期刊论文详细信息
Journal of Neuroinflammation
‘Medusa head ataxia’: the expanding spectrum of Purkinje cell antibodies in autoimmune cerebellar ataxia. Part 2: Anti-PKC-gamma, anti-GluR-delta2, anti-Ca/ARHGAP26 and anti-VGCC
B. Wildemann1  S. Jarius1 
[1] Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, Otto Meyerhof Center, Im Neuenheimer Feld 350, Heidelberg, D-69120, Germany
关键词: Voltage-gated calcium channel (VGCC) antibodies;    Neuronal adaptin-like protein (beta-NAP) antibodies;    Anti-AP3B2;    Anti-Nb;    Delta notch-like epidermal growth factor-related receptor (DNER) antibodies;    Anti-Tr;    Purkinje cell antibody 2 (PCA-2);    Cerebellar degeneration-related protein 2-like (CDR2L) antibodies;    Cerebellar degeneration-related protein 2 (CDR2) antibodies;    Anti-Yo;    Glutamate receptor delta-2 (GluRδ2) antibodies;    Rho GTPase activating protein 26 (ARHGAP26, GRAF) antibodies;    Anti-Ca;    Protein kinase gamma (PKCγ) antibodies;    Carbonic anhydrase-related protein VIII (CARP VIII) antibodies;    Inositol 1,4,5-trisphosphate receptor 1 (ITPR1, I3PR) antibodies;    Anti-Sj;    Homer-3 antibodies;    Metabotropic glutamate receptor 1 (mGluR1) antibodies;    Purkinje cells;    Autoantibodies;    Paraneoplastic cerebellar degeneration;    Cerebellitis;    Autoimmune cerebellar ataxia;   
Others  :  1227060
DOI  :  10.1186/s12974-015-0357-x
 received in 2015-05-15, accepted in 2015-07-02,  发布年份 2015
PDF
【 摘 要 】

Serological testing for anti-neural autoantibodies is important in patients presenting with idiopathic cerebellar ataxia, since these autoantibodies may indicate cancer, determine treatment and predict prognosis. While some of them target nuclear antigens present in all or most CNS neurons (e.g. anti-Hu, anti-Ri), others more specifically target antigens present in the cytoplasm or plasma membrane of Purkinje cells (PC). In this series of articles, we provide a detailed review of the clinical and paraclinical features, oncological, therapeutic and prognostic implications, pathogenetic relevance, and differential laboratory diagnosis of the 12 most common PC autoantibodies (often referred to as ‘Medusa head antibodies’ due their characteristic somatodendritic binding pattern when tested by immunohistochemistry). To assist immunologists and neurologists in diagnosing these disorders, typical high-resolution immunohistochemical images of all 12 reactivities are presented, diagnostic pitfalls discussed and all currently available assays reviewed. Of note, most of these antibodies target antigens involved in the mGluR1/calcium pathway essential for PC function and survival. Many of the antigens also play a role in spinocerebellar ataxia. Part 1 focuses on anti-metabotropic glutamate receptor 1-, anti-Homer protein homolog 3-, anti-Sj/inositol 1,4,5-trisphosphate receptor- and anti-carbonic anhydrase-related protein VIII-associated autoimmune cerebellar ataxia (ACA); part 2 covers anti-protein kinase C gamma-, anti-glutamate receptor delta-2-, anti-Ca/RhoGTPase-activating protein 26- and anti-voltage-gated calcium channel-associated ACA; and part 3 reviews the current knowledge on anti-Tr/delta notch-like epidermal growth factor-related receptor-, anti-Nb/AP3B2-, anti-Yo/cerebellar degeneration-related protein 2- and Purkinje cell antibody 2-associated ACA, discusses differential diagnostic aspects, and provides a summary and outlook.

【 授权许可】

   
2015 Jarius and Wildemann.

【 预 览 】
附件列表
Files Size Format View
20150927091053391.pdf 12725KB PDF download
Fig. 7. 56KB Image download
Fig. 6. 245KB Image download
Fig. 5. 136KB Image download
Fig. 4. 280KB Image download
Fig. 3. 127KB Image download
Fig. 2. 151KB Image download
Fig. 1. 110KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

Fig. 7.

【 参考文献 】
  • [1]Jarius S, Wildemann B. ‘Medusa-head ataxia’: the expanding spectrum of Purkinje cell antibodies in autoimmune cerebellar ataxia. Part 1: Anti-mGluR1, anti-Homer-3, anti-Sj/ITPR1 and anti-CARP VIII. J Neuroinflammation. 2015, in press.
  • [2]Sabater L, Bataller L, Carpentier AF, Aguirre-Cruz ML, Saiz A, Benyahia B, et al.: Protein kinase Cgamma autoimmunity in paraneoplastic cerebellar degeneration and non-small-cell lung cancer. J Neurol Neurosurg Psychiatry 2006, 77:1359-1362.
  • [3]Hoftberger R, Kovacs GG, Sabater L, Nagy P, Racz G, Miquel R, et al.: Protein kinase Cgamma antibodies and paraneoplastic cerebellar degeneration. J Neuroimmunol 2013, 256:91-93.
  • [4]Clark AS, West KA, Blumberg PM, Dennis PA: Altered protein kinase C (PKC) isoforms in non-small cell lung cancer cells: PKCdelta promotes cellular survival and chemotherapeutic resistance. Cancer Res 2003, 63:780-786.
  • [5]Saito N, Shirai Y: Protein kinase C gamma (PKC gamma): function of neuron specific isotype. J Biochem 2002, 132:683-687.
  • [6]Bell RM: Protein kinase C activation by diacylglycerol second messengers. Cell 1986, 45:631-632.
  • [7]Linden DJ, Connor JA: Participation of postsynaptic PKC in cerebellar long-term depression in culture. Science 1991, 254:1656-1659.
  • [8]Hemart N, Daniel H, Jaillard D, Crepel F: Receptors and second messengers involved in long-term depression in rat cerebellar slices in vitro: a reappraisal. Eur J Neurosci 1995, 7:45-53.
  • [9]Francesconi A, Duvoisin RM: Opposing effects of protein kinase C and protein kinase A on metabotropic glutamate receptor signaling: selective desensitization of the inositol trisphosphate/Ca2+ pathway by phosphorylation of the receptor-G protein-coupling domain. Proc Natl Acad Sci U S A 2000, 97:6185-6190.
  • [10]Dale LB, Babwah AV, Bhattacharya M, Kelvin DJ, Ferguson SS: Spatial-temporal patterning of metabotropic glutamate receptor-mediated inositol 1,4,5-triphosphate, calcium, and protein kinase C oscillations: protein kinase C-dependent receptor phosphorylation is not required. J Biol Chem 2001, 276:35900-35908.
  • [11]Dale LB, Bhattacharya M, Seachrist JL, Anborgh PH, Ferguson SS: Agonist-stimulated and tonic internalization of metabotropic glutamate receptor 1a in human embryonic kidney 293 cells: agonist-stimulated endocytosis is beta-arrestin1 isoform-specific. Mol Pharmacol 2001, 60:1243-1253.
  • [12]Hermans E, Challiss RA: Structural, signalling and regulatory properties of the group I metabotropic glutamate receptors: prototypic family C G-protein-coupled receptors. Biochem J 2001, 359:465-484.
  • [13]Hofmann T, Obukhov AG, Schaefer M, Harteneck C, Gudermann T, Schultz G: Direct activation of human TRPC6 and TRPC3 channels by diacylglycerol. Nature 1999, 397:259-263.
  • [14]Hartmann J, Dragicevic E, Adelsberger H, Henning HA, Sumser M, Abramowitz J, et al.: TRPC3 channels are required for synaptic transmission and motor coordination. Neuron 2008, 59:392-398.
  • [15]Adachi N, Kobayashi T, Takahashi H, Kawasaki T, Shirai Y, Ueyama T, et al.: Enzymological analysis of mutant protein kinase Cgamma causing spinocerebellar ataxia type 14 and dysfunction in Ca2+ homeostasis. J Biol Chem 2008, 283:19854-19863.
  • [16]Correia SS, Duarte CB, Faro CJ, Pires EV, Carvalho AL: Protein kinase C gamma associates directly with the GluR4 alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptor subunit. Effect on receptor phosphorylation. J Biol Chem 2003, 278:6307-6313.
  • [17]van Blitterswijk WJ, Houssa B: Properties and functions of diacylglycerol kinases. Cell Signal 2000, 12:595-605.
  • [18]Mochly-Rosen D, Khaner H, Lopez J: Identification of intracellular receptor proteins for activated protein kinase C. Proc Natl Acad Sci U S A 1991, 88:3997-4000.
  • [19]Disatnik MH, Hernandez-Sotomayor SM, Jones G, Carpenter G, Mochly-Rosen D: Phospholipase C-gamma 1 binding to intracellular receptors for activated protein kinase C. Proc Natl Acad Sci U S A 1994, 91:559-563.
  • [20]Uhlen M, Fagerberg L, Hallstrom BM, Lindskog C, Oksvold P, Mardinoglu A, et al.: Proteomics. Tissue-based map of the human proteome. Science 2015, 347:1260419.
  • [21]Cardell M, Landsend AS, Eidet J, Wieloch T, Blackstad TW, Ottersen OP: High resolution immunogold analysis reveals distinct subcellular compartmentation of protein kinase C gamma and delta in rat Purkinje cells. Neuroscience 1998, 82:709-725.
  • [22]Jarius S, Wandinger KP, Horn S, Heuer H, Wildemann B: A new Purkinje cell antibody (anti-Ca) associated with subacute cerebellar ataxia: immunological characterization. J Neuroinflammation 2010, 7:21.
  • [23]Greenlee JE, Burns JB, Rose JW, Jaeckle KA, Clawson S: Uptake of systemically administered human anticerebellar antibody by rat Purkinje cells following blood-brain barrier disruption. Acta Neuropathol 1995, 89:341-345.
  • [24]Greenlee JE, Clawson SA, Hill KE, Wood BL, Tsunoda I, Carlson NG: Purkinje cell death after uptake of anti-Yo antibodies in cerebellar slice cultures. J Neuropathol Exp Neurol 2010, 69:997-1007.
  • [25]Hill KE, Clawson SA, Rose JW, Carlson NG, Greenlee JE: Cerebellar Purkinje cells incorporate immunoglobulins and immunotoxins in vitro: implications for human neurological disease and immunotherapeutics. J Neuroinflammation 2009, 6:31.
  • [26]Fabian RH, Petroff G: Intraneuronal IgG in the central nervous system: uptake by retrograde axonal transport. Neurology 1987, 37:1780-1784.
  • [27]Fabian RH, Ritchie TC: Intraneuronal IgG in the central nervous system. J Neurol Sci 1986, 73:257-267.
  • [28]Borges LF, Busis NA: Intraneuronal accumulation of myeloma proteins. Arch Neurol 1985, 42:690-694.
  • [29]Graus F, Illa I, Agusti M, Ribalta T, Cruz-Sanchez F, Juarez C: Effect of intraventricular injection of an anti-Purkinje cell antibody (anti-Yo) in a guinea pig model. J Neurol Sci 1991, 106:82-87.
  • [30]Martin-Garcia E, Mannara F, Gutierrez-Cuesta J, Sabater L, Dalmau J, Maldonado R, et al.: Intrathecal injection of P/Q type voltage-gated calcium channel antibodies from paraneoplastic cerebellar degeneration cause ataxia in mice. J Neuroimmunol 2013, 261:53-59.
  • [31]Tanaka K, Tanaka M, Igarashi S, Onodera O, Miyatake T, Tsuji S: Trial to establish an animal model of paraneoplastic cerebellar degeneration with anti-Yo antibody. 2. Passive transfer of murine mononuclear cells activated with recombinant Yo protein to paraneoplastic cerebellar degeneration lymphocytes in severe combined immunodeficiency mice. Clin Neurol Neurosurg 1995, 97:101-105.
  • [32]Schubert M, Panja D, Haugen M, Bramham CR, Vedeler CA: Paraneoplastic CDR2 and CDR2L antibodies affect Purkinje cell calcium homeostasis. Acta Neuropathol 2014, 128:835-852.
  • [33]Chen DH, Brkanac Z, Verlinde CL, Tan XJ, Bylenok L, Nochlin D, et al.: Missense mutations in the regulatory domain of PKC gamma: a new mechanism for dominant nonepisodic cerebellar ataxia. Am J Hum Genet 2003, 72:839-849.
  • [34]Chen DH, Cimino PJ, Ranum LP, Zoghbi HY, Yabe I, Schut L, et al.: The clinical and genetic spectrum of spinocerebellar ataxia 14. Neurology 2005, 64:1258-1260.
  • [35]Klebe S, Durr A, Rentschler A, Hahn-Barma V, Abele M, Bouslam N, et al.: New mutations in protein kinase Cgamma associated with spinocerebellar ataxia type 14. Ann Neurol 2005, 58:720-729.
  • [36]Morita H, Yoshida K, Suzuki K, Ikeda S: A Japanese case of SCA14 with the Gly128Asp mutation. J Hum Genet 2006, 51:1118-1121.
  • [37]van de Warrenburg BP, Verbeek DS, Piersma SJ, Hennekam FA, Pearson PL, Knoers NV, et al.: Identification of a novel SCA14 mutation in a Dutch autosomal dominant cerebellar ataxia family. Neurology 2003, 61:1760-1765.
  • [38]Verbeek DS, Warrenburg BP, Hennekam FA, Dooijes D, Ippel PF, Verschuuren-Bemelmans CC, et al.: Gly118Asp is a SCA14 founder mutation in the Dutch ataxia population. Hum Genet 2005, 117:88-91.
  • [39]Yabe I, Sasaki H, Chen DH, Raskind WH, Bird TD, Yamashita I, et al.: Spinocerebellar ataxia type 14 caused by a mutation in protein kinase C gamma. Arch Neurol 2003, 60:1749-1751.
  • [40]Stevanin G, Hahn V, Lohmann E, Bouslam N, Gouttard M, Soumphonphakdy C, et al.: Mutation in the catalytic domain of protein kinase C gamma and extension of the phenotype associated with spinocerebellar ataxia type 14. Arch Neurol 2004, 61:1242-1248.
  • [41]Asai H, Hirano M, Shimada K, Kiriyama T, Furiya Y, Ikeda M, et al.: Protein kinase C gamma, a protein causative for dominant ataxia, negatively regulates nuclear import of recessive-ataxia-related aprataxin. Hum Mol Genet 2009, 18:3533-3543.
  • [42]Najmabadi H, Hu H, Garshasbi M, Zemojtel T, Abedini SS, Chen W, et al.: Deep sequencing reveals 50 novel genes for recessive cognitive disorders. Nature 2011, 478:57-63.
  • [43]Alonso I, Costa C, Gomes A, Ferro A, Seixas AI, Silva S, et al.: A novel H101Q mutation causes PKCgamma loss in spinocerebellar ataxia type 14. J Hum Genet 2005, 50:523-529.
  • [44]Date H, Onodera O, Tanaka H, Iwabuchi K, Uekawa K, Igarashi S, et al.: Early-onset ataxia with ocular motor apraxia and hypoalbuminemia is caused by mutations in a new HIT superfamily gene. Nat Genet 2001, 29:184-188.
  • [45]Skinner PJ, Vierra-Green CA, Clark HB, Zoghbi HY, Orr HT: Altered trafficking of membrane proteins in purkinje cells of SCA1 transgenic mice. Am J Pathol 2001, 159:905-913.
  • [46]Kano M, Hashimoto K, Chen C, Abeliovich A, Aiba A, Kurihara H, et al.: Impaired synapse elimination during cerebellar development in PKC gamma mutant mice. Cell 1995, 83:1223-1231.
  • [47]Chen C, Kano M, Abeliovich A, Chen L, Bao S, Kim JJ, et al.: Impaired motor coordination correlates with persistent multiple climbing fiber innervation in PKC gamma mutant mice. Cell 1995, 83:1233-1242.
  • [48]Sugiyama N, Hamano S, Mochizuki M, Tanaka M, Takahashi Y: A case of chronic cerebellitis with anti-glutamate receptor delta 2 antibody. No To Hattatsu 2004, 36:60-63.
  • [49]Shimokaze T, Kato M, Yoshimura Y, Takahashi Y, Hayasaka K: A case of acute cerebellitis accompanied by autoantibodies against glutamate receptor delta2. Brain Dev 2007, 29:224-226.
  • [50]Shiihara T, Kato M, Konno A, Takahashi Y, Hayasaka K: Acute cerebellar ataxia and consecutive cerebellitis produced by glutamate receptor delta2 autoantibody. Brain Dev 2007, 29:254-256.
  • [51]Usui D, Mitsuda N, Hosokawa T, Fujieda M, Takahashi Y, Wakiguchi H: A case of persistent cerebellar ataxia complicated by conversion disorder—confirmed by positive cerebrospinal fluid glutamate receptor delta2 and epsilon2 antibodies. No To Hattatsu 2011, 43:41-45.
  • [52]Hayashi Y, Matsuyama Z, Takahashi Y, Wakida K, Hashizume T, Kimura A, et al.: A case of non-herpetic acute encephalitis with autoantibodies for ionotropic glutamate receptor delta2 and epsilon2. Rinsho Shinkeigaku 2005, 45:657-662.
  • [53]Mochizuki Y, Mizutani T, Isozaki E, Ohtake T, Takahashi Y: Acute limbic encephalitis: a new entity? Neurosci Lett 2006, 394:5-8.
  • [54]Kinno R, Yamazaki T, Yamamoto M, Takahashi Y, Fukui T, Kinugasa E: Cerebellar symptoms in a case of acute limbic encephalitis associated with autoantibodies to glutamate receptors delta2 and varepsilon2. Clin Neurol Neurosurg 2013, 115:481-483.
  • [55]Shoji H, Asaoka K, Ayabe M, Ichiyama T, Sakai K: Non-herpetic acute limbic encephalitis: a new subgroup of limbic encephalitis? Intern Med 2004, 43:348.
  • [56]Dalmau J, Tuzun E, Wu HY, Masjuan J, Rossi JE, Voloschin A, et al.: Paraneoplastic anti-N-methyl-D-aspartate receptor encephalitis associated with ovarian teratoma. Ann Neurol 2007, 61:25-36.
  • [57]Yoshino A, Kimura Y, Miyazaki M, Ogawa T, Matsumoto A, Nomura S, et al.: Limbic encephalitis with autoantibodies against the glutamate receptor epsilon 2 mimicking temporal lobe epilepsy. Psychiatry Clin Neurosci 2007, 61:335.
  • [58]Kashihara K, Kawada S, Takahashi Y: Autoantibodies to glutamate receptor GluRepsilon2 in a patient with limbic encephalitis associated with relapsing polychondritis. J Neurol Sci 2009, 287:275-277.
  • [59]Kimura N, Kumamoto T, Takahashi Y: Brain perfusion SPECT in limbic encephalitis associated with autoantibody against the glutamate receptor epsilon 2. Clin Neurol Neurosurg 2014, 118:44-48.
  • [60]Wakamoto H, Takahashi Y, Ebihara T, Okamoto K, Hayashi M, Ichiyama T, et al.: An immunologic case study of acute encephalitis with refractory, repetitive partial seizures. Brain Dev 2012, 34:763-767.
  • [61]Dalmau J, Gleichman AJ, Hughes EG, Rossi JE, Peng X, Lai M, et al.: Anti-NMDA-receptor encephalitis: case series and analysis of the effects of antibodies. Lancet Neurol 2008, 7:1091-1098.
  • [62]Yuzaki M: The delta2 glutamate receptor: a key molecule controlling synaptic plasticity and structure in Purkinje cells. Cerebellum 2004, 3:89-93.
  • [63]Naur P, Hansen KB, Kristensen AS, Dravid SM, Pickering DS, Olsen L, et al.: Ionotropic glutamate-like receptor delta2 binds D-serine and glycine. Proc Natl Acad Sci U S A 2007, 104:14116-14121.
  • [64]Villmann C, Strutz N, Morth T, Hollmann M: Investigation by ion channel domain transplantation of rat glutamate receptor subunits, orphan receptors and a putative NMDA receptor subunit. Eur J Neurosci 1999, 11:1765-1778.
  • [65]Schmid SM, Kott S, Sager C, Huelsken T, Hollmann M: The glutamate receptor subunit delta2 is capable of gating its intrinsic ion channel as revealed by ligand binding domain transplantation. Proc Natl Acad Sci U S A 2009, 106:10320-10325.
  • [66]Kakegawa W, Kohda K, Yuzaki M: The delta2 ‘ionotropic’ glutamate receptor functions as a non-ionotropic receptor to control cerebellar synaptic plasticity. J Physiol 2007, 584:89-96.
  • [67]Kakegawa W, Miyazaki T, Hirai H, Motohashi J, Mishina M, Watanabe M, et al.: Ca2+ permeability of the channel pore is not essential for the delta2 glutamate receptor to regulate synaptic plasticity and motor coordination. J Physiol 2007, 579:729-735.
  • [68]Araki K, Meguro H, Kushiya E, Takayama C, Inoue Y, Mishina M: Selective expression of the glutamate receptor channel delta 2 subunit in cerebellar Purkinje cells. Biochem Biophys Res Commun 1993, 197:1267-1276.
  • [69]Takayama C, Nakagawa S, Watanabe M, Mishina M, Inoue Y: Light- and electron-microscopic localization of the glutamate receptor channel delta 2 subunit in the mouse Purkinje cell. Neurosci Lett 1995, 188:89-92.
  • [70]Lomeli H, Sprengel R, Laurie DJ, Kohr G, Herb A, Seeburg PH, et al.: The rat delta-1 and delta-2 subunits extend the excitatory amino acid receptor family. FEBS Lett 1993, 315:318-322.
  • [71]Hirai H, Miyazaki T, Kakegawa W, Matsuda S, Mishina M, Watanabe M, et al.: Rescue of abnormal phenotypes of the delta2 glutamate receptor-null mice by mutant delta2 transgenes. EMBO Rep 2005, 6:90-95.
  • [72]Yuzaki M: Transgenic rescue for characterizing orphan receptors: a review of delta2 glutamate receptor. Transgenic Res 2005, 14:117-121.
  • [73]Kato AS, Knierman MD, Siuda ER, Isaac JT, Nisenbaum ES, Bredt DS: Glutamate receptor delta2 associates with metabotropic glutamate receptor 1 (mGluR1), protein kinase Cgamma, and canonical transient receptor potential 3 and regulates mGluR1-mediated synaptic transmission in cerebellar Purkinje neurons. J Neurosci 2012, 32:15296-15308.
  • [74]Uemura T, Mori H, Mishina M: Direct interaction of GluRdelta2 with Shank scaffold proteins in cerebellar Purkinje cells. Mol Cell Neurosci 2004, 26:330-341.
  • [75]Ikeda Y, Dick KA, Weatherspoon MR, Gincel D, Armbrust KR, Dalton JC, et al.: Spectrin mutations cause spinocerebellar ataxia type 5. Nat Genet 2006, 38:184-190.
  • [76]Hirai H, Matsuda S: Interaction of the C-terminal domain of delta glutamate receptor with spectrin in the dendritic spines of cultured Purkinje cells. Neurosci Res 1999, 34:281-287.
  • [77]Uemura T, Lee SJ, Yasumura M, Takeuchi T, Yoshida T, Ra M, et al.: Trans-synaptic interaction of GluRdelta2 and Neurexin through Cbln1 mediates synapse formation in the cerebellum. Cell 2010, 141:1068-1079.
  • [78]Matsuda K, Miura E, Miyazaki T, Kakegawa W, Emi K, Narumi S, et al.: Cbln1 is a ligand for an orphan glutamate receptor delta2, a bidirectional synapse organizer. Science 2010, 328:363-368.
  • [79]Landsend AS, Amiry-Moghaddam M, Matsubara A, Bergersen L, Usami S, Wenthold RJ, et al.: Differential localization of delta glutamate receptors in the rat cerebellum: coexpression with AMPA receptors in parallel fiber-spine synapses and absence from climbing fiber-spine synapses. J Neurosci 1997, 17:834-842.
  • [80]Hirai H, Launey T, Mikawa S, Torashima T, Yanagihara D, Kasaura T, et al.: New role of delta2-glutamate receptors in AMPA receptor trafficking and cerebellar function. Nat Neurosci 2003, 6:869-876.
  • [81]Maier A, Klopocki E, Horn D, Tzschach A, Holm T, Meyer R, et al.: De novo partial deletion in GRID2 presenting with complicated spastic paraplegia. Muscle Nerve 2014, 49:289-292.
  • [82]Kashiwabuchi N, Ikeda K, Araki K, Hirano T, Shibuki K, Takayama C, et al.: Impairment of motor coordination, Purkinje cell synapse formation, and cerebellar long-term depression in GluR delta 2 mutant mice. Cell 1995, 81:245-252.
  • [83]Hashizume M, Miyazaki T, Sakimura K, Watanabe M, Kitamura K, Kano M: Disruption of cerebellar microzonal organization in GluD2 (GluRdelta2) knockout mouse. Front Neural Circuits 2013, 7:130.
  • [84]Zuo J, De Jager PL, Takahashi KA, Jiang W, Linden DJ, Heintz N: Neurodegeneration in Lurcher mice caused by mutation in delta2 glutamate receptor gene. Nature 1997, 388:769-773.
  • [85]Lalouette A, Guenet JL, Vriz S: Hotfoot mouse mutations affect the delta 2 glutamate receptor gene and are allelic to lurcher. Genomics 1998, 50:9-13.
  • [86]Jarius S, Martinez-Garcia P, Hernandez AL, Brase JC, Borowski K, Regula JU, et al.: Two new cases of anti-Ca (anti-ARHGAP26/GRAF) autoantibody-associated cerebellar ataxia. J Neuroinflammation 2013, 10:7.
  • [87]Doss S, Numann A, Ziegler A, Siebert E, Borowski K, Stocker W, et al.: Anti-Ca/anti-ARHGAP26 antibodies associated with cerebellar atrophy and cognitive decline. J Neuroimmunol 2014, 267:102-104.
  • [88]Goraya JS, Shah D, Poddar B: Hyperekplexia in a girl with posterior fossa malformations. J Child Neurol 2002, 17:147-149.
  • [89]Schmahmann JD: Disorders of the cerebellum: ataxia, dysmetria of thought, and the cerebellar cognitive affective syndrome. J Neuropsychiatry Clin Neurosci 2004, 16:367-378.
  • [90]Hildebrand JD, Taylor JM, Parsons JT: An SH3 domain-containing GTPase-activating protein for Rho and Cdc42 associates with focal adhesion kinase. Mol Cell Biol 1996, 16:3169-3178.
  • [91]Doherty GJ, Lundmark R: GRAF1-dependent endocytosis. Biochem Soc Trans 2009, 37:1061-1065.
  • [92]Lundmark R, Doherty GJ, Howes MT, Cortese K, Vallis Y, Parton RG, et al.: The GTPase-activating protein GRAF1 regulates the CLIC/GEEC endocytic pathway. Curr Biol 2008, 18:1802-1808.
  • [93]Doherty GJ, Ahlund MK, Howes MT, Moren B, Parton RG, McMahon HT, et al.: The endocytic protein GRAF1 is directed to cell-matrix adhesion sites and regulates cell spreading. Mol Biol Cell 2011, 22:4380-4389.
  • [94]Hansen CG, Nichols BJ: Molecular mechanisms of clathrin-independent endocytosis. J Cell Sci 2009, 122:1713-1721.
  • [95]Cai B, Xie S, Caplan S, Naslavsky N: GRAF1 forms a complex with MICAL-L1 and EHD1 to cooperate in tubular recycling endosome vesiculation. Front Cell Dev Biol 2014, 2:22.
  • [96]Doherty JT, Lenhart KC, Cameron MV, Mack CP, Conlon FL, Taylor JM: Skeletal muscle differentiation and fusion are regulated by the BAR-containing Rho-GTPase-activating protein (Rho-GAP), GRAF1. J Biol Chem 2011, 286:25903-25921.
  • [97]Taylor JM, Macklem MM, Parsons JT: Cytoskeletal changes induced by GRAF, the GTPase regulator associated with focal adhesion kinase, are mediated by Rho. J Cell Sci 1999, 112(Pt 2):231-242.
  • [98]McKeon A, Pittock SJ, Lennon VA: Stiff-person syndrome with amphiphysin antibodies: distinctive features of a rare disease. Neurology 2009, 73:2132.
  • [99]Pittock SJ, Lucchinetti CF, Parisi JE, Benarroch EE, Mokri B, Stephan CL, et al.: Amphiphysin autoimmunity: paraneoplastic accompaniments. Ann Neurol 2005, 58:96-107.
  • [100]Sommer C, Weishaupt A, Brinkhoff J, Biko L, Wessig C, Gold R, et al.: Paraneoplastic stiff-person syndrome: passive transfer to rats by means of IgG antibodies to amphiphysin. Lancet 2005, 365:1406-1411.
  • [101]Doherty AJ, Coutinho V, Collingridge GL, Henley JM: Rapid internalization and surface expression of a functional, fluorescently tagged G-protein-coupled glutamate receptor. Biochem J 1999, 341(Pt 2):415-422.
  • [102]Mundell SJ, Matharu AL, Pula G, Roberts PJ, Kelly E: Agonist-induced internalization of the metabotropic glutamate receptor 1a is arrestin- and dynamin-dependent. J Neurochem 2001, 78:546-551.
  • [103]Iacovelli L, Salvatore L, Capobianco L, Picascia A, Barletta E, Storto M, et al.: Role of G protein-coupled receptor kinase 4 and beta-arrestin 1 in agonist-stimulated metabotropic glutamate receptor 1 internalization and activation of mitogen-activated protein kinases. J Biol Chem 2003, 278:12433-12442.
  • [104]Takanaga H, Mukai H, Shibata H, Toshimori M, Ono Y: PKN interacts with a paraneoplastic cerebellar degeneration-associated antigen, which is a potential transcription factor. Exp Cell Res 1998, 241:363-372.
  • [105]Shibata H, Oishi K, Yamagiwa A, Matsumoto M, Mukai H, Ono Y: PKNbeta interacts with the SH3 domains of Graf and a novel Graf related protein, Graf2, which are GTPase activating proteins for Rho family. J Biochem 2001, 130:23-31.
  • [106]Borkhardt A, Bojesen S, Haas OA, Fuchs U, Bartelheimer D, Loncarevic IF, et al.: The human GRAF gene is fused to MLL in a unique t(5;11)(q31;q23) and both alleles are disrupted in three cases of myelodysplastic syndrome/acute myeloid leukemia with a deletion 5q. Proc Natl Acad Sci U S A 2000, 97:9168-9173.
  • [107]Barresi V, Ragusa A, Fichera M, Musso N, Castiglia L, Rappazzo G, et al.: Decreased expression of GRAF1/OPHN-1-L in the X-linked alpha thalassemia mental retardation syndrome. BMC Med Genomics 2010, 3:28.
  • [108]Lucken-Ardjomande Hasler S, Vallis Y, Jolin HE, McKenzie AN, McMahon HT: GRAF1a is a brain-specific protein that promotes lipid droplet clustering and growth, and is enriched at lipid droplet junctions. J Cell Sci 2014, 127:4602-4619.
  • [109]Graus F, Lang B, Pozo-Rosich P, Saiz A, Casamitjana R, Vincent A: P/Q type calcium-channel antibodies in paraneoplastic cerebellar degeneration with lung cancer. Neurology 2002, 59:764-766.
  • [110]Burk K, Wick M, Roth G, Decker P, Voltz R: Antineuronal antibodies in sporadic late-onset cerebellar ataxia. J Neurol 2010, 257:59-62.
  • [111]Fukuhara N, Takamori M, Gutmann L, Chou SM: Eaton-Lambert syndrome. Ultrastructural study of the motor end-plates. Arch Neurol 1972, 27:67-78.
  • [112]Clouston PD, Saper CB, Arbizu T, Johnston I, Lang B, Newsom-Davis J, et al.: Paraneoplastic cerebellar degeneration. III. Cerebellar degeneration, cancer, and the Lambert-Eaton myasthenic syndrome. Neurology 1992, 42:1944-1950.
  • [113]Lennon VA, Kryzer TJ, Griesmann GE, O’Suilleabhain PE, Windebank AJ, Woppmann A, et al.: Calcium-channel antibodies in the Lambert-Eaton syndrome and other paraneoplastic syndromes. N Engl J Med 1995, 332:1467-1474.
  • [114]Mason WP, Graus F, Lang B, Honnorat J, Delattre JY, Valldeoriola F, et al.: Small-cell lung cancer, paraneoplastic cerebellar degeneration and the Lambert-Eaton myasthenic syndrome. Brain 1997, 120(Pt 8):1279-1300.
  • [115]Voltz R, Carpentier AF, Rosenfeld MR, Posner JB, Dalmau J: P/Q-type voltage-gated calcium channel antibodies in paraneoplastic disorders of the central nervous system. Muscle Nerve 1999, 22:119-122.
  • [116]Tanaka K, Motomura M, Nakao Y, Tanaka M, Tsuji S: Absence of anti-P/Q calcium channel antibody in the sera of patients with anti-Yo antibody-positive paraneoplastic cerebellar degeneration. Neurology 1997, 49:895-896.
  • [117]McKasson M, Clardy SL, Bromberg M, Carlson NG, Greenlee JE: Autoimmune cerebellar degeneration with voltage gated calcium channel antibodies: a case report and study of antibody reactivity. Neurology 2014, 82:P6.056.
  • [118]Poepel A, Jarius S, Heukamp LC, Urbach H, Elger CE, Bien CG, et al.: Neurological course of long-term surviving patients with SCLC and anti-Hu syndrome. J Neurol Sci 2007, 263:145-148.
  • [119]Monstad SE, Drivsholm L, Storstein A, Aarseth JH, Haugen M, Lang B, et al.: Hu and voltage-gated calcium channel (VGCC) antibodies related to the prognosis of small-cell lung cancer. J Clin Oncol 2004, 22:795-800.
  • [120]Rigamonti A, Lauria G, Stanzani L, Mantero V, Andreetta F, Salmaggi A: Non-paraneoplastic voltage-gated calcium channels antibody-mediated cerebellar ataxia responsive to IVIG treatment. J Neurol Sci 2014, 336:169-170.
  • [121]Snutch T, Peloquin J, Mathews E, McRory J. Molecular Properties of Voltage-Gated Calcium Channels, Voltage-Gated Calcium Channels, Molecular Biology Intelligence Unit, US: Springer; 2005;61-94.
  • [122]Diriong S, Lory P, Williams ME, Ellis SB, Harpold MM, Taviaux S: Chromosomal localization of the human genes for alpha 1A, alpha 1B, and alpha 1E voltage-dependent Ca2+ channel subunits. Genomics 1995, 30:605-609.
  • [123]Dunlap K, Luebke JI, Turner TJ: Exocytotic Ca2+ channels in mammalian central neurons. Trends Neurosci 1995, 18:89-98.
  • [124]Miljanich GP, Ramachandran J: Antagonists of neuronal calcium channels: structure, function, and therapeutic implications. Annu Rev Pharmacol Toxicol 1995, 35:707-734.
  • [125]Regehr WG, Mintz IM: Participation of multiple calcium channel types in transmission at single climbing fiber to Purkinje cell synapses. Neuron 1994, 12:605-613.
  • [126]Waterman SA: Multiple subtypes of voltage-gated calcium channel mediate transmitter release from parasympathetic neurons in the mouse bladder. J Neurosci 1996, 16:4155-4161.
  • [127]Takahashi T, Momiyama A: Different types of calcium channels mediate central synaptic transmission. Nature 1993, 366:156-158.
  • [128]Wheeler DB, Randall A, Tsien RW: Changes in action potential duration alter reliance of excitatory synaptic transmission on multiple types of Ca2+ channels in rat hippocampus. J Neurosci 1996, 16:2226-2237.
  • [129]Wright CE, Angus JA: Effects of N-, P- and Q-type neuronal calcium channel antagonists on mammalian peripheral neurotransmission. Br J Pharmacol 1996, 119:49-56.
  • [130]Luebke JI, Dunlap K, Turner TJ: Multiple calcium channel types control glutamatergic synaptic transmission in the hippocampus. Neuron 1993, 11:895-902.
  • [131]Kitano J, Nishida M, Itsukaichi Y, Minami I, Ogawa M, Hirano T, et al.: Direct interaction and functional coupling between metabotropic glutamate receptor subtype 1 and voltage-sensitive Cav2.1 Ca2+ channel. J Biol Chem 2003, 278:25101-25108.
  • [132]Beqollari D, Kammermeier PJ: The interaction between mGluR1 and the calcium channel Cav(2). (1) preserves coupling in the presence of long Homer proteins. Neuropharmacology 2013, 66:302-310.
  • [133]Ohtani Y, Miyata M, Hashimoto K, Tabata T, Kishimoto Y, Fukaya M, et al.: The synaptic targeting of mGluR1 by its carboxyl-terminal domain is crucial for cerebellar function. J Neurosci 2014, 34:2702-2712.
  • [134]Stefani A, Spadoni F, Bernardi G: Group I mGluRs modulate calcium currents in rat GP: functional implications. Synapse 1998, 30:424-432.
  • [135]Choi S, Lovinger DM: Metabotropic glutamate receptor modulation of voltage-gated Ca2+ channels involves multiple receptor subtypes in cortical neurons. J Neurosci 1996, 16:36-45.
  • [136]Hillman D, Chen S, Aung TT, Cherksey B, Sugimori M, Llinas RR: Localization of P-type calcium channels in the central nervous system. Proc Natl Acad Sci U S A 1991, 88:7076-7080.
  • [137]Stea A, Tomlinson WJ, Soong TW, Bourinet E, Dubel SJ, Vincent SR, et al.: Localization and functional properties of a rat brain alpha 1A calcium channel reflect similarities to neuronal Q- and P-type channels. Proc Natl Acad Sci U S A 1994, 91:10576-10580.
  • [138]Westenbroek RE, Sakurai T, Elliott EM, Hell JW, Starr TV, Snutch TP, et al.: Immunochemical identification and subcellular distribution of the alpha 1A subunits of brain calcium channels. J Neurosci 1995, 15:6403-6418.
  • [139]Indriati DW, Kamasawa N, Matsui K, Meredith AL, Watanabe M, Shigemoto R: Quantitative localization of Cav2.1 (P/Q-type) voltage-dependent calcium channels in Purkinje cells: somatodendritic gradient and distinct somatic coclustering with calcium-activated potassium channels. J Neurosci 2013, 33:3668-3678.
  • [140]Lennon VA, Kryzer TJ: Neuronal calcium channel autoantibodies coexisting with type 1 Purkinje cell cytoplasmic autoantibodies (PCA-1 or “anti-Yo”). Neurology 1998, 51:327-329.
  • [141]Sabater L, Hoftberger R, Boronat A, Saiz A, Dalmau J, Graus F: Antibody repertoire in paraneoplastic cerebellar degeneration and small cell lung cancer. PLoS One 2013., 8Article ID e60438
  • [142]Rosenfeld MR, Wong E, Dalmau J, Manley G, Egan D, Posner JB, et al.: Sera from patients with Lambert-Eaton myasthenic syndrome recognize the beta-subunit of Ca2+ channel complexes. Ann N Y Acad Sci 1993, 681:408-411.
  • [143]Rosenfeld MR, Wong E, Dalmau J, Manley G, Posner JB, Sher E, et al.: Cloning and characterization of a Lambert-Eaton myasthenic syndrome antigen. Ann Neurol 1993, 33:113-120.
  • [144]Hajela RK, Huntoon KM, Atchison WD: Lambert-Eaton syndrome antibodies target multiple subunits of voltage-gated Ca2+ channels. Muscle Nerve 2015, 51:176-184.
  • [145]Billings SE, Clarke GL, Nishimune H: ELKS1 and Ca(2+) channel subunit beta4 interact and colocalize at cerebellar synapses. Neuroreport 2012, 23:49-54.
  • [146]Huijbers MG, Lipka AF, Potman M, Hensbergen PJ, Titulaer MJ, Niks EH, et al.: Antibodies to active zone protein ERC1 in Lambert-Eaton myasthenic syndrome. Hum Immunol 2013, 74:849-851.
  • [147]Lang B, Newsom-Davis J: Immunopathology of the Lambert-Eaton myasthenic syndrome. Springer Semin Immunopathol 1995, 17:3-15.
  • [148]Pinto A, Gillard S, Moss F, Whyte K, Brust P, Williams M, et al.: Human autoantibodies specific for the alpha1A calcium channel subunit reduce both P-type and Q-type calcium currents in cerebellar neurons. Proc Natl Acad Sci U S A 1998, 95:8328-8333.
  • [149]Liao YJ, Safa P, Chen YR, Sobel RA, Boyden ES, Tsien RW: Anti-Ca2+ channel antibody attenuates Ca2+ currents and mimics cerebellar ataxia in vivo. Proc Natl Acad Sci U S A 2008, 105:2705-2710.
  • [150]Fukuda T, Motomura M, Nakao Y, Shiraishi H, Yoshimura T, Iwanaga K, et al.: Reduction of P/Q-type calcium channels in the postmortem cerebellum of paraneoplastic cerebellar degeneration with Lambert-Eaton myasthenic syndrome. Ann Neurol 2003, 53:21-28.
  • [151]Subramony SH, Fratkin JD, Manyam BV, Currier RD: Dominantly inherited cerebello-olivary atrophy is not due to a mutation at the spinocerebellar ataxia-I, Machado-Joseph disease, or Dentato-Rubro-Pallido-Luysian atrophy locus. Mov Disord 1996, 11:174-180.
  • [152]Zhuchenko O, Bailey J, Bonnen P, Ashizawa T, Stockton DW, Amos C, et al.: Autosomal dominant cerebellar ataxia (SCA6) associated with small polyglutamine expansions in the alpha 1A-voltage-dependent calcium channel. Nat Genet 1997, 15:62-69.
  • [153]Gomez MF, Stevenson AS, Bonev AD, Hill-Eubanks DC, Nelson MT: Opposing actions of inositol 1,4,5-trisphosphate and ryanodine receptors on nuclear factor of activated T-cells regulation in smooth muscle. J Biol Chem 2002, 277:37756-37764.
  • [154]Ishikawa K, Tanaka H, Saito M, Ohkoshi N, Fujita T, Yoshizawa K, et al.: Japanese families with autosomal dominant pure cerebellar ataxia map to chromosome 19p13.1-p13.2 and are strongly associated with mild CAG expansions in the spinocerebellar ataxia type 6 gene in chromosome 19p13.1. Am J Hum Genet 1997, 61:336-346.
  • [155]Schols L, Kruger R, Amoiridis G, Przuntek H, Epplen JT, Riess O: Spinocerebellar ataxia type 6: genotype and phenotype in German kindreds. J Neurol Neurosurg Psychiatry 1998, 64:67-73.
  • [156]Tsuchiya K, Oda T, Yoshida M, Sasaki H, Haga C, Okino H, et al.: Degeneration of the inferior olive in spinocerebellar ataxia 6 may depend on disease duration: report of two autopsy cases and statistical analysis of autopsy cases reported to date. Neuropathology 2005, 25:125-135.
  • [157]Hara K, Fukushima T, Suzuki T, Shimohata T, Oyake M, Ishiguro H, et al.: Japanese SCA families with an unusual phenotype linked to a locus overlapping with SCA15 locus. Neurology 2004, 62:648-651.
  • [158]Hara K, Shiga A, Nozaki H, Mitsui J, Takahashi Y, Ishiguro H, et al.: Total deletion and a missense mutation of ITPR1 in Japanese SCA15 families. Neurology 2008, 71:547-551.
  • [159]Ophoff RA, Terwindt GM, Vergouwe MN, van Eijk R, Oefner PJ, Hoffman SM, et al.: Familial hemiplegic migraine and episodic ataxia type-2 are caused by mutations in the Ca2+ channel gene CACNL1A4. Cell 1996, 87:543-552.
  • [160]Eunson LH, Graves TD, Hanna MG: New calcium channel mutations predict aberrant RNA splicing in episodic ataxia. Neurology 2005, 65:308-310.
  • [161]Riant F, Lescoat C, Vahedi K, Kaphan E, Toutain A, Soisson T, et al.: Identification of CACNA1A large deletions in four patients with episodic ataxia. Neurogenetics 2010, 11:101-106.
  • [162]Labrum RW, Rajakulendran S, Graves TD, Eunson LH, Bevan R, Sweeney MG, et al.: Large scale calcium channel gene rearrangements in episodic ataxia and hemiplegic migraine: implications for diagnostic testing. J Med Genet 2009, 46:786-791.
  • [163]Vighetto A, Froment JC, Trillet M, Aimard G: Magnetic resonance imaging in familial paroxysmal ataxia. Arch Neurol 1988, 45:547-549.
  • [164]Ducros A, Denier C, Joutel A, Cecillon M, Lescoat C, Vahedi K, et al.: The clinical spectrum of familial hemiplegic migraine associated with mutations in a neuronal calcium channel. N Engl J Med 2001, 345:17-24.
  • [165]Ducros A, Denier C, Joutel A, Vahedi K, Michel A, Darcel F, et al.: Recurrence of the T666M calcium channel CACNA1A gene mutation in familial hemiplegic migraine with progressive cerebellar ataxia. Am J Hum Genet 1999, 64:89-98.
  • [166]Jun K, Piedras-Renteria ES, Smith SM, Wheeler DB, Lee SB, Lee TG, et al.: Ablation of P/Q-type Ca(2+) channel currents, altered synaptic transmission, and progressive ataxia in mice lacking the alpha(1A)-subunit. Proc Natl Acad Sci U S A 1999, 96:15245-15250.
  • [167]van den Maagdenberg AM, Pietrobon D, Pizzorusso T, Kaja S, Broos LA, Cesetti T, et al.: A Cacna1a knockin migraine mouse model with increased susceptibility to cortical spreading depression. Neuron 2004, 41:701-710.
  • [168]van den Maagdenberg AM, Pizzorusso T, Kaja S, Terpolilli N, Shapovalova M, Hoebeek FE, et al.: High cortical spreading depression susceptibility and migraine-associated symptoms in Ca(v)2.1 S218L mice. Ann Neurol 2010, 67:85-98.
  • [169]Fletcher CF, Lutz CM, O’Sullivan TN, Shaughnessy JD Jr, Hawkes R, Frankel WN, et al.: Absence epilepsy in tottering mutant mice is associated with calcium channel defects. Cell 1996, 87:607-617.
  • [170]Ebner TJ, Chen G: Tottering mouse. In Handbook of the cerebellum and cerebellar disorders. Edited by Manto M, Gruol DL, Schmahmann JD, Koibuchi N, Rossi F. Springer, New York; 2013.
  • [171]Herrup K, Wilczynski SL: Cerebellar cell degeneration in the leaner mutant mouse. Neuroscience 1982, 7:2185-2196.
  • [172]Lorenzon NM, Lutz CM, Frankel WN, Beam KG: Altered calcium channel currents in Purkinje cells of the neurological mutant mouse leaner. J Neurosci 1998, 18:4482-4489.
  • [173]Jarius S, Wildemann B. ‘Medusa head ataxia’: the expanding spectrum of Purkinje cell antibodies in autoimmune cerebellar ataxia. Part 3: Anti-Yo/CDR2, anti-Nb/AP3B2, PCA-2, anti-Tr/DNER, other antibodies, diagnostic pitfalls, summary and outlook. J Neuroinflammation. 2015, in press.
  文献评价指标  
  下载次数:22次 浏览次数:5次