期刊论文详细信息
Epigenetics & Chromatin
Endogenous mammalian histone H3.3 exhibits chromatin-related functions during development
Paul S Knoepfler1  Rebecca F Cotterman1  Henriette O’Geen2  John W Riggs1  Bonnie L Barrilleaux1  Benjamin TK Yuen1  Kelly M Bush1 
[1] Institute of Pediatric Regenerative Medicine, Shriners Hospital For Children Northern California, 2425 Stockton Blvd., Sacramento, CA, 95817, USA;Genome Center, University of California Davis School of Medicine, 451 Health Sciences Drive, Davis, CA, 95616, USA
关键词: Histone H3;    ChIP-Seq;    Chromosome segregation;    H3.3 Knockout;    CENP-A;    H3f3a;    H3f3b;    Histone variant H3.3;   
Others  :  811364
DOI  :  10.1186/1756-8935-6-7
 received in 2013-01-16, accepted in 2013-03-22,  发布年份 2013
PDF
【 摘 要 】

Background

The histone variant H3.3 plays key roles in regulating chromatin states and transcription. However, the role of endogenous H3.3 in mammalian cells and during development has been less thoroughly investigated. To address this gap, we report the production and phenotypic analysis of mice and cells with targeted disruption of the H3.3-encoding gene, H3f3b.

Results

H3f3b knockout (KO) mice exhibit a semilethal phenotype traceable at least in part to defective cell division and chromosome segregation. H3f3b KO cells have widespread ectopic CENP-A protein localization suggesting one possible mechanism for defective chromosome segregation. KO cells have abnormal karyotypes and cell cycle profiles as well. The transcriptome and euchromatin-related epigenome were moderately affected by loss of H3f3b in mouse embryonic fibroblasts (MEFs) with ontology most notably pointing to changes in chromatin regulatory and histone coding genes. Reduced numbers of H3f3b KO mice survive to maturity and almost all survivors from both sexes are infertile.

Conclusions

Taken together, our studies suggest that endogenous mammalian histone H3.3 has important roles in regulating chromatin and chromosome functions that in turn are important for cell division, genome integrity, and development.

【 授权许可】

   
2013 Bush et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140709063408256.pdf 1790KB PDF download
Figure 5. 57KB Image download
Figure 4. 67KB Image download
Figure 3. 58KB Image download
Figure 2. 54KB Image download
Figure 1. 48KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]McKittrick E, Gafken PR, Ahmad K, Henikoff S: Histone H3.3 is enriched in covalent modifications associated with active chromatin. Proc Natl Acad Sci USA 2004, 101:1525-1530.
  • [2]Schwartz BE, Ahmad K: Transcriptional activation triggers deposition and removal of the histone variant H3.3. Genes Dev 2005, 19:804-814.
  • [3]Goldberg AD, Banaszynski LA, Noh KM, Lewis PW, Elsaesser SJ, Stadler S, Dewell S, Law M, Guo X, Li X, Wen D, Chapgier A, DeKelver RC, Miller JC, Lee YL, Boydston EA, Holmes MC, Gregory PD, Greally JM, Rafii S, Yang C, Scambler PJ, Garrick D, Gibbons RJ, Higgs DR, Cristea IM, Urnov FD, Zheng D, Allis CD: Distinct factors control histone variant H3.3 localization at specific genomic regions. Cell 2010, 140:678-691.
  • [4]Delbarre E, Jacobsen BM, Reiner AH, Sorensen AL, Kuntziger T, Collas P: Chromatin environment of histone variant H3.3 revealed by quantitative imaging and genome-scale chromatin and DNA immunoprecipitation. Mol Biol Cell 2010, 21:1872-1884.
  • [5]Jin C, Zang C, Wei G, Cui K, Peng W, Zhao K, Felsenfeld G: H3.3/H2A.Z double variant-containing nucleosomes mark 'nucleosome-free regions' of active promoters and other regulatory regions. Nat Genet 2009, 41:941-945.
  • [6]Mito Y, Henikoff JG, Henikoff S: Histone replacement marks the boundaries of cis-regulatory domains. Science 2007, 315:1408-1411.
  • [7]Jullien J, Astrand C, Szenker E, Garrett N, Almouzni G, Gurdon J: HIRA dependent H3.3 deposition is required for transcriptional reprogramming following nuclear transfer to Xenopus oocytes. Epigenetics Chromatin 2012, 5:17.
  • [8]Henikoff S, Ahmad K, Platero JS, van Steensel B: Heterochromatic deposition of centromeric histone H3-like proteins. Proc Natl Acad Sci USA 2000, 97:716-721.
  • [9]Dunleavy EM, Almouzni G, Karpen GH: H3.3 is deposited at centromeres in S phase as a placeholder for newly assembled CENP-A in G(1) phase. Nucleus 2011, 2:146-157.
  • [10]Wu RS, Tsai S, Bonner WM: Patterns of histone variant synthesis can distinguish G0 from G1 cells. Cell 1982, 31:367-374.
  • [11]Ahmad K, Henikoff S: The histone variant H3.3 marks active chromatin by replication-independent nucleosome assembly. Mol Cell 2002, 9:1191-1200.
  • [12]Schwabish MA, Struhl K: Evidence for eviction and rapid deposition of histones upon transcriptional elongation by RNA polymerase II. Mol Cell Biol 2004, 24:10111-10117.
  • [13]Schneiderman JI, Orsi GA, Hughes KT, Loppin B, Ahmad K: Nucleosome-depleted chromatin gaps recruit assembly factors for the H3.3 histone variant. Proc Natl Acad Sci USA 2012, 109:19721-19726.
  • [14]Braunschweig U, Hogan GJ, Pagie L, van Steensel B: Histone H1 binding is inhibited by histone variant H3.3. EMBO J 2009, 28:3635-3645.
  • [15]Hake SB, Garcia BA, Kauer M, Baker SP, Shabanowitz J, Hunt DF, Allis CD: Serine 31 phosphorylation of histone variant H3.3 is specific to regions bordering centromeres in metaphase chromosomes. Proc Natl Acad Sci USA 2005, 102:6344-6349.
  • [16]Sakai A, Schwartz BE, Goldstein S, Ahmad K: Transcriptional and developmental functions of the H3.3 histone variant in Drosophila. Curr Biol 2009, 19:1816-1820.
  • [17]Delbarre E, Ivanauskiene K, Kuntziger T, Collas P: DAXX-dependent supply of soluble (H3.3-H4) dimers to PML bodies pending deposition into chromatin. Genome Res 2013, 23:440-451.
  • [18]Tagami H, Ray-Gallet D, Almouzni G, Nakatani Y: Histone H3.1 and H3.3 complexes mediate nucleosome assembly pathways dependent or independent of DNA synthesis. Cell 2004, 116:51-61.
  • [19]Ray-Gallet D, Quivy JP, Scamps C, Martini EM, Lipinski M, Almouzni G: HIRA is critical for a nucleosome assembly pathway independent of DNA synthesis. Mol Cell 2002, 9:1091-1100.
  • [20]Ray-Gallet D, Woolfe A, Vassias I, Pellentz C, Lacoste N, Puri A, Schultz DC, Pchelintsev NA, Adams PD, Jansen LE, Almouzni G: Dynamics of histone H3 deposition in vivo reveal a nucleosome gap-filling mechanism for H3.3 to maintain chromatin integrity. Mol Cell 2011, 44:928-941.
  • [21]Lewis PW, Elsaesser SJ, Noh KM, Stadler SC, Allis CD: Daxx is an H3.3-specific histone chaperone and cooperates with ATRX in replication-independent chromatin assembly at telomeres. Proc Natl Acad Sci USA 2010, 107:14075-14080.
  • [22]Drane P, Ouararhni K, Depaux A, Shuaib M, Hamiche A: The death-associated protein DAXX is a novel histone chaperone involved in the replication-independent deposition of H3.3. Genes Dev 2010, 24:1253-1265.
  • [23]Frank D, Doenecke D, Albig W: Differential expression of human replacement and cell cycle dependent H3 histone genes. Gene 2003, 312:135-143.
  • [24]Hodl M, Basler K: Transcription in the absence of histone H3.3. Curr Biol 2009, 19:1221-1226.
  • [25]Tang MC, Jacobs SA, Wong LH, Mann JR: Conditional allelic replacement applied to genes encoding the histone variant H3.3 in the mouse. Genesis 2013, 51:142-146.
  • [26]Couldrey C, Carlton MB, Nolan PM, Colledge WH, Evans MJ: A retroviral gene trap insertion into the histone 3.3A gene causes partial neonatal lethality, stunted growth, neuromuscular deficits and male sub-fertility in transgenic mice. Hum Mol Genet 1999, 8:2489-2495.
  • [27]Szenker E, Lacoste N, Almouzni G: A developmental requirement for HIRA-dependent H3.3 deposition revealed at gastrulation in Xenopus. Cell reports 2012, 1:730-740.
  • [28]Cox SG, Kim H, Garnett AT, Medeiros DM, An W, Crump JG: An essential role of variant histone H3.3 for ectomesenchyme potential of the cranial neural crest. PLoS Genet 2012, 8:e1002938.
  • [29]Bramlage B, Kosciessa U, Doenecke D: Differential expression of the murine histone genes H3.3A and H3.3B. Differentiation 1997, 62:13-20.
  • [30]Wong LH, McGhie JD, Sim M, Anderson MA, Ahn S, Hannan RD, George AJ, Morgan KA, Mann JR, Choo KH: ATRX interacts with H3.3 in maintaining telomere structural integrity in pluripotent embryonic stem cells. Genome Res 2010, 20:351-360.
  • [31]Wu G, Broniscer A, McEachron TA, Lu C, Paugh BS, Becksfort J, Qu C, Ding L, Huether R, Parker M, Zhang J, Gajjar A, Dyer MA, Mullighan CG, Gilbertson RJ, Mardis ER, Wilson RK, Downing JR, Ellison DW, Zhang J, Baker SJ, St. Jude Children's Research Hospital–Washington University Pediatric Cancer Genome Project: Somatic histone H3 alterations in pediatric diffuse intrinsic pontine gliomas and non-brainstem glioblastomas. Nat Genet 2012, 44:251-253.
  • [32]Khuong-Quang DA, Buczkowicz P, Rakopoulos P, Liu XY, Fontebasso AM, Bouffet E, Bartels U, Albrecht S, Schwartzentruber J, Letourneau L, Bourgey M, Bourque G, Montpetit A, Bourret G, Lepage P, Fleming A, Lichter P, Kool M, von Deimling A, Sturm D, Korshunov A, Faury D, Jones DT, Majewski J, Pfister SM, Jabado N, Hawkins C: K27M mutation in histone H3.3 defines clinically and biologically distinct subgroups of pediatric diffuse intrinsic pontine gliomas. Acta Neuropathol 2012, 124:439-447.
  • [33]Schwartzentruber J, Korshunov A, Liu XY, Jones DT, Pfaff E, Jacob K, Sturm D, Fontebasso AM, Quang DA, Tonjes M, Hovestadt V, Albrecht S, Kool M, Nantel A, Konermann C, Lindroth A, Jäger N, Rausch T, Ryzhova M, Korbel JO, Hielscher T, Hauser P, Garami M, Klekner A, Bognar L, Ebinger M, Schuhmann MU, Scheurlen W, Pekrun A, Frühwald MC, Roggendorf W, Kramm C, Dürken M, Atkinson J, Lepage P: Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature 2012, 482:226-231.
  • [34]Sturm D, Witt H, Hovestadt V, Khuong-Quang DA, Jones DT, Konermann C, Pfaff E, Tonjes M, Sill M, Bender S, Kool M, Zapatka M, Becker N, Zucknick M, Hielscher T, Liu XY, Fontebasso AM, Ryzhova M, Albrecht S, Jacob K, Wolter M, Ebinger M, Schuhmann MU, van Meter T, Frühwald MC, Hauch H, Pekrun A, Radlwimmer B, Niehues T, von Komorowski G, Dürken M, Kulozik AE, Madden J, Donson A, Foreman NK: Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. Cancer Cell 2012, 22:425-437.
  • [35]Lewis PW, Muller MM, Koletsky MS, Cordero F, Lin S, Banaszynski LA, Garcia BA, Muir TW, Becher OJ, Allis CD: Inhibition of PRC2 activity by a gain-of-function H3 mutation found in pediatric glioblastoma. Science 2013.
  • [36]Je EM, Yoo NJ, Kim YJ, Kim MS, Lee SH: Somatic mutation of H3F3A, a chromatin remodeling gene, is rare in acute leukemias and non-Hodgkin lymphoma. Eur J Haematol 2012, 90:169-170.
  • [37]Lewandoski M, Wassarman KM, Martin GR: Zp3-cre, a transgenic mouse line for the activation or inactivation of loxP-flanked target genes specifically in the female germ line. Curr Biol 1997, 7:148-151.
  • [38]Hagos EG, Ghaleb AM, Dalton WB, Bialkowska AB, Yang VW: Mouse embryonic fibroblasts null for the Kruppel-like factor 4 gene are genetically unstable. Oncogene 2009, 28:1197-1205.
  • [39]Maison C, Bailly D, Peters AH, Quivy JP, Roche D, Taddei A, Lachner M, Jenuwein T, Almouzni G: Higher-order structure in pericentric heterochromatin involves a distinct pattern of histone modification and an RNA component. Nat Genet 2002, 30:329-334.
  • [40]Lin CY, Loven J, Rahl PB, Paranal RM, Burge CB, Bradner JE, Lee TI, Young RA: Transcriptional amplification in tumor cells with elevated c-Myc. Cell 2012, 151:56-67.
  • [41]Shcherbata HR, Althauser C, Findley SD, Ruohola-Baker H: The mitotic-to-endocycle switch in Drosophila follicle cells is executed by Notch-dependent regulation of G1/S, G2/M and M/G1 cell-cycle transitions. Development 2004, 131:3169-3181.
  • [42]Shen Y, Yue F, McCleary DF, Ye Z, Edsall L, Kuan S, Wagner U, Dixon J, Lee L, Lobanenkov VV, Ren B: A map of the cis-regulatory sequences in the mouse genome. Nature 2012, 488:116-120.
  • [43]Santenard A, Ziegler-Birling C, Koch M, Tora L, Bannister AJ, Torres-Padilla ME: Heterochromatin formation in the mouse embryo requires critical residues of the histone variant H3.3. Nat Cell Biol 2010, 12:853-862.
  • [44]Baumann C, Viveiros MM, De La Fuente R: Loss of maternal ATRX results in centromere instability and aneuploidy in the mammalian oocyte and pre-implantation embryo. PLoS Genet 2010, 6:e1001137.
  • [45]Lu J, Gilbert DM: Proliferation-dependent and cell cycle regulated transcription of mouse pericentric heterochromatin. J Cell Biol 2007, 179:411-421.
  • [46]Probst AV, Dunleavy E, Almouzni G: Epigenetic inheritance during the cell cycle. Chromatin Dynamics 2009, 10:192-206.
  • [47]Bouzinba-Segard H, Guais A, Francastel C: Accumulation of small murine minor satellite transcripts leads to impaired centromeric architecture and function. Proc Natl Acad Sci USA 2006, 103:8709-8714.
  • [48]Nakayama T, Nishioka K, Dong YX, Shimojima T, Hirose S: Drosophila GAGA factor directs histone H3.3 replacement that prevents the heterochromatin spreading. Genes Dev 2007, 21:552-561.
  • [49]O'Geen H, Echipare L, Farnham PJ: Using ChIP-seq technology to generate high-resolution profiles of histone modifications. Methods Mol Biol 2011, 791:265-286.
  • [50]Stohr BA, Xu L, Blackburn EH: The terminal telomeric DNA sequence determines the mechanism of dysfunctional telomere fusion. Mol Cell 2010, 39:307-314.
  文献评价指标  
  下载次数:7次 浏览次数:5次