期刊论文详细信息
Gut Pathogens
Synergistic effects of Bifidobacterium thermophilum RBL67 and selected prebiotics on inhibition of Salmonella colonization in the swine proximal colon PolyFermS model
Christophe Lacroix1  Annina Zihler Berner1  Christophe Chassard1  Sabine Amani Tanner1 
[1] Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, Department of Health Science and Technology, ETH Zurich, Schmelzbergstrasse 7, Zurich, 8092, Switzerland
关键词: Salmonella enterica subsp. enterica serovar Typhimurium N-15;    Probiotics;    Prebiotics;    Intestinal fermentation model;    Swine;    Bifidobacterium thermophilum RBL67;   
Others  :  1137559
DOI  :  10.1186/s13099-014-0044-y
 received in 2014-08-11, accepted in 2014-10-06,  发布年份 2014
PDF
【 摘 要 】

Background

Probiotics and prebiotics are promising strategies to counteract Salmonella prevalence in swine. In the present study, we investigated the effects of prebiotics (fructo- (FOS), galacto- (GOS) and mannan- (MOS) oligosaccharides) and the bacteriocinogenic Bifidobacterium thermophilum RBL67 (RBL67) on Salmonella enterica subsp. enterica serovar Typhimurium N-15 (N-15) colonization using the PolyFermS in vitro continuous fermentation model simulating the swine proximal colon.

Material and methods

The PolyFermS model was designed with a first-stage reactor containing immobilized fecal pig microbiota. This reactor continuously inoculated five parallel second-stage reactors, a control and four treatment reactors, all operated with proximal colon conditions. FOS and GOS (5.2 g/day), and MOS (half dosage) and RBL67 (108 copy numbers/mL applied daily) were tested on the ability of N-15 to colonize reactors, inoculated with the same microbiota. Reactor effluents were collected daily and analyzed for microbial composition (quantitative PCR and 454 pyrosequencing of 16S rRNA gene pool) and main metabolites (HPLC).

Results

RBL67 and N-15 were shown to stably colonize the system. Colonization of N-15 was strongly inhibited by FOS and GOS, whereas addition of RBL67 alone or combined with MOS showed intermediate results. However, the effect of FOS and GOS was enhanced when prebiotics were combined with a daily addition of RBL67. FOS and GOS increased the total short chain fatty acid production, especially acetate and propionate. RBL67 combined with FOS additionally stimulated butyrate production.

Conclusions

Our study demonstrates the suitability of the porcine PolyFermS in vitro model to study nutritional effects of pro- and prebiotics on gut microbiota composition and activity. It can further be used to monitor Salmonella colonization. The inhibition effects of FOS and GOS on N-15 colonization are partly due to an increased acetate production, while further antimicrobial mechanisms may contribute to an enhanced inhibition with prebiotic-RBL67 combinations. A future direction of this work could be to understand the anti-Salmonella effects of Bifidobacterium thermophilum RBL67 in the presence of prebiotics to unravel the mechanism of this probiotic:pathogen interaction.

【 授权许可】

   
2014 Tanner et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150317093106730.pdf 831KB PDF download
Figure 4. 45KB Image download
Figure 3. 18KB Image download
Figure 2. 25KB Image download
Figure 1. 42KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Analysis of the baseline survey on the prevalence of Salmonella in holdings with breeding pigs in the EU, 2008 EFSA J 2009, 7:1377-1470.
  • [2]Scott KP, Gratz SW, Sheridan PO, Flint HJ, Duncan SH: The influence of diet on the gut microbiota. Pharmacol Res 2013, 69:52-60.
  • [3]Pieper R, Bindelle J, Rossnagel B, Van Kessel A, Leterme P: Effect of carbohydrate composition in barley and oat cultivars on microbial ecophysiology and proliferation of Salmonella enterica in an in vitro model of the porcine gastrointestinal tract. Appl Environ Microbiol 2009, 75:7006-7016.
  • [4]Allen HK, Levine UY, Looft T, Bandrick M, Casey TA: Treatment, promotion, commotion: antibiotic alternatives in food-producing animals. Trends Microbiol 2013, 21:114-119.
  • [5]Joint FAO/WHO Working Group Report on Drafting Guidelines for the Evaluation of Probiotics in Food. 2002.
  • [6]Callaway TR, Edrington TS, Anderson RC, Aiello CW, Byrd JA II, Kogut MH, Harvey RB, Nisbet DJ: Using Antimicrobial Cultures, Bacteriocins, and Bacteriophages to Reduce Carriage of Foodborne Pathogens in Cattle and Swine. In Protective Cultures, Antimicrobial Metabolites and Bacteriophages for Food and Beverage Biopreservation. Edited by Lacroix C. Woodhead Publishing Ltd, Cambridge, UK; 2011:204-224.
  • [7]Casey PG, Gardiner GE, Casey G, Bradshaw B, Lawlor PG, Lynch PB, Leonard FC, Stanton C, Ross RP, Fitzgerald GF, Hill C: A five-strain probiotic combination reduces pathogen shedding and alleviates disease signs in pigs challenged with Salmonella enterica serovar Typhimurium. Appl Environ Microbiol 2007, 73:1858-1863.
  • [8]Chang CH, Chen YS, Chiou MT, Su CH, Chen DS, Tsai CE, Yu B, Hsu YM: Application of Scutellariae radix, Gardeniae fructus, and probiotics to prevent Salmonella enterica Serovar Choleraesuis infection in swine. Evid Based Complement Alternat Med 2013, 2013:8.
  • [9]Zhang L, Xu YQ, Liu HY, Lai T, Ma JL, Wang JF, Zhu YH: Evaluation of Lactobacillus rhamnosus GG using an Escherichia coli K88 model of piglet diarrhoea: Effects on diarrhoea incidence, faecal microflora and immune responses. Vet Microbiol 2010, 141:142-148.
  • [10]Shu Q, Qu F, Gill HS: Probiotic treatment using Bifidobacterium lactis HN019 reduces weanling diarrhea associated with rotavirus and Escherichia coli infection in a piglet model. J Pediatr Gastroenterol Nutr 2001, 33:171-177.
  • [11]Gibson GR, Probert HM, Loo JV, Rastall RA, Roberfroid MB: Dietary modulation of the human colonic microbiota: updating the concept of prebiotics. Nutr Res Rev 2004, 17:259-275.
  • [12]Patterson JK, Yasuda K, Welch RM, Miller DD, Lei XG: Supplemental dietary inulin of variable chain lengths alters intestinal bacterial populations in young pigs. J Nutr 2010, 140:2158-2161.
  • [13]Russell WR, Hoyles L, Flint HJ, Dumas ME: Colonic bacterial metabolites and human health. Curr Opin Microbiol 2013, 16:246-254.
  • [14]Gantois I, Ducatelle R, Pasmans F, Haesebrouck F, Hautefort I, Thompson A, Hinton JC, Van Immerseel F: Butyrate specifically down-regulates Salmonella pathogenicity island 1 gene expression. Appl Environ Microbiol 2006, 72:946-949.
  • [15]Tzortzis G, Goulas AK, Gee JM, Gibson GR: A novel galactooligosaccharide mixture increases the bifidobacterial population numbers in a continuous in vitro fermentation system and in the proximal colonic contents of pigs in vivo. J Nutr 2005, 135:1726-1731.
  • [16]Mikkelsen LL, Jensen BB: Effect of fructo-oligosaccharides and transgalacto-oligosaccharides on microbial populations and microbial activity in the gastrointestinal tract of piglets post-weaning. Anim Feed Sci Technol 2004, 117:107-119.
  • [17]Mountzouris KC, Balaskas C, Fava F, Tuohy KM, Gibson GR, Fegeros K: Profiling of composition and metabolic activities of the colonic microflora of growing pigs fed diets supplemented with prebiotic oligosaccharides. Anaerobe 2006, 12:178-185.
  • [18]Bird AR, Vuaran M, Crittenden R, Hayakawa T, Playne MJ, Brown IL, Topping DL: Comparative effects of a high-amylose starch and a fructooligosaccharide on fecal bifidobacteria numbers and short-chain fatty acids in pigs fed Bifidobacterium animalis. Dig Dis Sci 2009, 54:947-954.
  • [19]Bomba A, Nemcova R, Gancarcikova S, Herich R, Guba P, Mudronova D: Improvement of the probiotic effect of micro-organisms by their combination with maltodextrins, fructo-oligosaccharides and polyunsaturated fatty acids. Br J Nutr 2002, 88(Suppl 1):95-99.
  • [20]Nemcova R, Bomba A, Gancarcikova S, Reiffova K, Guba P, Koscova J, Jonecova Z, Scirankova L, Bugarsky A: Effects of the administration of lactobacilli, maltodextrins and fructooligosaccharides upon the adhesion of E. coli O8:K88 to the intestinal mucosa and organic acid levels in the gut contents of piglets. Vet Res Commun 2007, 31:791-800.
  • [21]Gaggia F, Mattarelli P, Biavati B: Probiotics and prebiotics in animal feeding for safe food production. Int J Food Microbiol 2010, 141(Suppl 1):15-28.
  • [22]Gibson GR, Roberfroid MB: Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J Nutr 1995, 125:1401-1412.
  • [23]Biavati B, Mattarelli P: Genus I.Bifidobacterium. In Bergey’s Manual of Systematic Bacteriology The Actinobacteria. Volume 5. 2nd edition. Edited by Whitman WB, Kämpfer P, Goodfellow M, Garrity GM, Ludwig W. New York: Springer Verlag; 2009:171–206.
  • [24]Zihler A: In Vitro Assessment of Bacteriocinogenic Probiotics for Prevention and Treatment of Salmonella in Children using Novel In Vitro Continuous Colonic Fermentation and Cellular Models, PhD thesis. ETH Zurich, Department of Health Sciences and Technology; 2010.
  • [25]von Ah U: Identification of Bifidobacterium Thermophilum RBL67 Isolated from Baby Feces and Partial Purification of its Bacteriocin, PhD thesis. ETH Zurich, Department of Health Sciences and Technology; 2006.
  • [26]Toure R, Kheadr E, Lacroix C, Moroni O, Fliss I: Production of antibacterial substances by bifidobacterial isolates from infant stool active against Listeria monocytogenes. J Appl Microbiol 2003, 95:1058-1069.
  • [27]Zihler A, Le Blay G, Chassard C, Braegger C, Lacroix C: Bifidobacterium thermophilumRBL67 inhibitsS.Typhimurium in anin vitromodel ofSalmonellainfection in children.J Food Nutr Disord 2014, in press. 10.4172/2324-9323.S1-003.
  • [28]Moroni O, Kheadr E, Boutin Y, Lacroix C, Fliss I: Inactivation of adhesion and invasion of food-borne Listeria monocytogenes by bacteriocin-producing Bifidobacterium strains of human origin. Appl Environ Microbiol 2006, 72:6894-6901.
  • [29]Zihler A, Gagnon M, Chassard C, Lacroix C: Protective effect of probiotics on Salmonella infectivity assessed with combined in vitro gut fermentation-cellular models. BMC Microbiol 2011, 11:264. BioMed Central Full Text
  • [30]Zihler A, Gagnon M, Chassard C, Hegland A, Stevens MJ, Braegger CP, Lacroix C: Unexpected consequences of administering bacteriocinogenic probiotic strains for Salmonella populations, revealed by an in vitro colonic model of the child gut. Microbiology 2010, 156:3342-3353.
  • [31]von Ah U, Mozzetti V, Lacroix C, Kheadr EE, Fliss I, Meile L: Classification of a moderately oxygen-tolerant isolate from baby faeces as Bifidobacterium thermophilum. BMC Microbiol 2007, 7:79. BioMed Central Full Text
  • [32]Payne AN, Zihler A, Chassard C, Lacroix C: Advances and perspectives in in vitro human gut fermentation modeling. Trends Biotechnol 2012, 30:17-25.
  • [33]Tanner SA, Zihler Berner A, Rigozzi E, Grattepanche F, Chassard C, Lacroix C: In vitro continuous fermentation model (PolyFermS) of the swine proximal colon for simultaneous testing on the same gut microbiota. PLoS ONE 2014, 9:e94123.
  • [34]Le Blay G, Rytka J, Zihler A, Lacroix C: New in vitro colonic fermentation model for Salmonella infection in the child gut. FEMS Microbiol Ecol 2009, 67:198-207.
  • [35]de Busser EV, de Zutter L, Dewulf J, Houf K, Maes D: Salmonella control in live pigs and at slaughter. Vet J 2013, 196:20-27.
  • [36]Hai DNN, Yuk HG: Changes in resistance of Salmonella Typhimurium biofilms formed under various conditions to industrial sanitizers. Food Control 2013, 29:236-240.
  • [37]Hippe H, Hagelstein A, Kramer I, Swiderski J, Stackebrandt E: Phylogenetic analysis of Formivibrio citricus, Propionivibrio dicarboxylicus, Anaerobiospirillum thomasii, Succinimonas amylolytica and Succinivibrio dextrinosolvens and proposal of Succinivibrionaceae fam. nov. Int J Syst Bacteriol 1999, 49:779-782.
  • [38]Stecher B, Chaffron S, Kappeli R, Hapfelmeier S, Freedrich S, Weber TC, Kirundi J, Suar M, McCoy KD, von Mering C, Macpherson AJ, Hardt WD: Like will to like: abundances of closely related species can predict susceptibility to intestinal colonization by pathogenic and commensal bacteria. PLoS Pathog 2010, 6:e1000711.
  • [39]Adams MR, Hall CJ: Growth-inhibition of foodborne pathogens by lactic and acetic-acids and their mixtures. Int J Food Sci Technol 1988, 23:287-292.
  • [40]Wilson PD, Wilson DR, Brocklehurst TF, Coleman HP, Mitchell G, Waspe CR, Jukes SA, Robins MM: Batch growth of Salmonella typhimurium LT2: stoichiometry and factors leading to cessation of growth. Int J Food Microbiol 2003, 89:195-203.
  • [41]van der Wielen PW, Biesterveld S, Lipman LJ, van Knapen F: Inhibition of a glucose-limited sequencing fed-batch culture of Salmonella enterica serovar Enteritidis by volatile fatty acids representative of the ceca of broiler chickens. Appl Environ Microbiol 2001, 67:1979-1982.
  • [42]Kogan G, Kocher A: Role of yeast cell wall polysaccharides in pig nutrition and health protection. Livest Sci 2007, 109:161-165.
  • [43]Tsukahara T, Iwasaki Y, Nakayama K, Ushida K: Stimulation of butyrate production in the large intestine of weaning piglets by dietary fructooligosaccharides and its influence on the histological variables of the large intestinal mucosa. J Nutr Sci Vitaminol (Tokyo) 2003, 49:414-421.
  • [44]van der Meulen R, Adriany T, Verbrugghe K, De Vuyst L: Kinetic analysis of bifidobacterial metabolism reveals a minor role for succinic acid in the regeneration of NAD + through its growth-associated production. Appl Environ Microbiol 2006, 72:5204-5210.
  • [45]Levine UY, Looft T, Allen HK, Stanton TB: Butyrate-producing bacteria, including mucin degraders, from the swine intestinal tract. Appl Environ Microbiol 2013, 79:3879-3881.
  • [46]Le Blay G, Chassard C, Baltzer S, Lacroix C: Set up of a new in vitro model to study dietary fructans fermentation in formula-fed babies. Br J Nutr 2010, 103:403-411.
  • [47]Martinez RC, Cardarelli HR, Borst W, Albrecht S, Schols H, Gutierrez OP, Maathuis AJ, de Melo Franco BD, De Martinis EC, Zoetendal EG, Venema K, Saad SM, Smidt H: Effect of galactooligosaccharides and Bifidobacterium animalis Bb-12 on growth of Lactobacillus amylovorus DSM 16698, microbial community structure, and metabolite production in an in vitro colonic model set up with human or pig microbiota. FEMS Microbiol Ecol 2013, 84:110-123.
  • [48]Flickinger EA, Van Loo J, Fahey GC Jr: Nutritional responses to the presence of inulin and oligofructose in the diets of domesticated animals: a review. Crit Rev Food Sci Nutr 2003, 43:19-60.
  • [49]van der Meulen R, Makras L, Verbrugghe K, Adriany T, De Vuyst L: In vitro kinetic analysis of oligofructose consumption by Bacteroides and Bifidobacterium spp. indicates different degradation mechanisms. Appl Environ Microbiol 2006, 72:1006-1012.
  • [50]Martin-Pelaez S, Gibson GR, Martin-Orue SM, Klinder A, Rastall RA, La Ragione RM, Woodward MJ, Costabile A: In vitro fermentation of carbohydrates by porcine faecal inocula and their influence on Salmonella Typhimurium growth in batch culture systems. FEMS Microbiol Ecol 2008, 66:608-619.
  • [51]Scott KP, Martin JC, Duncan SH, Flint HJ: Prebiotic stimulation of human colonic butyrate-producing bacteria and bifidobacteria, in vitro. FEMS Microbiol Ecol 2013, 87:30-40.
  • [52]Morita H, Shiratori C, Murakami M, Takami H, Toh H, Kato Y, Nakajima F, Takagi M, Akita H, Masaoka T, Hattori M: Sharpea azabuensis gen. nov., sp. nov., a Gram-positive, strictly anaerobic bacterium isolated from the faeces of thoroughbred horses. Int J Syst Evol Microbiol 2008, 58:2682-2686.
  • [53]Salvetti E, Felis GE, Dellaglio F, Castioni A, Torriani S, Lawson PA: Reclassification of Lactobacillus catenaformis (Eggerth 1935) Moore and Holdeman 1970 and Lactobacillus vitulinus Sharpe et al. 1973 as Eggerthia catenaformis gen. nov., comb. nov. and Kandleria vitulina gen. nov., comb. nov., respectively. Int J Syst Evol Microbiol 2011, 61:2520-2524.
  • [54]Buzoianu SG, Walsh MC, Rea MC, O’Sullivan O, Cotter PD, Ross RP, Gardiner GE, Lawlor PG: High-throughput sequence-based analysis of the intestinal microbiota of weanling pigs fed genetically modified MON810 maize expressing Bacillus thuringiensis Cry1Ab (Bt maize) for 31 days. Appl Environ Microbiol 2012, 78:4217-4224.
  • [55]Walsh MC, Buzoianu SG, Rea MC, O’Donovan O, Gelencser E, Ujhelyi G, Ross RP, Gardiner GE, Lawlor PG: Effects of feeding Bt MON810 maize to pigs for 110 days on peripheral immune response and digestive fate of the cry1Ab gene and truncated Bt toxin. PLoS ONE 2012, 7:e36141.
  • [56]Fleissner CK, Huebel N, Abd El-Bary MM, Loh G, Klaus S, Blaut M: Absence of intestinal microbiota does not protect mice from diet-induced obesity. Br J Nutr 2010, 104:919-929.
  • [57]Kararli TT: Comparison of the gastrointestinal anatomy, physiology, and biochemistry of humans and commonly used laboratory animals. Biopharm Drug Dispos 1995, 16:351-380.
  • [58]Leser TD, Amenuvor JZ, Jensen TK, Lindecrona RH, Boye M, Moller K: Culture-independent analysis of gut bacteria: the pig gastrointestinal tract microbiota revisited. Appl Environ Microbiol 2002, 68:673-690.
  • [59]Dostal A, Fehlbaum S, Chassard C, Zimmermann MB, Lacroix C: Low iron availability in continuous in vitro colonic fermentations induces strong dysbiosis of the child gut microbial consortium and a decrease in main metabolites. FEMS Microbiol Ecol 2013, 83:161-175.
  • [60]Mathys S, Lacroix C, Mini R, Meile L: PCR and real-time PCR primers developed for detection and identification of Bifidobacterium thermophilum in faeces. BMC Microbiol 2008, 8:179. BioMed Central Full Text
  • [61]Jost T, Lacroix C, Braegger C, Chassard C: Assessment of bacterial diversity in breast milk using culture-dependent and culture-independent approaches. Br J Nutr 2013, 110:1253-1262.
  • [62]Wang Q, Garrity GM, Tiedje JM, Cole JR: Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 2007, 73:5261-5267.
  文献评价指标  
  下载次数:34次 浏览次数:9次