| Journal of Hematology & Oncology | |
| Splicing factor 3b subunit 1 (Sf3b1) haploinsufficient mice display features of low risk Myelodysplastic syndromes with ring sideroblasts | |
| Ramon V Tiu4  Heesun J Rogers6  Daniel Lindner2  John Barnard1  Yogen Saunthararajah4  Mikkael A Sekeres4  Haruhiko Koseki5  Kyoichi Isono5  Reda Mahfouz2  Edy Hasrouni2  Yvonne Parker2  Li Zhang3  Ali Tabarroki2  Valeria Visconte2  | |
| [1] Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH, USA;Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, 9500 Euclid Avenue R40, Cleveland 44195OH, USA;Department of Medicine, University of California, School of Medicine, San Francisco, CA, USA;Leukemia Program, Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA;Center for Integrative Medical Sciences (IMS), RIKEN, Yokohama Institute, Yokohama, Japan;Department of Laboratory Medicine, Cleveland Clinic, Cleveland, OH, USA | |
| 关键词: RNA-sequencing; Myelodysplasia; SF3B1 mice; | |
| Others : 1137554 DOI : 10.1186/s13045-014-0089-x |
|
| received in 2014-10-13, accepted in 2014-11-15, 发布年份 2014 | |
PDF
|
|
【 摘 要 】
Background
The presence of somatic mutations in splicing factor 3b subunit 1 (SF3B1) in patients with Myelodysplastic syndromes with ring sideroblasts (MDS-RS) highlights the importance of the RNA-splicing machinery in MDS. We previously reported the presence of bone marrow (BM) RS in Sf3b1 heterozygous (Sf3b1+/−) mice which are rarely found in mouse models of MDS. Sf3b1+/− mice were originally engineered to study the interaction between polycomb genes and other proteins.
Methods
We used routine blood tests and histopathologic analysis of BM, spleen, and liver to evaluate the hematologic and morphologic characteristics of Sf3b1+/− mice in the context of MDS by comparing the long term follow-up (15 months) of Sf3b1+/− and Sf3b1+/+ mice. We then performed a comprehensive RNA-sequencing analysis to evaluate the transcriptome of BM cells from Sf3b1+/− and Sf3b1+/+ mice.
Results
Sf3b1+/− exhibited macrocytic anemia (MCV: 49.5 ± 1.6 vs 47.2 ± 1.4; Hgb: 5.5 ± 1.7 vs 7.2 ± 1.0) and thrombocytosis (PLTs: 911.4 ± 212.1 vs 878.4 ± 240.9) compared to Sf3b1+/+ mice. BM analysis showed dyserythropoiesis and occasional RS in Sf3b1+/− mice. The splenic architecture showed increased megakaryocytes with hyperchromatic nuclei, and evidence of extramedullary hematopoiesis. RNA-sequencing showed higher expression of a gene set containing Jak2 in Sf3b1+/− compared to Sf3b1+/+.
Conclusions
Our study indicates that Sf3b1+/− mice manifest features of low risk MDS-RS and may be relevant for preclinical therapeutic studies.
【 授权许可】
2014 Visconte et al.; licensee BioMed Central Ltd.
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 20150317093013803.pdf | 1923KB | ||
| Figure 4. | 189KB | Image | |
| Figure 3. | 81KB | Image | |
| Figure 2. | 120KB | Image | |
| Figure 1. | 47KB | Image |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
【 参考文献 】
- [1]Swerdlow SH, Campo E, Harris NE, Jaffe ES, Pileri SA, Stein H, Thiele J, Vardiman JW: WHO classification of tumours of haematopoietic and lymphoid tissues. In Refractory Anaemia with Ring Sideroblasts. 4th edition. Edited by Hasserjian RP, Gattermann N, Bennett JM, Brunning RD, Thiele J. IARC, Lyon; 2008:96-97.
- [2]Szpurka H, Tiu R, Murugesan G, Aboudola S, Hsi ED, Theil KS, Sekeres MA, Maciejewski JP: Refractory anemia with ringed sideroblasts associated with marked thrombocytosis (RARS-T), another myeloproliferative condition characterized by JAK2 V617F mutation. Blood 2006, 108:2173-2181.
- [3]Ceesay MM, Lea NC, Ingram W, Westwood NB, Gaken J, Mohamedali A, Cervera J, Germing U, Gattermann N, Giagounidis A, Garcia-Casado Z, Sanz G, Mufti GJ: The JAK2 V617F mutation is rare in RARS but common in RARS-T. Leukemia 2006, 20:2060-2061.
- [4]Flach J, Dicker F, Schnittger S, Kohlmann A, Haferlach T, Haferlach C: Mutations of JAK2 and TET2, but not CBL are detectable in a high portion of patients with refractory anemia with ring sideroblasts and thrombocytosis. Haematologica 2010, 95:518-519.
- [5]Hellstrom-Lindberg E, Cazzola M: The role of JAK2 mutations in RARS and other MDS. Hematol Am Soc Hematol Educ Program 2008, 2008:52-59. doi:10.1182/asheducation-2008.1.52ASH Education Book
- [6]Boultwood J, Pellagatti A, Nikpour M, Pushkaran B, Fidler C, Cattan H, Littlewood TJ, Malcovati L, Della Porta MG, Jädersten M, Killick S, Giagounidis A, Bowen D, Hellström-Lindberg E, Cazzola M, Wainscoat JS: The role of the iron transporter ABCB7 in refractory anemia with ring sideroblasts. PLoS One 2008, 3:e1970.
- [7]Pellagatti A, Cazzola M, Giagounidis AA, Malcovati L, Porta MG, Killick S, Campbell LJ, Wang L, Langford CF, Fidler C, Oscier D, Aul C, Wainscoat JS, Boultwood J: Gene expression profiles of CD34+ cells in myelodysplastic syndromes: involvement of interferon-stimulated genes and correlation to FAB subtype and karyotype. Blood 2006, 108:337-345.
- [8]Yoshida K, Sanada M, Shiraishi Y, Nowak D, Nagata Y, Yamamoto R, Sato Y, Sato-Otsubo A, Kon A, Nagasaki M, Chalkidis G, Suzuki Y, Shiosaka M, Kawahata R, Yamaguchi T, Otsu M, Obara N, Sakata-Yanagimoto M, Ishiyama K, Mori H, Nolte F, Hofmann WK, Miyawaki S, Sugano S, Haferlach C, Koeffler HP, Shih LY, Haferlach T, Chiba S, Nakauchi H, et al.: Frequent pathway mutations of splicing machinery in myelodysplasia. Nature 2011, 478:64-69.
- [9]Papaemmanuil E, Cazzola M, Boultwood J, Malcovati L, Vyas P, Bowen D, Pellagatti A, Wainscoat JS, Hellstrom-Lindberg E, Gambacorti-Passerini C, Godfrey AL, Rapado I, Cvejic A, Rance R, McGee C, Ellis P, Mudie LJ, Stephens PJ, McLaren S, Massie CE, Tarpey PS, Varela I, Nik-Zainal S, Davies HR, Shlien A, Jones D, Raine K, Hinton J, Butler AP, Teague JW: Somatic SF3B1 mutation in myelodysplasia with ring sideroblasts. N Engl J Med 2011, 365:1384-1395.
- [10]Visconte V, Makishima H, Jankowska A, Szpurka H, Traina F, Jerez A, O'Keefe C, Rogers HJ, Sekeres MA, Maciejewski JP, Tiu RV: SF3B1, a splicing factor is frequently mutated in refractory anemia with ring sideroblasts. Leukemia 2012, 26:542-545.
- [11]Visconte V, Tabarroki A, Rogers HJ, Hasrouni E, Traina F, Makishima H, Hamilton BK, Liu Y, O'Keefe C, Lichtin A, Horwitz L, Sekeres MA, Hsieh FH, Tiu RV: SF3B1 mutations are infrequently found in non-myelodysplastic bone marrow failure syndromes and mast cell diseases but, if present, are associated with the ring sideroblast phenotype. Haematologica 2013, 98:e105-107.
- [12]Makishima H, Visconte V, Sakaguchi H, Jankowska AM, Abu Kar S, Jerez A, Przychodzen B, Bupathi M, Guinta K, Afable MG, Sekeres MA, Padgett RA, Tiu RV, Maciejewski JP: Mutations in the spliceosome machinery, a novel and ubiquitous pathway in leukemogenesis. Blood 2012, 119:3203-3210.
- [13]Maciejewski JP, Padgett RA: Defects in spliceosomal machinery: a new pathway of leukaemogenesis. Br J Haematol 2012, 158:165-173.
- [14]Visconte V, Makishima H, Maciejewski JP, Tiu RV: Emerging roles of the spliceosomal machinery in myelodysplastic syndromes and other hematological disorders. Leukemia 2012, 26:2447-54.
- [15]Visconte V, Rogers HJ, Singh J, Barnard J, Bupathi M, Traina F, McMahon J, Makishima H, Szpurka H, Jankowska A, Jerez A, Sekeres MA, Saunthararajah Y, Advani AS, Copelan E, Koseki H, Isono K, Padgett RA, Osman S, Koide K, O'Keefe C, Maciejewski JP, Tiu RV: SF3B1 haploinsufficiency leads to formation of ring sideroblasts in myelodysplastic syndromes. Blood 2012, 120:3173-3186.
- [16]Isono K, Mizutani-Koseki Y, Komori T, Schmidt-Zachmann MS, Koseki H: Mammalian polycomb-mediated repression of Hox genes requires the essential spliceosomal protein Sf3b1. Genes Dev 2005, 19:536-541.
- [17]Beachy SH, Aplan PD: Mouse models of myelodysplastic syndromes. Hematol Oncol Clin North Am 2010, 24:361-375.
- [18]Wang L, Lawrence MS, Wan Y, Stojanov P, Sougnez C, Stevenson K, Werner L, Sivachenko A, DeLuca DS, Zhang L, Zhang W, Vartanov AR, Fernandes SM, Goldstein NR, Folco EG, Cibulskis K, Tesar B, Sievers QL, Shefler E, Gabriel S, Hacohen N, Reed R, Meyerson M, Golub TR, Lander ES, Neuberg D, Brown JR, Getz G, Wu CJ: SF3B1 and other novel cancer genes in chronic lymphocytic leukemia. N Engl J Med 2011, 365:2497-2506.
- [19]Mian SA, Rouault-Pierre K, Smith AS, Seidl T, Kulasekararaj AG, Mohamedali AM, Shinde S, Bonnet D, Mufti GJ: SF3B1 mutant clones from patients with refractory anaemia with ringed sideroblasts (RARS) originate from the early haematopoietic stem cells and maintain their engraftment potential. Blood (ASH Annual Meeting) 2013, 122:262.
- [20]Ramirez-Herrick AM, Mullican SE, Sheehan AM, Conneely OM: Reduced NR4A gene dosage leads to mixed myelodysplastic/myeloproliferative neoplasms in mice. Blood 2011, 117:2681-90.
- [21]Wegrzyn J, Lam JC, Karsan A: Mouse models of myelodysplastic syndromes. Leuk Res 2011, 35:853-62.
- [22]Matsunawa M, Yamamoto R, Sanada M, Sato-Otsubo A, Shiozawa Y, Yoshida K, Otsu M, Shiraishi Y, Miyano S, Isono K, Koseki H, Nakauchi H, Ogawa S: Haploinsufficiency of Sf3b1 leads to compromised stem cell function but not to myelodysplasia. Leukemia 2014, 28:1844. doi:10.1038/leu.2014.73
- [23]Sekeres MA, Schoonen WM, Kantarjian H, List A, Fryzek J, Paquette R, Maciejewski JP: Characteristics of US patients with myelodysplastic syndromes: results of six cross-sectional physician surveys. J Natl Cancer Inst 2008, 100:1542-51.
- [24]Chen TC, Hou HA, Chou WC, Tang JL, Kuo YY, Chen CY, Tseng MH, Huang CF, Lai YJ, Chiang YC, Lee FY, Liu MC, Liu CW, Liu CY, Yao M, Huang SY, Ko BS, Hsu SC, Wu SJ, Tsay W, Chen YC, Tien HF: Dynamics of ASXL1 mutation and other associated genetic alterations during disease progression in patients with primary myelodysplastic syndrome. Blood Cancer Journal 2014, 4:e177.
- [25]Wang J, Li Z, He Y, Pan F, Chen S, Rhodes S, Nguyen L, Yuan J, Jiang L, Yang X, Weeks O, Liu Z, Zhou J, Ni H, Cai CL, Xu M, Yang FC: Loss of Asxl1 leads to myelodysplastic syndrome-like disease in mice. Blood 2014, 123:541-53.
- [26]Watanabe-Okochi N, Kitaura J, Ono R, Harada H, Harada Y, Komeno Y, Nakajima H, Nosaka T, Inaba T, Kitamura T: AML1 mutations induced MDS and MDS/AML in a mouse BMT model. Blood 2008, 111:4297-308.
- [27]Robinson MD, Oshlack A: A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol 2010, 11:R25. BioMed Central Full Text
- [28]Law CW, Chen Y, Shi W, Smyth GK: Voom: precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol 2014, 15:R29. BioMed Central Full Text
- [29]Benjamini YHY: Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Statis Soc B 1995, 57:289-300.
- [30]Wu D, Smyth GK: Camera: a competitive gene set test accounting for inter-gene correlation. Nucleic Acids Res 2012, 40:e133.
- [31]Liberzon A, Subramanian A, Pinchback R, Thorvaldsdottir H, Tamayo P, Mesirov JP: Molecular signatures database (MSigDB) 3.0. Bioinformatics 2011, 27:1739-1740.
PDF