期刊论文详细信息
Journal of Biological Engineering
Assembly of eukaryotic algal chromosomes in yeast
Philip D Weyman1  J Craig Venter2  Hamilton O Smith1  Clyde A Hutchison1  John I Glass2  Andrew E Allen3  Ray-Yuan Chuang2  Vladimir N Noskov2  Isaac T Yonemoto1  Christian Tagwerker1  Christopher L Dupont3  Ying-Chi Lin1  Wolfgang J Hermann1  Jelena Jablanovic1  Bhuvan Molparia1  Bogumil J Karas1 
[1] Department of Synthetic Biology and Bioenergy, J. Craig Venter Institute, 10355 Science Center Dr., San Diego, CA 92121, USA;Department of Synthetic Biology and Bioenergy, J. Craig Venter Institute, 9704 Medical Center Dr., Rockville, MD 20850, USA;Department of Microbial and Environmental Genomics, J. Craig Venter Institute, 10355 Science Center Dr., San Diego, CA 92121, USA
关键词: Phaeodactylum tricornutum;    Autonomously replicating sequence (ARS);    Saccharomyces cerevisiae;    TAR cloning;    Chromosome;    Eukaryote;   
Others  :  804998
DOI  :  10.1186/1754-1611-7-30
 received in 2013-09-13, accepted in 2013-11-27,  发布年份 2013
PDF
【 摘 要 】

Background

Synthetic genomic approaches offer unique opportunities to use powerful yeast and Escherichia coli genetic systems to assemble and modify chromosome-sized molecules before returning the modified DNA to the target host. For example, the entire 1 Mb Mycoplasma mycoides chromosome can be stably maintained and manipulated in yeast before being transplanted back into recipient cells. We have previously demonstrated that cloning in yeast of large (> ~ 150 kb), high G + C (55%) prokaryotic DNA fragments was improved by addition of yeast replication origins every ~100 kb. Conversely, low G + C DNA is stable (up to at least 1.8 Mb) without adding supplemental yeast origins. It has not been previously tested whether addition of yeast replication origins similarly improves the yeast-based cloning of large (>150 kb) eukaryotic DNA with moderate G + C content. The model diatom Phaeodactylum tricornutum has an average G + C content of 48% and a 27.4 Mb genome sequence that has been assembled into chromosome-sized scaffolds making it an ideal test case for assembly and maintenance of eukaryotic chromosomes in yeast.

Results

We present a modified chromosome assembly technique in which eukaryotic chromosomes as large as ~500 kb can be assembled from cloned ~100 kb fragments. We used this technique to clone fragments spanning P. tricornutum chromosomes 25 and 26 and to assemble these fragments into single, chromosome-sized molecules. We found that addition of yeast replication origins improved the cloning, assembly, and maintenance of the large chromosomes in yeast. Furthermore, purification of the fragments to be assembled by electroelution greatly increased assembly efficiency.

Conclusions

Entire eukaryotic chromosomes can be successfully cloned, maintained, and manipulated in yeast. These results highlight the improvement in assembly and maintenance afforded by including yeast replication origins in eukaryotic DNA with moderate G + C content (48%). They also highlight the increased efficiency of assembly that can be achieved by purifying fragments before assembly.

【 授权许可】

   
2013 Karas et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140708071612267.pdf 1660KB PDF download
Figure 4. 142KB Image download
Figure 3. 118KB Image download
Figure 2. 70KB Image download
Figure 1. 104KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Gibson DG, Glass JI, Lartigue C, Noskov VN, Chuang R-Y, Algire MA, Benders GA, Montague MG, Ma L, Moodie MM, Merryman C, Vashee S, Krishnakumar R, Assad-Garcia N, Andrews-Pfannkoch C, Denisova EA, Young L, Qi Z-Q, Segall-Shapiro TH, Calvey CH, Parmar PP, Hutchison CA, Smith HO, Venter JC: Creation of a bacterial cell controlled by a chemically synthesized genome. Science 2010, 329:52-56.
  • [2]Watanabe S, Shiwa Y, Itaya M, Yoshikawa H: Complete Sequence of the First Chimera Genome Constructed by Cloning the Whole Genome of Synechocystis Strain PCC6803 into the Bacillus subtilis 168 Genome. J Bacteriol 2012, 194:7007.
  • [3]Itaya M, Tsuge K, Koizumi M, Fujita K: Combining two genomes in one cell: Stable cloning of the Synechocystis PCC6803 genome in the Bacillus subtilis 168 genome. Proc Natl Acad Sci USA 2005, 102:15971-15976.
  • [4]Muller H, Annaluru N, Schwerzman J, Richardson S, Dymond J, Cooper E, Bader J, Boeke J, Chandrasegaran S: Assembling large DNA segments in yeast. Methods Mol Biol 2012, 852:133-150.
  • [5]Dymond J, Boeke J: The Saccharomyces cerevisiae SCRaMbLE system and genome minimization. Bioeng Bugs 2012, 3:168-171.
  • [6]Dymond JS, Richardson SM, Coombes CE, Babatz T, Muller H, Annaluru N, Blake WJ, Schwerzmann JW, Dai J, Lindstrom DL, Boeke AC, Gottschling DE, Chandrasegaran S, Bader JS, Boeke JD: Synthetic chromosome arms function in yeast and generate phenotypic diversity by design. Nature 2011, 477:471-476.
  • [7]Tagwerker C, Dupont CL, Karas BJ, Ma L, Chuang R-Y, Benders G a, Ramon A, Novotny M, Montague MG, Venepally P, Brami D, Schwartz A, Andrews-Pfannkoch C, Gibson DG, Glass JI, Smith HO, Venter JC, Hutchison C a: Sequence analysis of a complete 1.66 Mb Prochlorococcus marinus MED4 genome cloned in yeast. Nucleic Acids Res 2012, 40:10375-10383.
  • [8]Karas B, Jablanovic J, Sun L, Stam J, Ma L, Ramon A, Venter J, Weyman P, Gibson D, Glass , JI Hutchison C III, Smith H, Suzuki Y: Direct transfer of whole genomes from bacteria to yeast. Nat Meth 2013, 10:410-412.
  • [9]Benders GA, Noskov VN, Denisova EA, Lartigue C, Gibson DG, Assad-Garcia N, Chuang R-Y, Carrera W, Moodie M, Algire MA, Phan Q, Alperovich N, Vashee S, Merryman C, Venter JC, Smith HO, Glass JI, Hutchison CA: Cloning whole bacterial genomes in yeast. Nucleic Acids Res 2010, 38:2558-2569.
  • [10]Karas BJ, Tagwerker C, Yonemoto I, Hutchison CA III, Smith HO: Cloning the Acholeplasma laidlawii PG-8A Genome in Saccharomyces cerevisiae as a Yeast Centromeric Plasmid. ACS Synth Biol 2012, 1:22-28.
  • [11]Gibson DG, Smith HO, Hutchison CA, Venter JC, Merryman C: Chemical synthesis of the mouse mitochondrial genome. Nat Meth 2010, 7:901-903.
  • [12]O’Neill BM, Mikkelson KL, Gutierrez NM, Cunningham JL, Wolff KL, Szyjka SJ, Yohn CB, Redding KE, Mendez MJ: An exogenous chloroplast genome for complex sequence manipulation in algae. Nucleic Acids Res 2012, 40:2782-2792.
  • [13]Larin Z, Monaco AP, Lehrach H: Yeast artificial chromosome libraries containing large inserts from mouse and human DNA. Proc Natl Acad Sci USA 1991, 88:4123-4127.
  • [14]Albertsen HM, Abderrahim H, Cann HM, Dausset J, Le Paslier D, Cohen D: Construction and characterization of a yeast artificial chromosome library containing seven haploid human genome equivalents. Proc Natl Acad Sci USA 1990, 87:4256-4260.
  • [15]Marschall P, Malik N, Larin Z: Transfer of YACs up to 2.3 Mb intact into human cells with polyethylenimine. Gene Ther 1999, 6:1634-1637.
  • [16]Stinchcomb DT, Thomas M, Kelly J, Selker E, Davis RW: Eukaryotic DNA segments capable of autonomous replication in yeast. Proc Natl Acad Sci USA 1980, 77:4559-4563.
  • [17]Noskov VN, Karas BJ, Young L, Chung R-Y, Gibson DG, Lin Y-C, Stam J, Yonemoto IT, Suzuki Y, Pfannkoch C, Glass JI, Smith HO, CAH III, Venter JC, Weyman PD: Assembly of large, high G + C bacterial DNA fragments in yeast. ACS Synth Biol 2012, 1:267-273.
  • [18]Palenik B, Grimwood J, Aerts A, Rouzé P, Salamov A, Putnam N, Dupont C, Jorgensen R, Derelle E, Rombauts S, Zhou K, Otillar R, Merchant SS, Podell S, Gaasterland T, Napoli C, Gendler K, Manuell A, Tai V, Vallon O, Piganeau G, Jancek S, Heijde M, Jabbari K, Bowler C, Lohr M, Robbens S, Werner G, Dubchak I, Pazour GJ, et al.: The tiny eukaryote Ostreococcus provides genomic insights into the paradox of plankton speciation. Proc Natl Acad Sci USA 2007, 104:7705-7710.
  • [19]Maruyama S, Matsuzaki M, Kuroiwa H, Miyagishima S-Y, Tanaka K, Kuroiwa T, Nozaki H: Centromere structures highlighted by the 100%-complete Cyanidioschyzon merolae genome. Plant Signal Behav 2008, 3:140-141.
  • [20]Bowler C, Allen AE, Badger JH, Grimwood J, Jabbari K, Kuo A, Maheswari U, Martens C, Maumus F, Otillar RP, Rayko E, Salamov A, Vandepoele K, Beszteri B, Gruber A, Heijde M, Katinka M, Mock T, Valentin K, Verret F, Berges J a, Brownlee C, Cadoret J-P, Chiovitti A, Choi CJ, Coesel S, De Martino A, Detter JC, Durkin C, Falciatore A, et al.: The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature 2008, 456:239-244.
  • [21]Apt KE, Kroth-Pancic PG, Grossman AR: Stable nuclear transformation of the diatom Phaeodactylum tricornutum. Mol Gen Genet 1996, 252:572-579.
  • [22]Valenzuela J, Mazurie A, Carlson RP, Gerlach R, Cooksey KE, Peyton BM, Fields MW: Potential role of multiple carbon fixation pathways during lipid accumulation in Phaeodactylum tricornutum. Biotechnol Biofuels 2012, 5:40. BioMed Central Full Text
  • [23]Bozarth A, Maier U-G, Zauner S: Diatoms in biotechnology: modern tools and applications. Appl Microbiol Biotechnol 2009, 82:195-201.
  • [24]Kouprina N, Noskov V, Koriabine M, Leem S-H, Larionov V: Exploring transformation-associated recombination cloning for selective isolation of genomic regions. Methods Mol Biol 2004, 255:69-90.
  • [25]Larionov V, Kouprina N, Graves J, Chen XN, Korenberg JR, Resnick MA: Specific cloning of human DNA as yeast artificial chromosomes by transformation-associated recombination. Proc Natl Acad Sci USA 1996, 93:491-496.
  • [26]Kouprina N, Larionov V: TAR cloning: insights into gene function, long-range haplotypes and genome structure and evolution. Nat Rev Genet 2006, 7:805-812.
  • [27]Boeke J, Croute F, Fink G: A positive selection for mutants lacking orotidine-5’-phosphate decarboxylase activity in yeast: 5-fluoro-orotic acid resistance. Mol Gen Genet 1984, 197:345-346.
  • [28]Noskov VN, Segall-Shapiro TH, Chuang R-Y: Tandem repeat coupled with endonuclease cleavage (TREC): a seamless modification tool for genome engineering in yeast. Nucl Acids Res 2010, 38:2570-2576.
  • [29]Cohen N, Dagan T, Stone L, Graur D: GC composition of the human genome: in search of isochores. Mol Biol Evol 2005, 22:1260-1272.
  • [30]Gangalum RK, Jing Z, Nagaoka Y, Jiang M, Bhat SP: Purification of BAC DNA for high-efficiency transgenesis. Biotechniques 2011, 51:335-336. 338
  • [31]Strong SJ, Ohta Y, Litman GW, Amemiya CT: Marked improvement of PAC and BAC cloning is achieved using electroelution of pulsed-field gel-separated partial digests of genomic DNA. Nucleic Acids Res 1997, 25:3959-3961.
  • [32]Osoegawa K, Woon PY, Zhao B, Frengen E, Tateno M, Catanese JJ, de Jong PJ: An improved approach for construction of bacterial artificial chromosome libraries. Genomics 1998, 52:1-8.
  • [33]Magbanua ZV, Ozkan S, Bartlett BD, Chouvarine P, Saski CA, Liston A, Cronn RC, Nelson CD, Peterson DG: Adventures in the enormous: a 1.8 million clone BAC library for the 21.7 Gb genome of loblolly pine. PLoS One 2011, 6:e16214.
  • [34]Montsant A, Jabbari K, Maheswari U, Bowler C: Comparative genomics of the pennate diatom Phaeodactylum tricornutum. Plant Physiol 2005, 137:500-513.
  • [35]Hallegraeff GM, Anderson DM, Cembella AD (Eds): Manual on Harmful Marine Microalgae. UNESCO Publishing; 2003.
  • [36]Phaeodactylum Tricornutum v2.0. http://genome.jgi-psf.org/Phatr2/Phatr2.home.html webcite
  • [37]Gibson DG: Gene and genome construction in yeast. In Curr Protoc Mol Biol. Volume Chapter 3 Edited by Ausube FM. 2011(April), Unit3.22.
  • [38]Falciatore A, Casotti R, Leblanc C, Abrescia C, Bowler C: Transformation of nonselectable reporter genes in marine diatoms. Mar Biotechnol 1999, 1:239-251.
  • [39]Sambrook J, Fritsch EF, Maniatis T: Molecular Cloning: A Laboratory Manual. Volume 3. Cold Spring Harbor Laboratory Press; 2001:2344.
  • [40]Gietz RD, Woods RA: Yeast transformation by the LiAc/SS Carrier DNA/PEG method. Methods Mol Biol 2005, 313:107.
  文献评价指标  
  下载次数:18次 浏览次数:7次