期刊论文详细信息
Clinical Epigenetics
Epigenomic profiling of prostate cancer identifies differentially methylated genes in TMPRSS2:ERG fusion-positive versus fusion-negative tumors
Janet L. Stanford8  Christiane Maier7  Ziding Feng9  Jian-Bing Fan1  Elaine A. Ostrander5  Piet A. van den Brandt6  Brandy Klotzle1  Marina Bibikova1  Irene M. Shui4  Shanshan Zhao2  Antje Rinckleb7  Manuel Luedeke7  Joshi J. Alumkal3  Milan S. Geybels6 
[1] Illumina, Inc., San Diego, CA, USA;Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA;Division of Hematology and Medical Oncology, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA;Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA;Cancer Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD, USA;Department of Epidemiology, GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands;Institute of Human Genetics and Department of Urology, Faculty of Medicine, University of Ulm, Ulm, Germany;Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, USA;MD Anderson Cancer Center, Houston, TX, USA
关键词: TCGA;    TRIB2;    SEPT9;    RAB40C;    PDE4D;    NT5C;    KLK10;    GREM1;    CACNA1D;    C3orf14;    mRNA expression;    Unsupervised clustering;    Tumor tissue;    ERG;    TMPRSS2;    Gene fusion;    Prostate cancer;    Epigenomic profiling;    Epigenetics;    CpG site;    DNA methylation;   
Others  :  1235005
DOI  :  10.1186/s13148-015-0161-6
 received in 2015-09-11, accepted in 2015-12-03,  发布年份 2015
【 摘 要 】

Background

About half of all prostate cancers harbor the TMPRSS2:ERG (T2E) gene fusion. While T2E-positive and T2E-negative tumors represent specific molecular subtypes of prostate cancer (PCa), previous studies have not yet comprehensively investigated how these tumor subtypes differ at the epigenetic level. We therefore investigated epigenome-wide DNA methylation profiles of PCa stratified by T2E status.

Results

The study included 496 patients with clinically localized PCa who had a radical prostatectomy as primary treatment for PCa. Fluorescence in situ hybridization (FISH) “break-apart” assays were used to determine tumor T2E-fusion status, which showed that 266 patients (53.6 %) had T2E-positive PCa. The study showed global DNA methylation differences between tumor subtypes. A large number of differentially methylated CpG sites were identified (false-discovery rate [FDR] Q-value <0.00001; n = 27,876) and DNA methylation profiles accurately distinguished between tumor T2E subgroups. A number of top-ranked differentially methylated CpGs in genes (FDR Q-values ≤1.53E−29) were identified: C3orf14, CACNA1D, GREM1, KLK10, NT5C, PDE4D, RAB40C, SEPT9, and TRIB2, several of which had a corresponding alteration in mRNA expression. These genes may have various roles in the pathogenesis of PCa, and the calcium-channel gene CACNA1D is a known ERG-target. Analysis of The Cancer Genome Atlas (TCGA) data provided confirmatory evidence for our findings.

Conclusions

This study identified substantial differences in DNA methylation profiles of T2E-positive and T2E-negative tumors, thereby providing further evidence that different underlying oncogenic pathways characterize these molecular subtypes.

【 授权许可】

   
2015 Geybels et al.

附件列表
Files Size Format View
Fig. 4. 89KB Image download
Fig. 3. 84KB Image download
Fig. 2. 74KB Image download
Fig. 1. 38KB Image download
Fig. 4. 89KB Image download
Fig. 3. 84KB Image download
Fig. 2. 74KB Image download
Fig. 1. 38KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

【 参考文献 】
  • [1]Tomlins SA, Rhodes DR, Perner S, Dhanasekaran SM, Mehra R, Sun XW, et al.: Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science 2005, 310(5748):644-8.
  • [2]Clark JP, Cooper CS: ETS gene fusions in prostate cancer. Nat Rev Urol 2009, 6(8):429-39.
  • [3]Gasi Tandefelt D, Boormans J, Hermans K, Trapman J: ETS fusion genes in prostate cancer. Endocr Relat Cancer 2014, 21(3):R143-52.
  • [4]Magi-Galluzzi C, Tsusuki T, Elson P, Simmerman K, LaFargue C, Esgueva R, et al.: TMPRSS2-ERG gene fusion prevalence and class are significantly different in prostate cancer of Caucasian, African-American and Japanese patients. Prostate 2011, 71(5):489-97.
  • [5]Boormans JL, Korsten H, der Made AJ Z-v, van Leenders GJ, de Vos CV, Jenster G, et al.: Identification of TDRD1 as a direct target gene of ERG in primary prostate cancer. Int J Cancer 2013, 133(2):335-45.
  • [6]Brase JC, Johannes M, Mannsperger H, Falth M, Metzger J, Kacprzyk LA, et al.: TMPRSS2-ERG -specific transcriptional modulation is associated with prostate cancer biomarkers and TGF-beta signaling. BMC Cancer 2011, 11:507. BioMed Central Full Text
  • [7]Chen R, Zeng X, Zhang R, Huang J, Kuang X, Yang J, et al.: Cav1.3 channel alpha1D protein is overexpressed and modulates androgen receptor transactivation in prostate cancers. Urol Oncol 2014, 32(5):524-36.
  • [8]Jhavar S, Brewer D, Edwards S, Kote-Jarai Z, Attard G, Clark J, et al.: Integration of ERG gene mapping and gene-expression profiling identifies distinct categories of human prostate cancer. BJU Int 2009, 103(9):1256-69.
  • [9]Paulo P, Ribeiro FR, Santos J, Mesquita D, Almeida M, Barros-Silva JD, et al.: Molecular subtyping of primary prostate cancer reveals specific and shared target genes of different ETS rearrangements. Neoplasia 2012, 14(7):600-11.
  • [10]Setlur SR, Mertz KD, Hoshida Y, Demichelis F, Lupien M, Perner S, et al.: Estrogen-dependent signaling in a molecularly distinct subclass of aggressive prostate cancer. J Natl Cancer Inst 2008, 100(11):815-25.
  • [11]Tomlins SA, Laxman B, Varambally S, Cao X, Yu J, Helgeson BE, et al.: Role of the TMPRSS2-ERG gene fusion in prostate cancer. Neoplasia 2008, 10(2):177-88.
  • [12]Wang CY, Liu PY, Liao JK: Pleiotropic effects of statin therapy: molecular mechanisms and clinical results. Trends Mol Med 2008, 14(1):37-44.
  • [13]Washington MN, Weigel NL: 1{alpha},25-Dihydroxyvitamin D3 inhibits growth of VCaP prostate cancer cells despite inducing the growth-promoting TMPRSS2:ERG gene fusion. Endocrinology 2010, 151(4):1409-17.
  • [14]Tomlins SA, Day JR, Lonigro RJ, Hovelson DH, Siddiqui J, Kunju LP, et al.: Urine TMPRSS2:ERG plus PCA3 for individualized prostate cancer risk assessment. Eur Urol 2015.
  • [15]Pettersson A, Graff RE, Bauer SR, Pitt MJ, Lis RT, Stack EC, et al.: The TMPRSS2:ERG rearrangement, ERG expression, and prostate cancer outcomes: a cohort study and meta-analysis. Cancer Epidemiol Biomarkers Prev 2012, 21(9):1497-509.
  • [16]Attard G, Parker C, Eeles RA, Schroder F, Tomlins SA, Tannock I et al. Prostate cancer. Lancet. 2015. doi:10.1016/S0140-6736(14)61947-4.
  • [17]Rubin MA, Maher CA, Chinnaiyan AM: Common gene rearrangements in prostate cancer. J Clin Oncol 2011, 29(27):3659-68.
  • [18]Herman JG, Baylin SB: Gene silencing in cancer in association with promoter hypermethylation. N Engl J Med 2003, 349(21):2042-54.
  • [19]Jones PA, Baylin SB: The epigenomics of cancer. Cell 2007, 128(4):683-92.
  • [20]Lou S, Lee HM, Qin H, Li JW, Gao Z, Liu X, et al.: Whole-genome bisulfite sequencing of multiple individuals reveals complementary roles of promoter and gene body methylation in transcriptional regulation. Genome Biol 2014, 15(7):408. BioMed Central Full Text
  • [21]Yang X, Han H, De Carvalho DD, Lay FD, Jones PA, Liang G: Gene body methylation can alter gene expression and is a therapeutic target in cancer. Cancer Cell 2014, 26(4):577-90.
  • [22]Jeronimo C, Bastian PJ, Bjartell A, Carbone GM, Catto JW, Clark SJ, et al.: Epigenetics in prostate cancer: biologic and clinical relevance. Eur Urol 2011, 60(4):753-66.
  • [23]Borno ST, Fischer A, Kerick M, Falth M, Laible M, Brase JC, et al.: Genome-wide DNA methylation events in TMPRSS2-ERG fusion-negative prostate cancers implicate an EZH2-dependent mechanism with miR-26a hypermethylation. Cancer Discov 2012, 2(11):1024-35.
  • [24]Kim JH, Dhanasekaran SM, Prensner JR, Cao X, Robinson D, Kalyana-Sundaram S, et al.: Deep sequencing reveals distinct patterns of DNA methylation in prostate cancer. Genome Res 2011, 21(7):1028-41.
  • [25]Kim JW, Kim ST, Turner AR, Young T, Smith S, Liu W, et al.: Identification of new differentially methylated genes that have potential functional consequences in prostate cancer. PLoS One 2012., 7(10) Article ID e48455
  • [26]Jhavar S, Reid A, Clark J, Kote-Jarai Z, Christmas T, Thompson A, et al.: Detection of TMPRSS2-ERG translocations in human prostate cancer by expression profiling using GeneChip Human Exon 1.0 ST arrays. J Mol Diagn 2008, 10(1):50-7.
  • [27]Smit FP, Salagierski M, Jannink S, Schalken JA: High-resolution ERG-expression profiling on GeneChip exon 1.0 ST arrays in primary and castration-resistant prostate cancer. BJU Int 2013, 111(5):836-42.
  • [28]Font-Tello A, Juanpere N, de Muga S, Lorenzo M, Lorente JA, Fumado L, et al.: Association of ERG and TMPRSS2-ERG with grade, stage, and prognosis of prostate cancer is dependent on their expression levels. Prostate 2015.
  • [29]Berger SM, Bartsch D: The role of L-type voltage-gated calcium channels Cav1.2 and Cav1.3 in normal and pathological brain function. Cell Tissue Res 2014, 357(2):463-76.
  • [30]Scholl UI, Goh G, Stolting G, de Oliveira RC, Choi M, Overton JD, et al.: Somatic and germline CACNA1D calcium channel mutations in aldosterone-producing adenomas and primary aldosteronism. Nat Genet 2013, 45(9):1050-4.
  • [31]Maunakea AK, Nagarajan RP, Bilenky M, Ballinger TJ, D'Souza C, Fouse SD, et al.: Conserved role of intragenic DNA methylation in regulating alternative promoters. Nature 2010, 466(7303):253-7.
  • [32]Dubois C, Vanden Abeele F, Lehen'kyi V, Gkika D, Guarmit B, Lepage G, et al.: Remodeling of channel-forming ORAI proteins determines an oncogenic switch in prostate cancer. Cancer Cell 2014, 26(1):19-32.
  • [33]Warnier M, Roudbaraki M, Derouiche S, Delcourt P, Bokhobza A, Prevarskaya N et al. CACNA2D2 promotes tumorigenesis by stimulating cell proliferation and angiogenesis. Oncogene. 2015. doi:10.1038/onc.2014.467.
  • [34]Weaver EM, Zamora FJ, Puplampu-Dove YA, Kiessu E, Hearne JL, Martin-Caraballo M: Regulation of T-type calcium channel expression by sodium butyrate in prostate cancer cells. Eur J Pharmacol 2015, 749:20-31.
  • [35]Brazil DP, Church RH, Surae S, Godson C, Martin F: BMP signalling: agony and antagony in the family. Trends Cell Biol 2015, 25(5):249-64.
  • [36]Yang Q, Jie Z, Cao H, Greenlee AR, Yang C, Zou F, et al.: Low-level expression of let-7a in gastric cancer and its involvement in tumorigenesis by targeting RAB40C. Carcinogenesis 2011, 32(5):713-22.
  • [37]Rahrmann EP, Collier LS, Knutson TP, Doyal ME, Kuslak SL, Green LE, et al.: Identification of PDE4D as a proliferation promoting factor in prostate cancer using a Sleeping Beauty transposon-based somatic mutagenesis screen. Cancer Res 2009, 69(10):4388-97.
  • [38]Powers GL, Hammer KD, Domenech M, Frantskevich K, Malinowski RL, Bushman W, et al.: Phosphodiesterase 4D inhibitors limit prostate cancer growth potential. Mol Cancer Res 2015, 13(1):149-60.
  • [39]Russell SE, Hall PA: Do septins have a role in cancer? Br J Cancer 2005, 93(5):499-503.
  • [40]Geybels MS, Zhao SS, Wong CJ, Bibikova M, Klotzle B, Wu M, et al.: Epigenome-wide profiling of DNA methylation in paired prostate tumor versus adjacent benign tissue. Prostate 2015, 75(16):1941-50.
  • [41]Gyparaki MT, Basdra EK, Papavassiliou AG: DNA methylation biomarkers as diagnostic and prognostic tools in colorectal cancer. J Mol Med 2013, 91(11):1249-56.
  • [42]Yousef GM, Diamandis EP: The new human tissue kallikrein gene family: structure, function, and association to disease. Endocr Rev 2001, 22(2):184-204.
  • [43]Olkhov-Mitsel E, Van der Kwast T, Kron KJ, Ozcelik H, Briollais L, Massey C, et al.: Quantitative DNA methylation analysis of genes coding for kallikrein-related peptidases 6 and 10 as biomarkers for prostate cancer. Epigenetics 2012, 7(9):1037-45.
  • [44]Yokoyama T, Nakamura T: Tribbles in disease: signaling pathways important for cellular function and neoplastic transformation. Cancer Sci 2011, 102(6):1115-22.
  • [45]Etcheverry A, Aubry M, de Tayrac M, Vauleon E, Boniface R, Guenot F, et al.: DNA methylation in glioblastoma: impact on gene expression and clinical outcome. BMC Genomics 2010, 11:701. BioMed Central Full Text
  • [46]Kulkarni SS, Karlsson HK, Szekeres F, Chibalin AV, Krook A, Zierath JR: Suppression of 5'-nucleotidase enzymes promotes AMP-activated protein kinase (AMPK) phosphorylation and metabolism in human and mouse skeletal muscle. J Biol Chem 2011, 286(40):34567-74.
  • [47]Braun M, Stomper J, Boehm D, Vogel W, Scheble VJ, Wernert N, et al.: Improved method of detecting the ERG gene rearrangement in prostate cancer using combined dual-color chromogenic and silver in situ hybridization. J Mol Diagn 2012, 14(4):322-7.
  • [48]Agalliu I, Salinas CA, Hansten PD, Ostrander EA, Stanford JL: Statin use and risk of prostate cancer: results from a population-based epidemiologic study. Am J Epidemiol 2008, 168(3):250-60.
  • [49]Stanford JL, Wicklund KG, McKnight B, Daling JR, Brawer MK: Vasectomy and risk of prostate cancer. Cancer Epidemiol Biomarkers Prev 1999, 8(10):881-6.
  • [50]Summersgill B, Clark J, Shipley J: Fluorescence and chromogenic in situ hybridization to detect genetic aberrations in formalin-fixed paraffin embedded material, including tissue microarrays. Nat Protoc 2008, 3(2):220-34.
  • [51]FitzGerald LM, Agalliu I, Johnson K, Miller MA, Kwon EM, Hurtado-Coll A, et al.: Association of TMPRSS2-ERG gene fusion with clinical characteristics and outcomes: results from a population-based study of prostate cancer. BMC Cancer 2008, 8:230. BioMed Central Full Text
  • [52]Maksimovic J, Gordon L, Oshlack A: SWAN: subset-quantile within array normalization for illumina infinium HumanMethylation450 BeadChips. Genome Biol 2012, 13(6):R44. BioMed Central Full Text
  • [53]Johnson WE, Li C, Rabinovic A: Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics 2007, 8(1):118-27.
  文献评价指标  
  下载次数:86次 浏览次数:29次