期刊论文详细信息
Journal of Experimental & Clinical Cancer Research
T-type calcium channel antagonists, mibefradil and NNC-55-0396 inhibit cell proliferation and induce cell apoptosis in leukemia cell lines
Yuanzhong Chen2  Shou Ouyang1  Yong Wu2  Chunjing Lu3  Weifeng Huang2 
[1] Xiamen Medical Research Institute, Xiamen 361008, People’s Republic of China;Fujian Institute of Hematology, Fujian Medical University Union Hospital, Fuzhou 350004, People’s Republic of China;Department of Blood Transfusion, Maternal and Child Health Hospital of Xiamen, Xiamen 361003, People’s Republic of China
关键词: Apoptosis;    Proliferation;    Leukemia;    NNC-55-0396;    Mibefradil;    T-type calcium channels;   
Others  :  1220694
DOI  :  10.1186/s13046-015-0171-4
 received in 2015-03-24, accepted in 2015-05-08,  发布年份 2015
PDF
【 摘 要 】

Background

T-type Ca2+ channels are often aberrantly expressed in different human cancers and participate in the regulation of cell cycle progression, proliferation and death. Methods: RT-PCR, Q-PCR, western blotting and whole-cell patch-clamp recording were employed to assess the expression of T-type Ca2+ channels in leukemia cell lines. The function of T-type Ca2+ channels in leukemia cell growth and the possible mechanism of the effect of T-type Ca2+ channel antagonists on cell proliferation and apoptosis were examined in T-lymphoma cell lines.

Results

We show that leukemia cell lines exhibited reduced cell growth when treated with T-type Ca2+ channel inhibitors, mibefradil and NNC-55-0396 in a concentration-dependent manner. Mechanistically, these inhibitors played a dual role on cell viability: (i) blunting proliferation, through a halt in the progression to the G1-S phase; and (ii) promoting cell apoptosis, partially dependent on the endoplasmic reticulum Ca2+ release. In addition, we observed a reduced phosphorylation of ERK1/2 in MOLT-4 cells in response to mibefradil and NNC-55-0396 treatment.

Conclusions

These results indicate that mibefradil and NNC-55-0396 regulate proliferation and apoptosis in T-type Ca2+ channel expressing leukemia cell lines and suggest a potential therapeutic target for leukemia.

【 授权许可】

   
2015 Huang et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150723104609466.pdf 1715KB PDF download
Fig. 8. 57KB Image download
Fig. 7. 34KB Image download
Fig. 6. 52KB Image download
Fig. 5. 49KB Image download
Fig. 4. 91KB Image download
Fig. 3. 26KB Image download
Fig. 2. 40KB Image download
Fig. 1. 34KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

Fig. 7.

Fig. 8.

【 参考文献 】
  • [1]Clapham DE: Calcium signaling. Cell 2007, 131:1047-58.
  • [2]Monteith GR, Davis FM, Roberts-Thomson SJ: Calcium channels and pumps in cancer: changes and consequences. J Biol Chem 2012, 287:31666-73.
  • [3]Bergner A, Kellner J, Tufman A, Huber RM: Endoplasmic reticulum Ca2 + −homeostasis is altered in small and non-small cell lung cancer cell lines. J Exp Clin Cancer Res 2009, 28:25. BioMed Central Full Text
  • [4]Ciapa B, Pesando D, Wilding M, Whitaker M: Cell-cycle calcium transients driven by cyclic changes in inositol trisphosphate levels. Nature 1994, 368:875-8.
  • [5]Choi DW: Ionic dependence of glutamate neurotoxicity. J Neurosci 1987, 7:369-79.
  • [6]Boynton AL, Whitfield JF, Isaacs RJ, Tremblay RG: Different extracellular calcium requirements for proliferation of nonneoplastic, preneoplastic, and neoplastic mouse cells. Cancer Res 1977, 37:2657-61.
  • [7]Toyota M, Ho C, Ohe-Toyota M, Baylin SB, Issa JP: Inactivation of CACNA1G, a T-type calcium channel gene, by aberrant methylation of its 5′CpG island in human tumors. Cancer Res 1999, 59:4535-41.
  • [8]Heo JH, Seo HN, Choe YJ, Kim S, Oh CR, Kim YD, et al.: T-type Ca2+ channel blockers suppress the growth of human cancer cells. Bioorg Med Chem Lett 2008, 18:3899-901.
  • [9]Li W, Zhang SL, Wang N, Zhang BB, Li M: Blockade of T-type Ca(2+) channels inhibits human ovarian cancer cell proliferation. Cancer Invest 2011, 29:339-46.
  • [10]Valerie NC, Dziegielewska B, Hosing AS, Augustin E, Gray LS, Brautigan DL, et al.: Inhibition of T-type calcium channels disrupts Akt signaling and promotes apoptosis in glioblastoma cells. Biochem Pharmacol 2013, 85:888-97.
  • [11]Zhang Y, Zhang J, Jiang D, Zhang D, Qian Z, Liu C, et al.: Inhibition of T-type Ca(2+) channels by endostatin attenuates human glioblastoma cell proliferation and migration. Br J Pharmacol 2012, 166:1247-60.
  • [12]Taylor JT, Huang L, Pottle JE, Liu K, Yang Y, Zeng X, et al.: Selective blockade of T-type Ca2+ channels suppresses human breast cancer cell proliferation. Cancer Lett 2008, 267:116-24.
  • [13]Lu F, Chen H, Zhou C, Liu S, Guo M, Chen P, et al.: T-type Ca2+ channel expression in human esophageal carcinomas: a functional role in proliferation. Cell Calcium 2008, 43:49-58.
  • [14]Li Y, Liu S, Lu F, Zhang T, Chen H, Wu S, et al.: A role of functional T-type Ca2+ channel in hepatocellular carcinoma cell proliferation. Oncol Rep 2009, 22:1229-35.
  • [15]Das A, Pushparaj C, Bahí N, Sorolla A, Herreros J, Pamplona R, et al.: Functional expression of voltage-gated calcium channels in human melanoma. Pigment Cell Melanoma Res 2012, 25:200-12.
  • [16]Dziegielewska B, Brautigan DL, Larner JM, Dziegielewski J: T-type Ca2+ channel inhibition induces p53 dependent cell growth arrest and apoptosis through activation of p38-MAPK in colon cancer cells. Mol Cancer Res 2014, 12:348-58.
  • [17]Perez-Reyes E: Molecular physiology of low-voltage-activated t-type calcium channels. Physiol Rev 2003, 83:117-61.
  • [18]Crunelli V, Toth TI, Cope DW, Blethyn K, Hughes SW: The ‘window’ T-type calcium current in brain dynamics of different behavioural states. J Physiol 2005, 562:121-9.
  • [19]Carbone E, Lux HD: A low voltage-activated calcium conductance in embryonic chick sensory neurons. Biophys J 1984, 46:413-8.
  • [20]McCobb DP, Best PM, Beam KG: Development alters the expression of calcium currents in chick limb motorneurons. Neuron 1989, 2:1633-43.
  • [21]Kostyuk P, Pronchuk N, Savcehnko A, Verkhratsky A: Calcium currents in aged rat dorsal root ganglion neurones. J Physiol 1993, 461:467-83.
  • [22]Xu XP, Best PM: Increase in T-type calcium current in atrial myocytes from adult rats with growth hormone-secreting tumors. Proc Natl Acad Sci U S A 1990, 87:4655-9.
  • [23]Mishra SK, Hermsmeyer K: Selective inhibition of T-type Ca2+ channels by Ro 40–5967. Circ Res 1994, 75:144-8.
  • [24]Huang L, Keyser BM, Tagmose TM, Hansen JB, Taylor JT, Zhuang H, et al.: NNC 55–0396 [(1S,2S)-2-(2-(N-[(3-benzimidazol-2-yl)propyl]-N-methylamino)ethyl)-6-fluoro-1,2,3,4-tetrahydro-1-isopropyl-2-naphtyl cyclopropanecarboxylate dihydrochloride]: a new selective inhibitor of T-type calcium channels. J Pharmacol Exp Ther 2004, 309:193-9.
  • [25]Roger S, Rollin J, Barascu A, Besson P, Raynal PI, Iochmann S, et al.: Voltage-gated sodium channels potentiate the invasive capacities of human non-small-cell lung cancer cell lines. Int J Biochem Cell Biol 2007, 39:774-86.
  • [26]Zhou B, Chen H, Wei D, Kuang Y, Zhao X, Li G, et al.: A novel miR-219-SMC4-JAK2/Stat3 regulatory pathway in human hepatocellular carcinoma. J Exp Clin Cancer Res 2014, 33:55. BioMed Central Full Text
  • [27]Huang WF, Ouyang S, Li SY, Lin YF, Ouyang H, Zhang H, et al.: Effect of quercetin on colon contractility and L-type Ca(2+) channels in colon smooth muscle of guinea-pig. Sheng Li Xue Bao 2009, 61:567-76.
  • [28]Kotturi MF, Carlow DA, Lee JC, Ziltener HJ, Jefferies WA: Identification and functional characterization of voltage-dependent calcium channels in T lymphocytes. J Biol Chem 2003, 278:46949-60.
  • [29]Atherfold PA, Norris MS, Robinson PJ, Gelfand EW, Franklin RA: Calcium-induced ERK activation in human T lymphocytes. Mol Immunol 1999, 36:543-9.
  • [30]Franklin RA, Atherfold PA, McCubrey JA: Calcium-induced ERK activation in human T lymphocytes occurs via p56 (Lck) and CaM-kinase. Mol Immunol 2000, 37:675-83.
  • [31]Orrenius S, Zhivotovsky B, Nicotera P: Regulation of cell death: the calcium-apoptosis link. Nat Rev Mol Cell Biol 2003, 4:552-65.
  • [32]Orrenius S, Nicotera P: The calcium ion and cell death. J Neural Transm Suppl 1994, 43:1-11.
  • [33]Berridge MJ, Bootman MD, Lipp P: Calcium–a life and death signal. Nature 1998, 395:645-8.
  • [34]Rossier MF: T channels and steroid biosynthesis: in search of a link with mitochondria. Cell Calcium 2006, 40:155-64.
  • [35]Csordás G, Renken C, Várnai P, Walter L, Weaver D, Buttle KF, et al.: Structural and functional features and significance of the physical linkage between ER and mitochondria. J Cell Biol 2006, 174:915-21.
  • [36]Scorrano L, Oakes SA, Opferman JT, Cheng EH, Sorcinelli MD, Pozzan T, et al.: BAX and BAK regulation of endoplasmic reticulum Ca2+: a control point for apoptosis. Science 2003, 300:135-9.
  • [37]Whitfield JF: Calcium signals and cancer. Crit Rev Oncog 1992, 3:55-90.
  • [38]Taylor JT, Zeng XB, Pottle JE, Lee K, Wang AR, Yi SG, et al.: Calcium signaling and T-type calcium channels in cancer cell cycling. World J Gastroenterol 2008, 14:4984-91.
  • [39]Latour I, Louw DF, Beedle AM, Hamid J, Sutherland GR, Zamponi GW: Expression of T-type calcium channel splice variants in human glioma. Glia 2004, 48:112-9.
  • [40]Panner A, Wurster RD: T-type calcium channels and tumor proliferation. Cell Calcium 2006, 40:253-9.
  • [41]Ohkubo T, Yamazaki J: T-type voltage-activated calcium channel Cav3.1, but not Cav3.2, is involved in the inhibition of proliferation and apoptosis in MCF-7 human breast cancer cells. Int J Oncol 2012, 41:267-75.
  • [42]Kahl CR, Means AR: Regulation of cell cycle progression by calcium/calmodulin-dependent pathways. Endocr Rev 2003, 24:719-36.
  • [43]Panner A, Cribbs LL, Zainelli GM, Origitano TC, Singh S, Wurster RD: Variation of T-type calcium channel protein expression affects cell division of cultured tumor cells. Cell Calcium 2005, 37:105-19.
  • [44]Steinhardt RA, Alderton J: Intracellular free calcium rise triggers nuclear envelope breakdown in the sea urchin embryo. Nature 1988, 332:364-6.
  • [45]Hsu YF, Lee TS, Lin SY, Hsu SP, Juan SH, Hsu YH, et al.: Involvement of Ras/Raf-1/ERK actions in the magnolol-induced upregulation of p21 and cell-cycle arrest in colon cancer cells. Mol Carcinog 2007, 46:275-83.
  • [46]Tsukamoto I, Kojo S: Effect of calcium channel blockers and trifluoperazine on rat liver regeneration. Eur J Pharmacol 1987, 144:159-62.
  • [47]Fan H, Villegas C, Wright JA: Ribonucleotide reductase R2 component is a novel malignancy determinant that cooperates with activated oncogenes to determine transformation and malignant potential. Proc Natl Acad Sci U S A 1996, 93:14036-40.
  • [48]Son YK, da Hong H, Li H, Kim DJ, Na SH, Park H, et al.: The Ca2+ channel inhibitor NNC 55–0396 inhibits voltage-dependent K+ channels in rabbit coronary arterial smooth muscle cells. J Pharmacol Sci 2014, 125:312-9.
  • [49]Rizzuto R, Pinton P, Ferrari D, Chami M, Szabadkai G, Magalhaes PJ, et al.: Calcium and apoptosis: facts and hypotheses. Oncogene 2003, 22:8619-27.
  • [50]Eberhard M, Miyagawa K, Hermsmeyer K, Erne P: Effects of mibefradil on intracellular Ca2+ release in cultured rat cardiac fibroblasts and human platelets. Naunyn Schmiedebergs Arch Pharmacol 1995, 353:94-101.
  • [51]Das A, Pushparaj C, Herreros J, Nager M, Vilella R, Portero M, et al.: T-type calcium channel blockers inhibit autophagy and promote apoptosis of malignant melanoma cells. Pigment Cell Melanoma Res 2013, 26:874-85.
  • [52]Halestrap AP: Calcium, mitochondria and reperfusion injury: a pore way to die. Biochem Soc Trans 2006, 34:232-7.
  文献评价指标  
  下载次数:46次 浏览次数:11次