期刊论文详细信息
Journal of Molecular Signaling
“Shaping” of cell signaling via AKAP-tethered PDE4D: Probing with AKAR2-AKAP5 biosensor
Craig C Malbon2  Hsien-yu Wang1  Salih S Koçer2 
[1] Department of Physiology and Biophysics, SUNY at Stony Brook, School of Medicine, Stony Brook, New York 11794-8661, USA;Department of Pharmacological Sciences, Health Sciences Center, BST-7, SUNY at Stony Brook, School of Medicine, Stony Brook, New York 11794-8651, USA
关键词: Tethered;    Scaffold;    Protein kinase A;    PDE4D;    β-adrenergic receptor;    AKAR2;    AKAP12;    AKAP5;   
Others  :  803081
DOI  :  10.1186/1750-2187-7-4
 received in 2012-03-22, accepted in 2012-04-15,  发布年份 2012
PDF
【 摘 要 】

Background

PKA, a key regulator of cell signaling, phosphorylates a diverse and important array of target molecules and is spatially docked to members of the A-kinase Anchoring Protein (AKAP) family. AKAR2 is a biosensor which yields a FRET signal in vivo, when phosphorylated by PKA. AKAP5, a prominent member of the AKAP family, docks several signaling molecules including PKA, PDE4D, as well as GPCRs, and is obligate for the propagation of the activation of the mitogen-activated protein kinase cascade from GPCRs to ERK1,2.

Results

Using an AKAR2-AKAP5 fusion “biosensor”, we investigated the spatial-temporal activation of AKAP5 undergoing phosphorylation by PKA in response to β-adrenergic stimulation. The pattern of PKA activation reported by AKAR2-AKAP5 is a more rapid and spatially distinct from those “sensed” by AKAR2-AKAP12. Spatial-temporal restriction of activated PKA by AKAP5 was found to “shape” the signaling response. Phosphatase PDE4D tethered to AKAP5 also later reverses within 60 s elevated intracellular cyclic AMP levels stimulated by β-adrenergic agonist. AKAP12, however, fails to attenuate the rise in cyclic AMP over this time. Fusion of the AKAP5 PDE4D-binding-domain to AKAP12 was found to accelerate a reversal of accumulation of intracellular cyclic AMP.

Conclusion

AKAPs, which are scaffolds with tethered enzymes, can “shape” the temporal and spatial aspects of cell signaling.

【 授权许可】

   
2012 Kocer et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140708033815144.pdf 1900KB PDF download
Figure 10. 39KB Image download
Figure 9. 64KB Image download
Figure 8. 48KB Image download
Figure 7. 94KB Image download
Figure 6. 46KB Image download
Figure 5. 79KB Image download
Figure 4. 36KB Image download
Figure 3. 49KB Image download
Figure 2. 67KB Image download
Figure 1. 50KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Figure 10.

【 参考文献 】
  • [1]Wong W, Scott JD: AKAP signalling complexes: focal points in space and time. Nat Rev Mol Cell Biol 2004, 5:959-970.
  • [2]Malbon CC, Tao J, Shumay E, Wang HY: AKAP (A-kinase anchoring protein) domains: beads of structure-function on the necklace of G-protein signalling. Biochem Soc Trans 2004, 32:861-864.
  • [3]Scott JD: A-kinase-anchoring proteins and cytoskeletal signalling events. Biochem Soc Trans 2003, 31:87-89.
  • [4]Cooper DM: Compartmentalization of adenylate cyclase and cAMP signalling. Biochem Soc Trans 2005, 33:1319-1322.
  • [5]Malbon CC, Tao J, Wang HY: AKAPs (A-kinase anchoring proteins) and molecules that compose their G-protein-coupled receptor signalling complexes. Biochem J 2004, 379:1-9.
  • [6]Chen MH, Malbon CC: G-protein-coupled receptor-associated A-kinase anchoring proteins AKAP5 and AKAP12: differential trafficking and distribution. Cell Signal 2009, 21:136-142.
  • [7]Lynch MJ, Baillie GS, Mohamed A, Li X, Maisonneuve C, Klussmann E, et al.: RNA silencing identifies PDE4D5 as the functionally relevant cAMP phosphodiesterase interacting with beta arrestin to control the protein kinase A/AKAP79-mediated switching of the beta2-adrenergic receptor to activation of ERK in HEK293B2 cells. J Biol Chem 2005, 280:33178-33189.
  • [8]Tao J, Malbon CC: G-protein-coupled receptor-associated A-kinase anchoring proteins AKAP5 and AKAP12: differential signaling to MAPK and GPCR recycling. J Mol Signal 2008, 3:19. BioMed Central Full Text
  • [9]Shih M, Lin F, Scott JD, Wang HY, Malbon CC: Dynamic complexes of beta2-adrenergic receptors with protein kinases and phosphatases and the role of gravin. J Biol Chem 1999, 274:1588-1595.
  • [10]Delavier-Klutchko C, Hoebeke J, Strosberg AD: The human carcinoma cell line A431 possesses large numbers of functional beta-adrenergic receptors. FEBS Lett 1984, 169:151-155.
  • [11]Kashles O, Levitzki A: Characterization of the beta 2-adrenoceptor-dependent adenylate cyclase of A431 epidermoid carcinoma cells. Biochem Pharmacol 1987, 36:1531-1538.
  • [12]Wang HY, Berrios M, Malbon CC: Localization of beta-adrenergic receptors in A431 cells in situ. Effect of chronic exposure to agonist. Biochem J 1989, 263:533-538.
  • [13]Wang HY, Berrios M, Malbon CC: Indirect immunofluorescence localization of beta-adrenergic receptors and G-proteins in human A431 cells. Biochem J 1989, 263:519-532.
  • [14]Smith FD, Langeberg LK, Scott JD: The where’s and when’s of kinase anchoring. Trends Biochem Sci 2006, 31:316-323.
  • [15]Zhang J, Ma Y, Taylor SS, Tsien RY: Genetically encoded reporters of protein kinase A activity reveal impact of substrate tethering. Proc Natl Acad Sci U S A 2001, 98:14997-15002.
  • [16]Fan G, Shumay E, Wang H, Malbon CC: The scaffold protein gravin (cAMP-dependent protein kinase-anchoring protein 250) binds the beta 2-adrenergic receptor via the receptor cytoplasmic Arg-329 to Leu-413 domain and provides a mobile scaffold during desensitization. J Biol Chem 2001, 276:24005-24014.
  • [17]Tao J, Shumay E, McLaughlin S, Wang HY, Malbon CC: Regulation of AKAP-membrane interactions by calcium. J Biol Chem 2006, 281:23932-23944.
  • [18]Tao J, Wang HY, Malbon CC: Protein kinase A regulates AKAP250 (gravin) scaffold binding to the beta2-adrenergic receptor. EMBO J 2003, 22:6419-6429.
  • [19]Tao J, Wang HY, Malbon CC: AKAR2-AKAP12 fusion protein “biosenses” dynamic phosphorylation and localization of a GPCR-based scaffold. J Mol Signal 2010, 5:3. BioMed Central Full Text
  • [20]Gao T, Yatani A, Dell'Acqua ML, Sako H, Green SA, Dascal N, et al.: cAMP-dependent regulation of cardiac L-type Ca2+ channels requires membrane targeting of PKA and phosphorylation of channel subunits. Neuron 1997, 19:185-196.
  • [21]Burton KA, Johnson BD, Hausken ZE, Westenbroek RE, Idzerda RL, Scheuer T, et al.: Type II regulatory subunits are not required for the anchoring-dependent modulation of Ca2+ channel activity by cAMP-dependent protein kinase. Proc Natl Acad Sci U S A 1997, 94:11067-11072.
  • [22]Delint-Ramirez I, Willoughby D, Hammond GV, Ayling LJ, Cooper DM: Palmitoylation targets AKAP79 protein to lipid rafts and promotes its regulation of calcium-sensitive adenylyl cyclase type 8. J Biol Chem 2011, 286:32962-32975.
  • [23]Dell'Acqua ML, Faux MC, Thorburn J, Thorburn A, Scott JD: Membrane-targeting sequences on AKAP79 bind phosphatidylinositol-4, 5-bisphosphate. EMBO J 1998, 17:2246-2260.
  • [24]Gardner LA, Tavalin SJ, Goehring AS, Scott JD, Bahouth SW: AKAP79-mediated targeting of the cyclic AMP-dependent protein kinase to the beta1-adrenergic receptor promotes recycling and functional resensitization of the receptor. J Biol Chem 2006, 281:33537-33553.
  • [25]Gorski JA, Gomez LL, Scott JD, Dell’Acqua ML: Association of an A-kinase-anchoring protein signaling scaffold with cadherin adhesion molecules in neurons and epithelial cells. Mol Biol Cell 2005, 16:3574-3590.
  • [26]Glantz SB, Li Y, Rubin CS: Characterization of distinct tethering and intracellular targeting domains in AKAP75, a protein that links cAMP-dependent protein kinase II beta to the cytoskeleton. J Biol Chem 1993, 268:12796-12804.
  • [27]Weisenhaus M, Allen ML, Yang L, Lu Y, Nichols CB, Su T, et al.: Mutations in AKAP5 disrupt dendritic signaling complexes and lead to electrophysiological and behavioral phenotypes in mice. PLoS One 2010, 5:e10325.
  • [28]Fabricant RN, De Larco JE, Todaro GJ: Nerve growth factor receptors on human melanoma cells in culture. Proc Natl Acad Sci U S A 1977, 74:565-569.
  • [29]Wang HY, Berrios M, Hadcock JR, Malbon CC: The biology of beta-adrenergic receptors: analysis in human epidermoid carcinoma A431 cells. Int J Biochem 1991, 23:7-20.
  • [30]Carr DW, Hausken ZE, Fraser ID, Stofko-Hahn RE, Scott JD: Association of the type II cAMP-dependent protein kinase with a human thyroid RII-anchoring protein. Cloning and characterization of the RII-binding domain. J Biol Chem 1992, 267:13376-13382.
  • [31]Carr DW, Stofko-Hahn RE, Fraser ID, Bishop SM, Acott TS, Brennan RG, et al.: Interaction of the regulatory subunit (RII) of cAMP-dependent protein kinase with RII-anchoring proteins occurs through an amphipathic helix binding motif. J Biol Chem 1991, 266:14188-14192.
  • [32]Hausken ZE, Coghlan VM, Hastings CA, Reimann EM, Scott JD: Type II regulatory subunit (RII) of the cAMP-dependent protein kinase interaction with A-kinase anchor proteins requires isoleucines 3 and 5. J Biol Chem 1994, 269:24245-24251.
  • [33]Vijayaraghavan S, Goueli SA, Davey MP, Carr DW: Protein kinase A-anchoring inhibitor peptides arrest mammalian sperm motility. J Biol Chem 1997, 272:4747-4752.
  • [34]Alto N, Carlisle Michel JJ, Dodge KL, Langeberg LK, Scott JD: Intracellular targeting of protein kinases and phosphatases. Diabetes 2002, 51(Suppl 3):S385-S388.
  • [35]Houslay MD, Baillie GS: Beta-arrestin-recruited phosphodiesterase-4 desensitizes the AKAP79/PKA-mediated switching of beta2-adrenoceptor signalling to activation of ERK. Biochem Soc Trans 2005, 33:1333-1336.
  • [36]McConnachie G, Langeberg LK, Scott JD: AKAP signaling complexes: getting to the heart of the matter. Trends Mol Med 2006, 12:317-323.
  • [37]Willoughby D, Wong W, Schaack J, Scott JD, Cooper DM: An anchored PKA and PDE4 complex regulates subplasmalemmal cAMP dynamics. EMBO J 2006, 25:2051-2061.
  • [38]Raymond DR, Carter RL, Ward CA, Maurice DH: Distinct phosphodiesterase-4D variants integrate into protein kinase A-based signaling complexes in cardiac and vascular myocytes. Am J Physiol Heart Circ Physiol 2009, 296:H263-H271.
  • [39]Raymond DR, Wilson LS, Carter RL, Maurice DH: Numerous distinct PKA-, or EPAC-based, signalling complexes allow selective phosphodiesterase 3 and phosphodiesterase 4 coordination of cell adhesion. Cell Signal 2007, 19:2507-2518.
  • [40]Malbon CC: A-kinase anchoring proteins: trafficking in G-protein-coupled receptors and the proteins that regulate receptor biology. Curr Opin Drug Discov Devel 2007, 10:573-579.
  • [41]Halls ML, Cooper DM: Sub-picomolar relaxin signalling by a pre-assembled RXFP1, AKAP79, AC2, beta-arrestin 2, PDE4D3 complex. EMBO J 2010, 29:2772-2787.
  • [42]Zhang J, Campbell RE, Ting AY, Tsien RY: Creating new fluorescent probes for cell biology. Nat Rev Mol Cell Biol 2002, 3:906-918.
  • [43]Zhang J, Hupfeld CJ, Taylor SS, Olefsky JM, Tsien RY: Insulin disrupts beta-adrenergic signalling to protein kinase A in adipocytes. Nature 2005, 437:569-573.
  • [44]Dessauer CW: Adenylyl cyclase–A-kinase anchoring protein complexes: the next dimension in cAMP signaling. Mol Pharmacol 2009, 76:935-941.
  • [45]Efendiev R, Samelson BK, Nguyen BT, Phatarpekar PV, Baameur F, Scott JD, et al.: AKAP79 interacts with multiple adenylyl cyclase (AC) isoforms and scaffolds AC5 and -6 to alpha-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA) receptors. J Biol Chem 2010, 285:14450-14458.
  • [46]Baillie GS, Houslay MD: Arrestin times for compartmentalised cAMP signalling and phosphodiesterase-4 enzymes. Curr Opin Cell Biol 2005, 17:129-134.
  • [47]Lin F, Wang H, Malbon CC: Gravin-mediated formation of signaling complexes in beta 2-adrenergic receptor desensitization and resensitization. J Biol Chem 2000, 275:19025-19034.
  • [48]Vayttaden SJ, Friedman J, Tran TM, Rich TC, Dessauer CW, Clark RB: Quantitative modeling of GRK-mediated beta2AR regulation. PLoS Comput Biol 2010, 6:e1000647.
  • [49]Dell'Acqua ML, Dodge KL, Tavalin SJ, Scott JD: Mapping the protein phosphatase-2B anchoring site on AKAP79. Binding and inhibition of phosphatase activity are mediated by residues 315-360. J Biol Chem 2002, 277:48796-48802.
  • [50]Kocer SS, Matic M, Ingrassia M, Walker SG, Roemer E, Licul G, et al.: Effects of anthrax lethal toxin on human primary keratinocytes. J Appl Microbiol 2008, 105:1756-1767.
  • [51]Kocer SS, Walker SG, Zerler B, Golub LM, Simon SR: Metalloproteinase inhibitors, nonantimicrobial chemically modified tetracyclines, and ilomastat block Bacillus anthracis lethal factor activity in viable cells. Infect Immun 2005, 73:7548-7557.
  • [52]Gao S, Wang HY, Malbon CC: AKAP12 and AKAP5 form higher-order hetero-oligomers. J Mol Signal 2011, 6:8. BioMed Central Full Text
  • [53]Gao S, Wang HY, Malbon CC: AKAP5 and AKAP12 Form Homo-oligomers. J Mol Signal 2011, 6:3. BioMed Central Full Text
  • [54]Depry C, Zhang J: Visualization of kinase activity with FRET-based activity biosensors. Curr Protoc Mol Biol 2010, Chapter 18:Unit18.15.
  • [55]Tao J, Wang HY, Malbon CC: Src docks to A-kinase anchoring protein gravin, regulating beta2-adrenergic receptor resensitization and recycling. J Biol Chem 2007, 282:6597-6608.
  文献评价指标  
  下载次数:122次 浏览次数:45次