Journal of Experimental & Clinical Cancer Research | |
T-type calcium channel antagonists, mibefradil and NNC-55-0396 inhibit cell proliferation and induce cell apoptosis in leukemia cell lines | |
Yuanzhong Chen2  Shou Ouyang1  Yong Wu2  Chunjing Lu3  Weifeng Huang2  | |
[1] Xiamen Medical Research Institute, Xiamen 361008, People’s Republic of China;Fujian Institute of Hematology, Fujian Medical University Union Hospital, Fuzhou 350004, People’s Republic of China;Department of Blood Transfusion, Maternal and Child Health Hospital of Xiamen, Xiamen 361003, People’s Republic of China | |
关键词: Apoptosis; Proliferation; Leukemia; NNC-55-0396; Mibefradil; T-type calcium channels; | |
Others : 1220694 DOI : 10.1186/s13046-015-0171-4 |
|
received in 2015-03-24, accepted in 2015-05-08, 发布年份 2015 | |
【 摘 要 】
Background
T-type Ca2+ channels are often aberrantly expressed in different human cancers and participate in the regulation of cell cycle progression, proliferation and death. Methods: RT-PCR, Q-PCR, western blotting and whole-cell patch-clamp recording were employed to assess the expression of T-type Ca2+ channels in leukemia cell lines. The function of T-type Ca2+ channels in leukemia cell growth and the possible mechanism of the effect of T-type Ca2+ channel antagonists on cell proliferation and apoptosis were examined in T-lymphoma cell lines.
Results
We show that leukemia cell lines exhibited reduced cell growth when treated with T-type Ca2+ channel inhibitors, mibefradil and NNC-55-0396 in a concentration-dependent manner. Mechanistically, these inhibitors played a dual role on cell viability: (i) blunting proliferation, through a halt in the progression to the G1-S phase; and (ii) promoting cell apoptosis, partially dependent on the endoplasmic reticulum Ca2+ release. In addition, we observed a reduced phosphorylation of ERK1/2 in MOLT-4 cells in response to mibefradil and NNC-55-0396 treatment.
Conclusions
These results indicate that mibefradil and NNC-55-0396 regulate proliferation and apoptosis in T-type Ca2+ channel expressing leukemia cell lines and suggest a potential therapeutic target for leukemia.
【 授权许可】
2015 Huang et al.; licensee BioMed Central.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150723104609466.pdf | 1715KB | download | |
Fig. 8. | 57KB | Image | download |
Fig. 7. | 34KB | Image | download |
Fig. 6. | 52KB | Image | download |
Fig. 5. | 49KB | Image | download |
Fig. 4. | 91KB | Image | download |
Fig. 3. | 26KB | Image | download |
Fig. 2. | 40KB | Image | download |
Fig. 1. | 34KB | Image | download |
【 图 表 】
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
【 参考文献 】
- [1]Clapham DE: Calcium signaling. Cell 2007, 131:1047-58.
- [2]Monteith GR, Davis FM, Roberts-Thomson SJ: Calcium channels and pumps in cancer: changes and consequences. J Biol Chem 2012, 287:31666-73.
- [3]Bergner A, Kellner J, Tufman A, Huber RM: Endoplasmic reticulum Ca2 + −homeostasis is altered in small and non-small cell lung cancer cell lines. J Exp Clin Cancer Res 2009, 28:25. BioMed Central Full Text
- [4]Ciapa B, Pesando D, Wilding M, Whitaker M: Cell-cycle calcium transients driven by cyclic changes in inositol trisphosphate levels. Nature 1994, 368:875-8.
- [5]Choi DW: Ionic dependence of glutamate neurotoxicity. J Neurosci 1987, 7:369-79.
- [6]Boynton AL, Whitfield JF, Isaacs RJ, Tremblay RG: Different extracellular calcium requirements for proliferation of nonneoplastic, preneoplastic, and neoplastic mouse cells. Cancer Res 1977, 37:2657-61.
- [7]Toyota M, Ho C, Ohe-Toyota M, Baylin SB, Issa JP: Inactivation of CACNA1G, a T-type calcium channel gene, by aberrant methylation of its 5′CpG island in human tumors. Cancer Res 1999, 59:4535-41.
- [8]Heo JH, Seo HN, Choe YJ, Kim S, Oh CR, Kim YD, et al.: T-type Ca2+ channel blockers suppress the growth of human cancer cells. Bioorg Med Chem Lett 2008, 18:3899-901.
- [9]Li W, Zhang SL, Wang N, Zhang BB, Li M: Blockade of T-type Ca(2+) channels inhibits human ovarian cancer cell proliferation. Cancer Invest 2011, 29:339-46.
- [10]Valerie NC, Dziegielewska B, Hosing AS, Augustin E, Gray LS, Brautigan DL, et al.: Inhibition of T-type calcium channels disrupts Akt signaling and promotes apoptosis in glioblastoma cells. Biochem Pharmacol 2013, 85:888-97.
- [11]Zhang Y, Zhang J, Jiang D, Zhang D, Qian Z, Liu C, et al.: Inhibition of T-type Ca(2+) channels by endostatin attenuates human glioblastoma cell proliferation and migration. Br J Pharmacol 2012, 166:1247-60.
- [12]Taylor JT, Huang L, Pottle JE, Liu K, Yang Y, Zeng X, et al.: Selective blockade of T-type Ca2+ channels suppresses human breast cancer cell proliferation. Cancer Lett 2008, 267:116-24.
- [13]Lu F, Chen H, Zhou C, Liu S, Guo M, Chen P, et al.: T-type Ca2+ channel expression in human esophageal carcinomas: a functional role in proliferation. Cell Calcium 2008, 43:49-58.
- [14]Li Y, Liu S, Lu F, Zhang T, Chen H, Wu S, et al.: A role of functional T-type Ca2+ channel in hepatocellular carcinoma cell proliferation. Oncol Rep 2009, 22:1229-35.
- [15]Das A, Pushparaj C, Bahí N, Sorolla A, Herreros J, Pamplona R, et al.: Functional expression of voltage-gated calcium channels in human melanoma. Pigment Cell Melanoma Res 2012, 25:200-12.
- [16]Dziegielewska B, Brautigan DL, Larner JM, Dziegielewski J: T-type Ca2+ channel inhibition induces p53 dependent cell growth arrest and apoptosis through activation of p38-MAPK in colon cancer cells. Mol Cancer Res 2014, 12:348-58.
- [17]Perez-Reyes E: Molecular physiology of low-voltage-activated t-type calcium channels. Physiol Rev 2003, 83:117-61.
- [18]Crunelli V, Toth TI, Cope DW, Blethyn K, Hughes SW: The ‘window’ T-type calcium current in brain dynamics of different behavioural states. J Physiol 2005, 562:121-9.
- [19]Carbone E, Lux HD: A low voltage-activated calcium conductance in embryonic chick sensory neurons. Biophys J 1984, 46:413-8.
- [20]McCobb DP, Best PM, Beam KG: Development alters the expression of calcium currents in chick limb motorneurons. Neuron 1989, 2:1633-43.
- [21]Kostyuk P, Pronchuk N, Savcehnko A, Verkhratsky A: Calcium currents in aged rat dorsal root ganglion neurones. J Physiol 1993, 461:467-83.
- [22]Xu XP, Best PM: Increase in T-type calcium current in atrial myocytes from adult rats with growth hormone-secreting tumors. Proc Natl Acad Sci U S A 1990, 87:4655-9.
- [23]Mishra SK, Hermsmeyer K: Selective inhibition of T-type Ca2+ channels by Ro 40–5967. Circ Res 1994, 75:144-8.
- [24]Huang L, Keyser BM, Tagmose TM, Hansen JB, Taylor JT, Zhuang H, et al.: NNC 55–0396 [(1S,2S)-2-(2-(N-[(3-benzimidazol-2-yl)propyl]-N-methylamino)ethyl)-6-fluoro-1,2,3,4-tetrahydro-1-isopropyl-2-naphtyl cyclopropanecarboxylate dihydrochloride]: a new selective inhibitor of T-type calcium channels. J Pharmacol Exp Ther 2004, 309:193-9.
- [25]Roger S, Rollin J, Barascu A, Besson P, Raynal PI, Iochmann S, et al.: Voltage-gated sodium channels potentiate the invasive capacities of human non-small-cell lung cancer cell lines. Int J Biochem Cell Biol 2007, 39:774-86.
- [26]Zhou B, Chen H, Wei D, Kuang Y, Zhao X, Li G, et al.: A novel miR-219-SMC4-JAK2/Stat3 regulatory pathway in human hepatocellular carcinoma. J Exp Clin Cancer Res 2014, 33:55. BioMed Central Full Text
- [27]Huang WF, Ouyang S, Li SY, Lin YF, Ouyang H, Zhang H, et al.: Effect of quercetin on colon contractility and L-type Ca(2+) channels in colon smooth muscle of guinea-pig. Sheng Li Xue Bao 2009, 61:567-76.
- [28]Kotturi MF, Carlow DA, Lee JC, Ziltener HJ, Jefferies WA: Identification and functional characterization of voltage-dependent calcium channels in T lymphocytes. J Biol Chem 2003, 278:46949-60.
- [29]Atherfold PA, Norris MS, Robinson PJ, Gelfand EW, Franklin RA: Calcium-induced ERK activation in human T lymphocytes. Mol Immunol 1999, 36:543-9.
- [30]Franklin RA, Atherfold PA, McCubrey JA: Calcium-induced ERK activation in human T lymphocytes occurs via p56 (Lck) and CaM-kinase. Mol Immunol 2000, 37:675-83.
- [31]Orrenius S, Zhivotovsky B, Nicotera P: Regulation of cell death: the calcium-apoptosis link. Nat Rev Mol Cell Biol 2003, 4:552-65.
- [32]Orrenius S, Nicotera P: The calcium ion and cell death. J Neural Transm Suppl 1994, 43:1-11.
- [33]Berridge MJ, Bootman MD, Lipp P: Calcium–a life and death signal. Nature 1998, 395:645-8.
- [34]Rossier MF: T channels and steroid biosynthesis: in search of a link with mitochondria. Cell Calcium 2006, 40:155-64.
- [35]Csordás G, Renken C, Várnai P, Walter L, Weaver D, Buttle KF, et al.: Structural and functional features and significance of the physical linkage between ER and mitochondria. J Cell Biol 2006, 174:915-21.
- [36]Scorrano L, Oakes SA, Opferman JT, Cheng EH, Sorcinelli MD, Pozzan T, et al.: BAX and BAK regulation of endoplasmic reticulum Ca2+: a control point for apoptosis. Science 2003, 300:135-9.
- [37]Whitfield JF: Calcium signals and cancer. Crit Rev Oncog 1992, 3:55-90.
- [38]Taylor JT, Zeng XB, Pottle JE, Lee K, Wang AR, Yi SG, et al.: Calcium signaling and T-type calcium channels in cancer cell cycling. World J Gastroenterol 2008, 14:4984-91.
- [39]Latour I, Louw DF, Beedle AM, Hamid J, Sutherland GR, Zamponi GW: Expression of T-type calcium channel splice variants in human glioma. Glia 2004, 48:112-9.
- [40]Panner A, Wurster RD: T-type calcium channels and tumor proliferation. Cell Calcium 2006, 40:253-9.
- [41]Ohkubo T, Yamazaki J: T-type voltage-activated calcium channel Cav3.1, but not Cav3.2, is involved in the inhibition of proliferation and apoptosis in MCF-7 human breast cancer cells. Int J Oncol 2012, 41:267-75.
- [42]Kahl CR, Means AR: Regulation of cell cycle progression by calcium/calmodulin-dependent pathways. Endocr Rev 2003, 24:719-36.
- [43]Panner A, Cribbs LL, Zainelli GM, Origitano TC, Singh S, Wurster RD: Variation of T-type calcium channel protein expression affects cell division of cultured tumor cells. Cell Calcium 2005, 37:105-19.
- [44]Steinhardt RA, Alderton J: Intracellular free calcium rise triggers nuclear envelope breakdown in the sea urchin embryo. Nature 1988, 332:364-6.
- [45]Hsu YF, Lee TS, Lin SY, Hsu SP, Juan SH, Hsu YH, et al.: Involvement of Ras/Raf-1/ERK actions in the magnolol-induced upregulation of p21 and cell-cycle arrest in colon cancer cells. Mol Carcinog 2007, 46:275-83.
- [46]Tsukamoto I, Kojo S: Effect of calcium channel blockers and trifluoperazine on rat liver regeneration. Eur J Pharmacol 1987, 144:159-62.
- [47]Fan H, Villegas C, Wright JA: Ribonucleotide reductase R2 component is a novel malignancy determinant that cooperates with activated oncogenes to determine transformation and malignant potential. Proc Natl Acad Sci U S A 1996, 93:14036-40.
- [48]Son YK, da Hong H, Li H, Kim DJ, Na SH, Park H, et al.: The Ca2+ channel inhibitor NNC 55–0396 inhibits voltage-dependent K+ channels in rabbit coronary arterial smooth muscle cells. J Pharmacol Sci 2014, 125:312-9.
- [49]Rizzuto R, Pinton P, Ferrari D, Chami M, Szabadkai G, Magalhaes PJ, et al.: Calcium and apoptosis: facts and hypotheses. Oncogene 2003, 22:8619-27.
- [50]Eberhard M, Miyagawa K, Hermsmeyer K, Erne P: Effects of mibefradil on intracellular Ca2+ release in cultured rat cardiac fibroblasts and human platelets. Naunyn Schmiedebergs Arch Pharmacol 1995, 353:94-101.
- [51]Das A, Pushparaj C, Herreros J, Nager M, Vilella R, Portero M, et al.: T-type calcium channel blockers inhibit autophagy and promote apoptosis of malignant melanoma cells. Pigment Cell Melanoma Res 2013, 26:874-85.
- [52]Halestrap AP: Calcium, mitochondria and reperfusion injury: a pore way to die. Biochem Soc Trans 2006, 34:232-7.