as markers of paraneoplastic cerebellar degeneration and Hodgkin’s disease. Neurology 2003, 60:230-4.
- [168]Probst C, Komorowski L, de Graaff E, van Coevorden-Hameete M, Rogemond V, Honnorat J, et al.: Standardized test for anti-Tr/DNER in patients with paraneoplastic cerebellar degeneration. Neurol Neuroimmunol Neuroinflamm 2015, 2:e68.
- [169]de Graaff E, Maat P, Hulsenboom E, van den Berg R, van den Bent M, Demmers J, et al.: Identification of delta/notch-like epidermal growth factor-related receptor as the Tr antigen in paraneoplastic cerebellar degeneration. Ann Neurol 2012, 71:815-24.
- [170]Pittock SJ, Lucchinetti CF, Parisi JE, Benarroch EE, Mokri B, Stephan CL, et al.: Amphiphysin autoimmunity: paraneoplastic accompaniments. Ann Neurol 2005, 58:96-107.
- [171]Balint B, Jarius S, Nagel S, Haberkorn U, Probst C, Blocker IM, et al.: Progressive encephalomyelitis with rigidity and myoclonus: a new variant with DPPX antibodies. Neurology 2014, 82:1521-8.
- [172]Boronat A, Gelfand JM, Gresa-Arribas N, Jeong H-Y, Walsh M, Roberts K, et al. Encephalitis and antibodies to DPPX, a subunit of Kv4.2 potassium channels. Ann Neurol. 2012; in press (doi:10.1002/ana.23756).
- [173]Stoeck K, Carstens P, Jarius S, Raddatz D, Stöcker W, Wildemann B, et al.: Prednisolone and azathioprine are effective in DPPX antibody–positive autoimmune encephalitis. Neurol Neuroimmunol Neuroinflamm 2015, 2:e86.
- [174]Tobin WO, Lennon VA, Komorowski L, Probst C, Clardy SL, Aksamit AJ, et al.: DPPX potassium channel antibody: frequency, clinical accompaniments, and outcomes in 20 patients. Neurology 2014, 83:1797-803.
- [175]Becker EB, Zuliani L, Pettingill R, Lang B, Waters P, Dulneva A, et al.: Contactin-associated protein-2 antibodies in non-paraneoplastic cerebellar ataxia. J Neurol Neurosurg Psychiatry 2012, 83:437-40.
- [176]Balint B, Regula JU, Jarius S, Wildemann B: Caspr2 antibodies in limbic encephalitis with cerebellar ataxia, dyskinesias and myoclonus. J Neurol Sci 2013, 327:73-4.
- [177]Steriade C, Day GS, Lee L, Murray BJ, Fritzler MJ, Keith J: LGI1 autoantibodies associated with cerebellar degeneration. Neuropathol Appl Neurobiol 2014, 40:645-9.
- [178]Honnorat J, Saiz A, Giometto B, Vincent A, Brieva L, de Andres C, et al.: Cerebellar ataxia with anti-glutamic acid decarboxylase antibodies: study of 14 patients. Arch Neurol 2001, 58:225-30.
- [179]Piccolo G, Tavazzi E, Cavallaro T, Romani A, Scelsi R, Martino G: Clinico-pathological findings in a patient with progressive cerebellar ataxia, autoimmune polyendocrine syndrome, hepatocellular carcinoma and anti-GAD autoantibodies. J Neurol Sci 2010, 290:148-9.
- [180]Kono S, Miyajima H, Sugimoto M, Suzuki Y, Takahashi Y, Hishida A: Stiff-person syndrome associated with cerebellar ataxia and high glutamic acid decarboxylase antibody titer. Intern Med 2001, 40:968-71.
- [181]Saiz A, Blanco Y, Sabater L, Gonzalez F, Bataller L, Casamitjana R, et al.: Spectrum of neurological syndromes associated with glutamic acid decarboxylase antibodies: diagnostic clues for this association. Brain 2008, 131:2553-63.
- [182]Malik S, Furlan AJ, Sweeney PJ, Kosmorsky GS, Wong M: Optic neuropathy: a rare paraneoplastic syndrome. J Clin Neuroophthalmol 1992, 12:137-41.
- [183]Antoine JC, Honnorat J, Vocanson C, Koenig F, Aguera M, Belin MF, et al.: Posterior uveitis, paraneoplastic encephalomyelitis and auto-antibodies reacting with developmental protein of brain and retina. J Neurol Sci 1993, 117:215-23.
- [184]Yu Z, Kryzer TJ, Griesmann GE, Kim K, Benarroch EE, Lennon VA: CRMP-5 neuronal autoantibody: marker of lung cancer and thymoma-related autoimmunity. Ann Neurol 2001, 49:146-54.
- [185]Mader S, Gredler V, Schanda K, Rostasy K, Dujmovic I, Pfaller K, et al.: Complement activating antibodies to myelin oligodendrocyte glycoprotein in neuromyelitis optica and related disorders. J Neuroinflammation 2011, 8:184.
- [186]Reindl M, Di Pauli F, Rostasy K, Berger T: The spectrum of MOG autoantibody-associated demyelinating diseases. Nat Rev Neurol 2013, 9:455-61.
- [187]Jarius S, Wildemann B: AQP4 antibodies in neuromyelitis optica: diagnostic and pathogenetic relevance. Nat Rev Neurol 2010, 6:383-92.
- [188]Jarius S, Ruprecht K, Wildemann B, Kuempfel T, Ringelstein M, Geis C, et al.: Contrasting disease patterns in seropositive and seronegative neuromyelitis optica: A multicentre study of 175 patients. J Neuroinflammation 2012, 9:14.
- [189]Lucchinetti CF, Kimmel DW, Lennon VA: Paraneoplastic and oncologic profiles of patients seropositive for type 1 antineuronal nuclear autoantibodies. Neurology 1998, 50:652-7.
- [190]Graus F, Keime-Guibert F, Rene R, Benyahia B, Ribalta T, Ascaso C, et al.: Anti-Hu-associated paraneoplastic encephalomyelitis: analysis of 200 patients. Brain 2001, 124:1138-48.
- [191]Dalmau J, Graus F, Rosenblum MK, Posner JB: Anti-Hu-associated paraneoplastic encephalomyelitis/sensory neuronopathy. A clinical study of 71 patients. Medicine (Baltimore) 1992, 71:59-72.
- [192]Budde-Steffen C, Anderson NE, Rosenblum MK, Graus F, Ford D, Synek BJ, et al.: An antineuronal autoantibody in paraneoplastic opsoclonus. Ann Neurol 1988, 23:528-31.
- [193]Pittock SJ, Lucchinetti CF, Lennon VA: Anti-neuronal nuclear autoantibody type 2: paraneoplastic accompaniments. Ann Neurol 2003, 53:580-7.
- [194]Chan KH, Vernino S, Lennon VA: ANNA-3 anti-neuronal nuclear antibody: marker of lung cancer-related autoimmunity. Ann Neurol 2001, 50:301-11.
- [195]Bataller L, Wade DF, Fuller GN, Rosenfeld MR, Dalmau J: Cerebellar degeneration and autoimmunity to zinc-finger proteins of the cerebellum. Neurology 2002, 59:1985-7.
- [196]Bataller L, Wade DF, Graus F, Stacey HD, Rosenfeld MR, Dalmau J: Antibodies to Zic4 in paraneoplastic neurologic disorders and small-cell lung cancer. Neurology 2004, 62:778-82.
- [197]Sabater L, Bataller L, Suarez-Calvet M, Saiz A, Dalmau J, Graus F: ZIC antibodies in paraneoplastic cerebellar degeneration and small cell lung cancer. J Neuroimmunol 2008, 201–202:163-5.
- [198]Graus F, Vincent A, Pozo-Rosich P, Sabater L, Saiz A, Lang B, et al.: Anti-glial nuclear antibody: marker of lung cancer-related paraneoplastic neurological syndromes. J Neuroimmunol 2005, 165:166-71.
- [199]Titulaer MJ, Klooster R, Potman M, Sabater L, Graus F, Hegeman IM, et al.: SOX antibodies in small-cell lung cancer and Lambert-Eaton myasthenic syndrome: frequency and relation with survival. J Clin Oncol 2009, 27:4260-7.
- [200]Hoffmann LA, Jarius S, Pellkofer HL, Schueller M, Krumbholz M, Koenig F, et al.: Anti-Ma and anti-Ta associated paraneoplastic neurological syndromes: 22 newly diagnosed patients and review of previous cases. J Neurol Neurosurg Psychiatry 2008, 79:767-73.
- [201]Dalmau J, Graus F, Villarejo A, Posner JB, Blumenthal D, Thiessen B, et al.: Clinical analysis of anti-Ma2-associated encephalitis. Brain 2004, 127:1831-44.
- [202]Fritzler MJ, Zhang M, Stinton LM, Rattner JB: Spectrum of centrosome autoantibodies in childhood varicella and post-varicella acute cerebellar ataxia. BMC Pediatr 2003, 3:11.
- [203]Cimolai N, Mah D, Roland E: Anticentriolar autoantibodies in children with central nervous system manifestations of Mycoplasma pneumoniae infection. J Neurol Neurosurg Psychiatry 1994, 57:638-9.
- [204]Hadjivassiliou M, Aeschlimann P, Strigun A, Sanders DS, Woodroofe N, Aeschlimann D: Autoantibodies in gluten ataxia recognize a novel neuronal transglutaminase. Ann Neurol 2008, 64:332-43.
- [205]McKeon A, Lennon VA, Pittock SJ, Kryzer TJ, Murray J: The neurologic significance of celiac disease biomarkers. Neurology 2014, 83:1789-96.
- [206]Uchibori A, Sakuta M, Kusunoki S, Chiba A: Autoantibodies in postinfectious acute cerebellar ataxia. Neurology 2005, 65:1114-6.
- [207]Storstein A, Knudsen A, Vedeler CA: Proteasome antibodies in paraneoplastic cerebellar degeneration. J Neuroimmunol 2005, 165:172-8.
- [208]Ichikawa H, Susuki K, Yuki N, Kawamura M: Ataxic form of Guillain-Barre syndrome associated with anti-GD1b IgG antibody. Rinsho Shinkeigaku 2001, 41:523-5.
- [209]Araki T, Nakata H, Kusunoki S, Arai Y, Katayama Y: Immunoadsorption therapy with TR-350 (tryptophan column) for Guillain-Barre syndrome: investigation including serum antiganglioside antibody assay. Rinsho Shinkeigaku 2000, 40:979-85.
- [210]Kaida K, Kamakura K, Ogawa G, Ueda M, Motoyoshi K, Arita M, et al.: GD1b-specific antibody induces ataxia in Guillain-Barre syndrome. Neurology 2008, 71:196-201.
- [211]Ito M, Matsuno K, Sakumoto Y, Hirata K, Yuki N. Ataxic Guillain-Barre dght;t;g;tgy;syndrome and acute sensory ataxic neuropathy form a continuous spectrum. J Neurol Neurosurg Psychiatry. 2011;82:294–9.
- [212]Jarius S, Wildemann B. ‘Medusa head ataxia’: the expanding spectrum of Purkinje cell antibodies in autoimmune cerebellar ataxia. Part 2: Anti-PKC-gamma, anti-GluR-delta2, anti-Ca/ARHGAP26 and anti-VGCC. J Neuroinflammation. 2015, in press.
- [213]Jarius S, Wildemann B. ‘Medusa head ataxia’: the expanding spectrum of Purkinje cell antibodies in autoimmune cerebellar ataxia. Part 3: Anti-Yo/CDR2, anti-Nb/AP3B2, PCA-2, anti-Tr/DNER, other antibodies, diagnostic pitfalls, summary and outlook. J Neuroinflammation. 2015, in press.