期刊论文详细信息
Experimental & Translational Stroke Medicine
Reduced infarct size in neuroglobin-null mice after experimental stroke in vivo
Anders Hay-Schmidt1  Jens Randel Nyengaard3  Jesper Kelsen2  Christian Ansgar Hundahl4  Zindy Raida5 
[1] The Panum Institute; Department of Neuroscience and Pharmacology, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen N, Denmark;Department of Neurosurgery, University Hospital Copenhagen (Rigshospitalet), Copenhagen, Denmark;Stereology and Electron Microscopy Research Laboratory, Centre for Stochastic Geometry and Advanced Bioimaging, Aarhus University, Aarhus, Denmark;Department of Clinical Biochemistry, University Hospital Bispebjerg, Copenhagen, Denmark;Department of Neuroscience and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
关键词: Brain;    Immunohistochemistry;    Ischemia;    Knock out;    Neuroglobin;   
Others  :  861821
DOI  :  10.1186/2040-7378-4-15
 received in 2012-05-10, accepted in 2012-07-11,  发布年份 2012
PDF
【 摘 要 】

Background

Neuroglobin is considered to be a novel important pharmacological target in combating stroke and neurodegenerative disorders, although the mechanism by which this protection is accomplished remains an enigma. We hypothesized that if neuroglobin is directly involved in neuroprotection, then permanent cerebral ischemia would lead to larger infarct volumes in neuroglobin-null mice than in wild-type mice.

Methods

Using neuroglobin-null mice, we estimated the infarct volume 24 hours after permanent middle cerebral artery occlusion using Cavalieri’s Principle, and compared the infarct volume in neuroglobin-null and wild-type mice. Neuroglobin antibody staining was used to examine neuroglobin expression in the infarct area of wild-type mice.

Results

Infarct volumes 24 hours after permanent middle cerebral artery occlusion were significantly smaller in neuroglobin-null mice than in wild-types (p < 0.01). Neuroglobin immunostaining of the penumbra area revealed no visible up-regulation of neuroglobin protein in ischemic wild-type mice when compared to uninjured wild-type mice. In uninjured wild-type mice, neuroglobin protein was seen throughout cortical layer II and sparsely in layer V. In contrast, no neuroglobin-immunoreactive neurons were observed in the aforementioned layers of the ischemia injured cortical area, or in the surrounding penumbra of ischemic wild-type mice. This suggests no selective sparing of neuroglobin expressing neurons in ischemia.

Conclusions

Neuroglobin-deficiency resulted in reduced tissue infarction, suggesting that, at least at endogenous expression levels, neuroglobin in itself is non-protective against ischemic injury.

【 授权许可】

   
2012 Raida et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140725004407458.pdf 1258KB PDF download
51KB Image download
45KB Image download
107KB Image download
189KB Image download
【 图 表 】

【 参考文献 】
  • [1]Gjedde A, Magistretti P: Cellular mechanisms of brain energy metabolism. In Youmans neurological surgery. Volume 1. 6th edition. Edited by Winn HR. Elsevier, Philadelphia, PA; 2011:123-146.
  • [2]Burmester T, Weich B, Reinhardt S, Hankeln T: A vertebrate globin expressed in the brain. Nature 2000, 407:520-523.
  • [3]Moens L, Dewilde S: Globins in the brain. Nature 2000, 407:461-462.
  • [4]Fago A, Hundahl C, Dewilde S, Gilany K, Moens L, Weber RE: Allosteric regulation and temperature dependence of oxygen binding in human neuroglobin and cytoglobin: molecular mechanisms and physiological significance. J Biol Chem 2004, 279:44417-44426.
  • [5]Dewilde S, Kiger L, Burmester T, Hankeln T, Baudin-Creuza V, Aerts T, Marden MC, Caubergs R, Moens L: Biochemical characterization and ligand binding properties of neuroglobin, a novel member of the globin family. J Biol Chem 2001, 276:38949-38955.
  • [6]Wang X, Liu J, Zhu H, Tejima E, Tsuji K, Murata Y, Atochin DN, Huang PL, Zhang C, Lo EH: Effects of neuroglobin overexpression on acute brain injury and long-term outcomes after focal cerebral ischemia. Stroke 2008, 39:1869-1874.
  • [7]Greenberg DA, Jin K, Khan AA: Neuroglobin: an endogenous neuroprotectant. Curr Opin Pharmacol 2008, 8:20-24.
  • [8]Dietz GP: Protection by neuroglobin and cell-penetrating peptide-mediated delivery in vivo: a decade of research. Comment on Cai et al: TAT-mediated delivery of neuroglobin protects against focal cerebral ischemia in mice. Exp Neurol 2011, 227(1):224-231. Exp Neurol 2011, 231:1-10
  • [9]Sun Y, Jin K, Mao XO, Zhu Y, Greenberg DA: Neuroglobin is up-regulated by and protects neurons from hypoxic- ischemic injury. Proc Natl Acad Sci USA 2001, 98:15306-15311.
  • [10]Khan AA, Wang Y, Sun Y, Mao XO, Xie L, Miles E, Graboski J, Chen S, Ellerby LM, Jin K, Greenberg DA: Neuroglobin-overexpressing transgenic mice are resistant to cerebral and myocardial ischemia. Proc Natl Acad Sci U S A 2006, 103:17944-17948.
  • [11]Li RC, Guo SZ, Lee SK, Gozal D: Neuroglobin protects neurons against oxidative stress in global ischemia. J Cereb Blood Flow Metab 2010, 30:1874-1882.
  • [12]Sun Y, Jin K, Peel A, Mao XO, Xie L, Greenberg DA: Neuroglobin protects the brain from experimental stroke in vivo. Proc Natl Acad Sci USA 2003, 100:3497-3500.
  • [13]Hundahl CA, Luuk H, Ilmjarv S, Falktoft B, Raida Z, Vikesaa J, Friis-Hansen L, Hay-Schmidt A: Neuroglobin-deficiency exacerbates Hif1A and c-FOS response, but does not affect neuronal survival during severe hypoxia in vivo. PLoS One 2011, 6:e28160.
  • [14]Tamura A, Graham DI, McCulloch J, Teasdale GM: Focal cerebral ischaemia in the rat: 1. Description of technique and early neuropathological consequences following middle cerebral artery occlusion. J Cereb Blood Flow Metab 1981, 1:53-60.
  • [15]Bederson JB, Pitts LH, Tsuji M, Nishimura MC, Davis RL, Bartkowski H: Rat middle cerebral artery occlusion: evaluation of the model and development of a neurologic examination. Stroke 1986, 17:472-476.
  • [16]Miyazawa T, Tamura A, Fukui S, Hossmann KA: Effect of mild hypothermia on focal cerebral ischemia. Review of experimental studies. Neurol Res 2003, 25:457-464.
  • [17]Kim Y, Busto R, Dietrich WD, Kraydieh S, Ginsberg MD: Delayed postischemic hyperthermia in awake rats worsens the histopathological outcome of transient focal cerebral ischemia. Stroke 1996, 27:2274-2280. discussion 2281
  • [18]Noor R, Wang CX, Shuaib A: Effects of hyperthermia on infarct volume in focal embolic model of cerebral ischemia in rats. Neurosci Lett 2003, 349:130-132.
  • [19]Noor R, Wang CX, Shuaib A: Hyperthermia masks the neuroprotective effects of tissue plaminogen activator. Stroke 2005, 36:665-669.
  • [20]Singhal AB, Caviness VS, Begleiter AF, Mark EJ, Rordorf G, Koroshetz WJ: Cerebral vasoconstriction and stroke after use of serotonergic drugs. Neurology 2002, 58:130-133.
  • [21]Kontos HA, Raper AJ, Patterson JL: Analysis of vasoactivity of local pH, PCO2 and bicarbonate on pial vessels. Stroke 1977, 8:358-360.
  • [22]Kontos HA, Wei EP, Raper AJ, Patterson JL Jr: Local mechanism of CO2 action of cat pial arterioles. Stroke 1977, 8:226-229.
  • [23]Vornov JJ, Thomas AG, Jo D: Protective effects of extracellular acidosis and blockade of sodium/hydrogen ion exchange during recovery from metabolic inhibition in neuronal tissue culture. J Neurochem 1996, 67:2379-2389.
  • [24]Cole DJ, Drummond JC, Shapiro HM, Zornow MH: Influence of hypotension and hypotensive technique on the area of profound reduction in cerebral blood flow during focal cerebral ischaemia in the rat. Br J Anaesth 1990, 64:498-502.
  • [25]Zhu CZ, Auer RN: Graded hypotension and MCA occlusion duration: effect in transient focal ischemia. J Cereb Blood Flow Metab 1995, 15:980-988.
  • [26]Kawaguchi M, Drummond JC, Cole DJ, Kelly PJ, Spurlock MP, Patel PM: Effect of isoflurane on neuronal apoptosis in rats subjected to focal cerebral ischemia. Anesth Analg 2004, 98:798-805. table of contents
  • [27]Liu S, Zhen G, Meloni BP, Campbell K, Winn HR: Rodent stroke model guidelines for preclinical stroke trials (1st Edition). J Exp Stroke Transl Med 2009, 2:2-27.
  • [28]Fisher M: Recommendations for standards regarding preclinical neuroprotective and restorative drug development. Stroke 1999, 30:2752-2758.
  • [29]Fisher M: Recommendations for clinical trial evaluation of acute stroke therapies. Stroke 2001, 32:1598-1606.
  • [30]Fisher M, Feuerstein G, Howells DW, Hurn PD, Kent TA, Savitz SI, Lo EH: Update of the stroke therapy academic industry roundtable preclinical recommendations. Stroke 2009, 40:2244-2250.
  • [31]Abrous DN, Dunnett SB: Paw reaching in rats: the staircase test. In Neuroscience protocols. Volume module 3. Edited by Wouterlood FG. Elsevier, Amsterdam; 1994:19-29.
  • [32]Bouet V, Boulouard M, Toutain J, Divoux D, Bernaudin M, Schumann-Bard P, Freret T: The adhesive removal test: a sensitive method to assess sensorimotor deficits in mice. Nat Protoc 2009, 4:1560-1564.
  • [33]Hundahl CA, Allen GC, Hannibal J, Kjaer K, Rehfeld JF, Dewilde S, Nyengaard JR, Kelsen J, Hay-Schmidt A: Anatomical characterization of cytoglobin and neuroglobin mRNA and protein expression in the mouse brain. Brain Res 2010, 1331:58-73.
  • [34]Gundersen HJ: The nucleator. J Microsc 1988, 151:3-21.
  • [35]Kelsen J, Larsen MH, Sorensen JC, Moller A, Frokiaer J, Nielsen S, Nyengaard JR, Mikkelsen JD, Ronn LC: Neuronal precursor cell proliferation in the hippocampus after transient cerebral ischemia: a comparative study of two rat strains using stereological tools. Exp Transl Stroke Med 2010, 2:8. BioMed Central Full Text
  • [36]Geuens E, Brouns I, Flamez D, Dewilde S, Timmermans JP, Moens L: A globin in the nucleus! J Biol Chem 2003, 278:30417-30420.
  • [37]Rubin R, Srayer DS, Rubin E: Rubin’s pathology clinicopathologic foundations of medicine. 5th edition. Lippincott Williams & Wilkins, PA; 2008.
  • [38]Hundahl C, Kelsen J, Kjaer K, Ronn LC, Weber RE, Geuens E, Hay-Schmidt A, Nyengaard JR: Does neuroglobin protect neurons from ischemic insult? A quantitative investigation of neuroglobin expression following transient MCAo in spontaneously hypertensive rats. Brain Res 2006, 1085:19-27.
  • [39]Lipton P: Ischemic cell death in brain neurons. Physiol Rev 1999, 79:1431-1568.
  • [40]Reglodi D, Tamas A, Lengvari I: Examination of sensorimotor performance following middle cerebral artery occlusion in rats. Brain Res Bull 2003, 59:459-466.
  • [41]Modo M, Stroemer RP, Tang E, Veizovic T, Sowniski P, Hodges H: Neurological sequelae and long-term behavioural assessment of rats with transient middle cerebral artery occlusion. J Neurosci Methods 2000, 104:99-109.
  • [42]Schallert T, Upchurch M, Lobaugh N, Farrar SB, Spirduso WW, Gilliam P, Vaughn D, Wilcox RE: Tactile extinction: distinguishing between sensorimotor and motor asymmetries in rats with unilateral nigrostriatal damage. Pharmacol Biochem Behav 1982, 16:455-462.
  • [43]Hunter AJ, Hatcher J, Virley D, Nelson P, Irving E, Hadingham SJ, Parsons AA: Functional assessments in mice and rats after focal stroke. Neuropharmacology 2000, 39:806-816.
  • [44]Roullet P, Lassalle JM, Jegat R: A study of behavioral and sensorial bases of radial maze learning in mice. Behav Neural Biol 1993, 59:173-179.
  • [45]Klapdor K, van der Staay FJ: The Morris water-escape task in mice: strain differences and effects of intra-maze contrast and brightness. Physiol Behav 1996, 60:1247-1254.
  • [46]Rossi-Arnaud C, Ammassari-Teule M: What do comparative studies of inbred mice add to current investigations on the neural basis of spatial behaviors? Exp Brain Res 1998, 123:36-44.
  • [47]Heyser CJ, McDonald JS, Polis IY, Gold LH: Strain distribution of mice in discriminated Y-maze avoidance learning: genetic and procedural differences. Behav Neurosci 1999, 113:91-102.
  • [48]Pick CG, Yanai J: Studies into the mechanisms of strain differences in hippocampus-related behaviors. Behav Genet 1989, 19:315-325.
  • [49]Owen EH, Logue SF, Rasmussen DL, Wehner JM: Assessment of learning by the Morris water task and fear conditioning in inbred mouse strains and F1 hybrids: implications of genetic background for single gene mutations and quantitative trait loci analyses. Neuroscience 1997, 80:1087-1099.
  • [50]Nelson RJ: The use of genetic “knockout” mice in behavioral endocrinology research. Horm Behav 1997, 31:188-196.
  • [51]Crawley JN, Belknap JK, Collins A, Crabbe JC, Frankel W, Henderson N, Hitzemann RJ, Maxson SC, Miner LL, Silva AJ, et al.: Behavioral phenotypes of inbred mouse strains: implications and recommendations for molecular studies. Psychopharmacology (Berl) 1997, 132:107-124.
  • [52]Crawley JN: Behavioral phenotyping of transgenic and knockout mice: experimental design and evaluation of general health, sensory functions, motor abilities, and specific behavioral tests. Brain Res 1999, 835:18-26.
  • [53]Rogers DC, Jones DN, Nelson PR, Jones CM, Quilter CA, Robinson TL, Hagan JJ: Use of SHIRPA and discriminant analysis to characterise marked differences in the behavioural phenotype of six inbred mouse strains. Behav Brain Res 1999, 105:207-217.
  • [54]Kirik D, Rosenblad C, Bjorklund A: Characterization of behavioral and neurodegenerative changes following partial lesions of the nigrostriatal dopamine system induced by intrastriatal 6-hydroxydopamine in the rat. Exp Neurol 1998, 152:259-277.
  • [55]Berry D, Ren J, Kwan CP, Sietsma DK, Sasisekharan R, Finklestein SP: Dimeric fibroblast growth factor-2 enhances functional recovery after focal cerebral ischemia. Restor Neurol Neurosci 2005, 23:251-256.
  • [56]Freret T, Chazalviel L, Roussel S, Bernaudin M, Schumann-Bard P, Boulouard M: Long-term functional outcome following transient middle cerebral artery occlusion in the rat: correlation between brain damage and behavioral impairment. Behav Neurosci 2006, 120:1285-1298.
  • [57]Bouet V, Freret T, Toutain J, Divoux D, Boulouard M, Schumann-Bard P: Sensorimotor and cognitive deficits after transient middle cerebral artery occlusion in the mouse. Exp Neurol 2007, 203:555-567.
  • [58]Gerlai R, Thibodeaux H, Palmer JT, van Lookeren Campagne M, Van Bruggen N: Transient focal cerebral ischemia induces sensorimotor deficits in mice. Behav Brain Res 2000, 108:63-71.
  • [59]Carmichael ST: Rodent models of focal stroke: size, mechanism, and purpose. NeuroRx 2005, 2:396-409.
  • [60]Welsh FA, Sakamoto T, McKee AE, Sims RE: Effect of lactacidosis on pyridine nucleotide stability during ischemia in mouse brain. J Neurochem 1987, 49:846-851.
  • [61]Baumann CR, Kilic E, Petit B, Werth E, Hermann DM, Tafti M, Bassetti CL: Sleep EEG changes after middle cerebral artery infarcts in mice: different effects of striatal and cortical lesions. Sleep 2006, 29:1339-1344.
  • [62]Guegan C, Braudeau J, Couriaud C, Dietz GP, Lacombe P, Bahr M, Nosten-Bertrand M, Onteniente B: PTD-XIAP protects against cerebral ischemia by anti-apoptotic and transcriptional regulatory mechanisms. Neurobiol Dis 2006, 22:177-186.
  • [63]van Lookeren Campagne M, Thibodeaux H, van Bruggen N, Cairns B, Gerlai R, Palmer JT, Williams SP, Lowe DG: Evidence for a protective role of metallothionein-1 in focal cerebral ischemia. Proc Natl Acad Sci U S A 1999, 96:12870-12875.
  • [64]Iadecola C, Zhang F, Casey R, Nagayama M, Ross ME: Delayed reduction of ischemic brain injury and neurological deficits in mice lacking the inducible nitric oxide synthase gene. J Neurosci 1997, 17:9157-9164.
  • [65]DeVries AC, Nelson RJ, Traystman RJ, Hurn PD: Cognitive and behavioral assessment in experimental stroke research: will it prove useful? Neurosci Biobehav Rev 2001, 25:325-342.
  • [66]Jin K, Mao Y, Mao X, Xie L, Greenberg DA: Neuroglobin expression in ischemic stroke. Stroke 2010, 41:557-559.
  • [67]Saper CB, Sawchenko PE: Magic peptides, magic antibodies: guidelines for appropriate controls for immunohistochemistry. J Comp Neurol 2003, 465:161-163.
  • [68]Mammen PP, Shelton JM, Goetsch SC, Williams SC, Richardson JA, Garry MG, Garry DJ: Neuroglobin, a novel member of the globin family, is expressed in focal regions of the brain. JHistochemCytochem 2002, 50:1591-1598.
  • [69]Hundahl CA, Fahrenkrug J, Hay-Schmidt A, Georg B, Faltoft B, Hannibal J: Circadian behaviour in neuroglobin deficient mice. PLoS One 2012, 7:e34462.
  • [70]Gundersen HJ, Jensen EB: The efficiency of systematic sampling in stereology and its prediction. J Microsc 1987, 147:229-263.
  • [71]Sharp FR, Bernaudin M: HIF1 and oxygen sensing in the brain. Nat Rev Neurosci 2004, 5:437-448.
  • [72]Sharp FR, Ran R, Lu A, Tang Y, Strauss KI, Glass T, Ardizzone T, Bernaudin M: Hypoxic preconditioning protects against ischemic brain injury. NeuroRx 2004, 1:26-35.
  • [73]Burmester T, Hankeln T: Neuroglobin: a respiratory protein of the nervous system. News Physiol Sci 2004, 19:110-113.
  • [74]Bergeron M, Gidday JM, Yu AY, Semenza GL, Ferriero DM, Sharp FR: Role of hypoxia-inducible factor-1 in hypoxia-induced ischemic tolerance in neonatal rat brain. Ann Neurol 2000, 48:285-296.
  • [75]Jones NM, Bergeron M: Hypoxic preconditioning induces changes in HIF-1 target genes in neonatal rat brain. J Cereb Blood Flow Metab 2001, 21:1105-1114.
  • [76]Prass K, Ruscher K, Karsch M, Isaev N, Megow D, Priller J, Scharff A, Dirnagl U, Meisel A: Desferrioxamine induces delayed tolerance against cerebral ischemia in vivo and in vitro. J Cereb Blood Flow Metab 2002, 22:520-525.
  • [77]Jayaraman T, Tejero J, Chen BB, Blood AB, Frizzell S, Shapiro C, Tiso M, Hood BL, Wang X, Zhao X, et al.: 14-3-3 binding and phosphorylation of neuroglobin during hypoxia modulate six-to-five heme pocket coordination and rate of nitrite reduction to nitric oxide. J Biol Chem 2011, 286:42679-42689.
  文献评价指标  
  下载次数:39次 浏览次数:22次