Journal of Neuroinflammation | |
Fractalkine (CX3CL1) enhances hippocampal N-methyl-d-aspartate receptor (NMDAR) function via d-serine and adenosine receptor type A2 (A2AR) activity | |
Laura Maggi2  Cristina Limatola3  Maria Amalia Di Castro2  Gloria Cristalli1  Giuseppina Chece2  Letizia Antonilli2  Maria Scianni2  | |
[1] School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Camerino, Italy;Institute Pasteur-Cenci Bolognetti Foundation, Department of Physiology and Pharmacology, University Sapienza, Rome, Italy;IRCCS Neuromed, Pozzilli, Italy | |
关键词: Adenosine receptors; D-serine; Hippocampus; Microglia; NMDAR; CX3CL1; | |
Others : 1152136 DOI : 10.1186/1742-2094-10-108 |
|
received in 2013-01-07, accepted in 2013-05-28, 发布年份 2013 | |
【 摘 要 】
Background
N-Methyl-D-aspartate receptors (NMDARs) play fundamental roles in basic brain functions such as excitatory neurotransmission and learning and memory processes. Their function is largely regulated by factors released by glial cells, including the coagonist D-serine. We investigated whether the activation of microglial CX3CR1 induces the release of factors that modulate NMDAR functions.
Methods
We recorded the NMDAR component of the field excitatory postsynaptic potentials (NMDA-fEPSPs) elicited in the CA1 stratum radiatum of mouse hippocampal slices by Shaffer collateral stimulation and evaluated D-serine content in the extracellular medium of glial primary cultures by mass spectrometry analysis.
Results
We demonstrated that CX3CL1 increases NMDA-fEPSPs by a mechanism involving the activity of the adenosine receptor type A2 (A2AR) and the release of the NMDAR coagonist D-serine. Specifically (1) the selective A2AR blocker 7-(2-phenylethyl)-5-amino-2-(2-furyl)-pyrazolo-[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidine (SCH58261) and the genetic ablation of A2AR prevent CX3CL1 action while the A2AR agonist 5-(6-amino-2-(phenethylthio)-9H-purin-9-yl)-N-ethyl-3,4-dihydroxytetrahydrofuran-2-carboxamide (VT7) mimics CX3CL1 effect, and (2) the selective blocking of the NMDAR glycine (and D-serine) site by 5,7-dicholorokynurenic acid (DCKA), the enzymatic degradation of D-serine by D-amino acid oxidase (DAAO) and the saturation of the coagonist site by D-serine, all block the CX3CL1 effect. In addition, mass spectrometry analysis demonstrates that stimulation of microglia and astrocytes with CX3CL1 or VT7 increases D-serine release in the extracellular medium.
Conclusions
CX3CL1 transiently potentiates NMDAR function though mechanisms involving A2AR activity and the release of D-serine.
【 授权许可】
2013 Scianni et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150406133922365.pdf | 2112KB | download | |
Figure 8. | 85KB | Image | download |
Figure 7. | 80KB | Image | download |
Figure 6. | 109KB | Image | download |
Figure 5. | 106KB | Image | download |
Figure 4. | 110KB | Image | download |
182KB | Image | download | |
Figure 2. | 46KB | Image | download |
Figure 1. | 55KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
【 参考文献 】
- [1]Rostène W, Kitabgi P, Parsadaniantz SM: Chemokines: a new class of neuromodulator. Nat Rev Neurosci 2007, 8:895-903.
- [2]Réaux Le Goazigo A, Van Steenwinckel J, Rostène W, Mélik Parsadaniantz S: Current status of chemokines in the adult CNS. Prog Neurobiol 2013, 104:67-92.
- [3]Harrison LK, Jiang Y, Chen S, Xia Y, Maciejewski D, McNamara RK, Streit JW, Salafranca MN, Adhikari S, Thompson DA, Botti P, Bacon KB, Feng L: Role for neuronally derived fractalkine in mediating interactions between neurons and CX3CR1-expressing microglia. Proc Natl Acad Sci USA 1998, 95:10896-10901.
- [4]Hatori K, Nagai A, Heisel R, Ryu JK, Kim SU: Fractalkine and fractalkine receptors in human neurons and glial cells. J Neurosci Res 2002, 69:418-426.
- [5]Cardona AE, Pioro EP, Sasse ME, Kostenko V, Cardona SM, Dijkstra IM, Huang D, Kidd G, Dombrowski S, Dutta R, Lee JC, Cook DN, Jung S, Lira SA, Littman DR, Ransohoff RM: Control of microglial neurotoxicity by the fractalkine receptor. Nat Neurosci 2006, 9:917-924.
- [6]Jung S, Aliberti J, Graemmel P, Sunshine MJ, Kreutzberg GW, Sher A, Littman DR: Analysis of fractalkine receptor CX(3)CR1 function by targeted deletion and green fluorescent protein reporter gene insertion. Mol Cell Biol 2000, 20:4106-4114.
- [7]Wolf Y, Yona S, Kim KW, Jung S: Microglia, seen from the CX3CR1 angle. Front Cell Neurosci 2013, 7:26.
- [8]Hughes PM, Botham MS, Frentzel S, Mir A, Perry VH: Expression of fractalkine (CX3CL1) and its receptor, CX3CR1, during acute and chronic inflammation in the rodent CNS. Glia 2002, 37:314-327.
- [9]Sunnemark D, Eltayeb S, Nilsson M, Wallström E, Lassmann H, Olsson T: CX3CL1 (fractalkine) and CX3CR1 expression in myelin oligodendrocyte glycoprotein-induced experimental autoimmune encephalomyelitis: kinetics and cellular origin. J Neuroinflammation 2005, 2:17-31. BioMed Central Full Text
- [10]D'Haese JG, Friess H, Ceyhan GO: Therapeutic potential of the chemokine-receptor duo fractalkine/CX3CR1: an update. Expert Opin Ther Targets 2012, 16:613-618.
- [11]Limatola C, Lauro C, Catalano M, Ciotti MT, Bertollini C, Di Angelantonio S, Ragozzino D, Eusebi F: Chemokine CX3CL1 protects rat hippocampal neurons against glutamate-mediated excitotoxicity. J Neuroimmunol 2005, 166:19-28.
- [12]Lauro C, Di Angelantonio S, Cipriani R, Sobrero F, Antonilli L, Brusadin V, Ragozzino D, Limatola C: Activity of adenosine receptors type 1 is required for CX3CL1-mediated neuroprotection and neuromodulation in hippocampal neurons. J Immunol 2008, 180:7590-7596.
- [13]Lauro C, Cipriani R, Catalano M, Trettel F, Chece G, Brusadin V, Antonilli L, van Rooijen N, Eusebi F, Fredholm BB, Limatola C: Adenosine A1 receptors and microglial cells mediate CX3CL1-induced protection of hippocampal neurons against Glu-induced death. Neuropsychopharmacology 2010, 35:1550-1559.
- [14]Cipriani R, Villa P, Chece G, Lauro C, Paladini A, Micotti E, Perego C, De Simoni MG, Fredholm BB, Eusebi F, Limatola C: CX3CL1 is neuroprotective in permanent focal cerebral ischemia in rodents. J Neurosci 2011, 31:16327-16335.
- [15]Ragozzino D, Di Angelantonio S, Trettel F, Bertollini C, Maggi L, Gross C, Charo IF, Limatola C, Eusebi F: Chemokine fractalkine/CX3CL1 negatively modulates active glutamatergic synapses in rat hippocampal neurons. J Neurosci 2006, 26:10488-10498.
- [16]Bertollini C, Ragozzino D, Gross C, Limatola C, Eusebi F: Fractalkine/CX3CL1 depresses central synaptic transmission in mouse hippocampal slices. Neuropharmacology 2006, 51:816-821.
- [17]Maggi L, Trettel F, Scianni M, Bertollini C, Eusebi F, Fredholm BB, Limatola C: LTP impairment by fractalkine/CX(3)CL1 in mouse hippocampus is mediated through the activity of adenosine receptor type 3 (A(3)R). J Neuroimmunol 2009, 215:36-42.
- [18]MacDermott AB, Mayer ML, Westbrook GL, Smith SJ, Barker JL: NMDA-receptor activation increases cytoplasmic calcium concentration in cultured spinal cord neurones. Nature 1986, 321:519-522.
- [19]Cull-Candy S, Brickley S, Farrant M: NMDA receptor subunits: diversity, development and disease. Curr Opin Neurobiol 2001, 11:327-335.
- [20]Hollmann M, Heinemann S: Cloned glutamate receptors. Annu Rev Neurosci 1994, 17:31-108.
- [21]Johnson JW, Ascher P: Glycine potentiates the NMDA response in cultured mouse brain neurons. Nature 1987, 325:529-531.
- [22]Matsui T, Sekiguchi M, Hashimoto A, Tomita U, Nishikawa T, Wada K: Functional comparison of D-serine and glycine in rodents: the effect on cloned NMDA receptors and the extracellular concentration. J Neurochem 1995, 65:454-458.
- [23]Papouin T, Ladépêche L, Ruel J, Sacchi S, Labasque M, Hanini M, Groc L, Pollegioni L, Mothet JP, Oliet SH: Synaptic and extrasynaptic NMDA receptors are gated by different endogenous coagonists. Cell 2012, 150:633-646.
- [24]Schell MJ, Brady RO Jr, Molliver ME, Snyder SH: D-serine as a neuromodulator: regional and developmental localization in rat brain glia resemble NMDA receptors. J Neurosci 1997, 17:1604-1615.
- [25]Wu SZ, Bodles AM, Porter MM, Griffin WS, Basile AS, Barger SW: Induction of serine racemase expression and D-serine release from microglia by amyloid beta-peptide. J Neuroinflammation 2004, 1:2. BioMed Central Full Text
- [26]Williams SM, Diaz CM, Macnab LT, Sullivan RK, Pow DV: Immunocytochemical analysis of D-serine distribution in the mammalian brain reveals novel anatomical compartmentalizations in glia and neurons. Glia 2006, 53:401-411.
- [27]Sasabe J, Chiba T, Yamada M, Okamoto K, Nishimoto I, Matsuoka M, Aiso S: D-serine is a key determinant of glutamate toxicity in amyotrophic lateral sclerosis. EMBO J 2007, 26:4149-5159.
- [28]Wang W, Barger SW: Cross-linking of serine racemase dimer by reactive oxygen species and reactive nitrogen species. J Neurosci Res 2012, 90:1218-1229.
- [29]Hayashi Y, Ishibashi H, Hashimoto K, Nakanishi H: Potentiation of the NMDA receptor-mediated responses through the activation of the glycine site by microglia secreting soluble factors. Glia 2006, 53:660-668.
- [30]Block ML, Zecca L, Hong JS: Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci 2007, 8:57-69.
- [31]Flavin MP, Zhao G, Ho LT: Microglial tissue plasminogen activator (tPA) triggers neuronal apoptosis in vitro. Glia 2000, 29:347-354.
- [32]Jarvis CR, Xiong ZG, Plant JR, Churchill D, Lu WY, MacVicar BA, MacDonald JF: Neurotrophin modilation of NMDA receptors in cultures murine and isolated rat neurons. J Neurophysiol 1997, 78:2363-2371.
- [33]Nakanishi H: Microglial functions and proteases. Mol Neurobiol 2003, 27:163-176.
- [34]Yang S, Liu ZW, Qiao HF, Zhou WX, Zhang YX: Interleukin-1 b enhances NMDA receptor-mediated current but inhibits excitatory transmission. Brain Res 2005, 1034:172-179.
- [35]Deiva K, Geeraerts T, Salim H, Leclerc P, Héry C, Hugel B, Freyssinet JM, Tardieu M: Fractalkine reduces N-methyl-D-aspartate-induced calcium flux and apoptosis in human neurons through extracellular signal-regulated kinase activation. Eur J Neurosci 2004, 20:3222-3232.
- [36]Cook DN, Cook DN, Chen SC, Sullivan LM, Manfra DJ, Wiekowski MT, Prosser DM, Vassileva G, Lira SA: Generation and analysis of mice lacking the chemokine fractalkine. Mol Cell Biol 2001, 21:3159-3165.
- [37]Johansson B, Halldner L, Dunwiddie TV, Masino SA, Poelchen W, Gimenez-Llort L, Escorihuela RM, Fernandez-Teruel A, Wiesenfeld-Hallin Z, Xu XJ, Hardemark A, Betsholtz C, Herlenius E, Fredholm BB: Hyperalgesia, anxiety, and decreased hypoxic neuroprotection in mice lacking the adenosine A1 receptor. Proc Natl Acad Sci USA 2001, 98:9407-9412.
- [38]Salvatore CA, Tilley SL, Latour AM, Fletcher DS, Koller BH, Jacobson MA: Disruption of the A(3) adenosine receptor gene in mice and its effect on stimulated inflammatory cells. J Biol Chem 2000, 275:4429-4434.
- [39]Chen JF, Huang Z, Ma J, Zhu J, Moratalla R, Standaert D, Moskowitz MA, Fink JS, Schwarzschild MA: A(2A) adenosine receptor deficiency attenuates brain injury induced by transient focal ischemia in mice. J Neurosci 1999, 19:9192-9200.
- [40]Berna MJ, Ackermann BL: Quantification of serine enantiomers in rat brain microdialysate using Marfey’s reagent and LC/MS/MS. J Chromatogr 2007, 846:359-363.
- [41]Neagu B, Strominger NL, Carpenter DO: Contribution of NMDA receptor-mediated component to the EPSP in mouse Schaffer collateral synapses under single pulse stimulation protocol. Brain Res 2008, 1240:54-61.
- [42]Zucker RS: Short-term synaptic plasticity. Ann Rev Neurosci 1989, 12:13-31.
- [43]Maggi L, Sola E, Minneci F, Le Magueresse C, Changeux JP, Cherubini E: Persistent decrease in synaptic efficacy induced by nicotine at Schaffer collateral-CA1 synapses in the immature rat hippocampus. J Physiol 2004, 559:863-874.
- [44]Maggi L, Scianni M, Branchi I, D’Andrea I, Lauro C, Limatola C: CX(3)CR1 deficiency alters hippocampal-dependent plasticity phenomena blunting the effects of enriched environment. Front Cell Neurosci 2011, 5:22.
- [45]Suzuki H, Sugimura Y, Iwama S, Suzuki H, Nobuaki O, Nagasaki H: Minocycline prevents osmotic demyelination syndrome by inhibiting the activation of microglia. J Am Soc Nephrol 2010, 21:2090-2098.
- [46]Yrjanheikki J, Keinanen R, Pellikka M, Hokfelt T, Koistinaho J: Tetracyclines inhibit microglial activation and are neuroprotective in global brain ischemia. Proc Natl Acad Sci USA 1998, 95:15769.
- [47]Tikka TM, Koistinaho JE: Minocycline provides neuroprotection against N-methyl-D-aspartate neurotoxicity by inhibiting microglia. J Immunol 2001, 166:7527-7533.
- [48]Piccinin S, Di Angelantonio S, Piccioni A, Volpini R, Cristalli G, Fredholm BB, Limatola C, Eusebi F, Ragozzino D: CX3CL1-induced modulation at CA1 synapses reveals multiple mechanisms of EPSC modulation involving adenosine receptor subtypes. J Neuroimmunol 2010, 224:85-92.
- [49]Sebastião AM, Ribeiro JA: Tuning and fine-tuning of synapses with adenosine. Curr Neuropharmacol 2009, 7:180-194.
- [50]Lopes LV, Cunha RA, Kull B, Fredholm BB, Ribeiro JA: Adenosine A2A receptor facilitation of hippocampal synaptic transmission is dependent on tonic A1 receptor inhibition. Neuroscience 2002, 112:319-329.
- [51]Miller RF: D-serine as a glial modulator of nerve cells. Glia 2004, 47:275-283.
- [52]Wolosker H, Blackshaw S, Snyder SH: Serine racemase: a glial enzyme synthesizing D-serine to regulate glutamate-N-methyl-D-aspartate neurotransmission. Proc Natl Acad Sci USA 1999, 96:13409-13414.
- [53]Molla G, Sacchi S, Bernasconi M, Pilone MS, Fukui K, Polegioni L: Characterization of human D-amino acid oxidase. FEBS Lett 2006, 580:2358-2364.
- [54]Henneberger C, Papouin T, Oliet SH, Rusakov DA: Long-term potentiation depends on release of D-serine from astrocytes. Nature 2010, 463:232-236.
- [55]Tebano MT, Martire M, Rebola N, Pepponi R, Domenici MR, Gro MC, Schwarzschild MA, Chen JF, Cunha RA, Popoli P: Adenosine A2A receptors and mGluR5 are co-localized and functionally interact in the hippocampus: a possible key mechanism in the modulation of N-methyl-D-aspartate effects. J Neurochem 2005, 95:1188-1200.
- [56]Rebola N, Lujan R, Cunha RA, Mulle C: Long-term potentiation of NMDA-EPSCs at hippocampal mossy fiber synapses: an essential role for adenosine A2A receptors. Neuron 2008, 57:121-134.
- [57]Ciruela F, Casado V, Rodrigues RJ, Lujan R, Burgueno J, Canals M, Borycz J, Rebola N, Goldberg SR, Mallol J: Presynaptic control of striatal glutamatergic neurotransmission by adenosine A1-A2A receptor heteromers. J Neurosci 2006, 26:2080-2087.
- [58]Cunha RA: Adenosine as a neuromodulator and as a homeostatic regulator in the nervous system: different roles, different sources and different receptors. Neurochem Int 2001, 38:107-125.
- [59]Mustafa AK, Kim PM, Snyder SH: D-serine as a putative glial neurotransmitter. Neuron Glia Biol 2004, 1:275-281.
- [60]Mothet JP, Pollegioni L, Ouanounou G, Martineau M, Fossier P, Baux G: Glutamate receptor activation triggers a calcium-dependent and SNARE protein-dependent release of the gliotransmitter D-serine. Proc Natl Acad Sci USA 2005, 102:5606-5611.
- [61]Lawson LJ, Perry VH, Dri P, Gordon S: Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain. Neuroscience 1990, 39:151-170.
- [62]Njie EG, Boelen E, Stassen FR, Steinbusch HW, Borchelt DR, Streit WJ: Ex vivo cultures of microglia from young and aged rodent brain reveal age-related changes in microglial function. Neurobiol Aging 2012, 33:195.e1-12.
- [63]Lu WY, Jackson MF, Bai D, Orser BA, MacDonald JF: In CA1 pyramidal neurons of the hippocampus protein kinase C regulates calcium-dependent inactivation of NMDA receptors. J Neurosci 2000, 20:4452-4461.
- [64]Rebola N, Simões AP, Canas PM, Tomé AR, Andrade GM, Barry CE, Agostinho PM, Lynch MA, Cunha RA: Adenosine A2A receptors control neuroinflammation and consequent hippocampal neuronal dysfunction. J Neurochem 2011, 117:100-111.
- [65]Cristóvão-Ferreira S, Navarro G, Brugarolas M, Pérez-Capote K, Vaz SH, Fattorini G, Conti F, Lluis C, Ribeiro JA, McCormick PJ, Casadó V, Franco R, Sebastião AM: Modulation of GABA transport by adenosine A1R-A2AR heteromers, which are coupled to both Gs- and G(i/o)-proteins. J Neurosci 2011, 31:15629-15639.
- [66]Fredholm BB, IJzerman AP, Jacobson KA, Klotz KN, Linden J: International Union of Pharmacology. XXV. Nomenclature and classification of adenosine receptors. Pharmacol Rev 2001, 53:527-552.
- [67]Martineau M, Baux G, Mothet JP: D-serine signalling in the brain: friend and foe. Trends Neurosci 2006, 29:481-491.
- [68]Vargas Lopes C, Madeira C, Kahn SA, Albino Do Couto I, Bado P, Houzel JC, De Miranda J, De Freitas MS, Ferreira ST, Panizzutti R: Protein kinase C activity regulates D-serine availability in the brain. J Neurochem 2011, 116:281-290.
- [69]Fuchs SA, Berger R, de Koning TJ: D-serine: the right or wrong isoform? Brain Res 2011, 1401:104-117.
- [70]Rosenberg D, Artoul S, Segal AC, Kolodney G, Radzishevsky I, Dikopoltsev E, Foltyn VN, Inoue R, Mori H, Billard JM, Wolosker H: Neuronal D-serine and glycine release via the Asc-1 transporter regulates NMDA receptor-dependent synaptic activity. J Neurosci 2013. In press
- [71]Wolosker H: NMDA receptor regulation by D-serine: new findings and perspectives. Mol Neurobiol 2007, 36:152-164.
- [72]Huang YY, Colino A, Selig DK, Malenka RC: The influence of prior synaptic activity on the induction of long-term potentiation. Science 1992, 255:730-733.
- [73]Izumi Y, Clifford DB, Zorumski CF: Low concentrations of N-methyl-D-aspartate inhibit the induction of long-term potentiation in rat hippocampal slices. Neurosci Lett 1992, 137:245-248.
- [74]Soriano FX, Hardingham GE: Compartmentalized NMDA receptor signalling to survival and death. J Physiol 2007, 584:381-387.
- [75]Leveille F, El Gaamouch F, Gouix E, Lecocq M, Lobner D, Nicole O, Buisson A: Neuronal viability is controlled by a functional relation between synaptic and extrasynaptic NMDA receptors. FASEB J 2008, 22:4258-4271.