期刊论文详细信息
Lipids in Health and Disease
LDL receptor knock-out mice show impaired spatial cognition with hippocampal vulnerability to apoptosis and deficits in synapses
Rong Huang1  Pin Wang1  Wen-qing Xia1  Yang Yuan1  Yan Huang2  Shao-hua Wang1 
[1] Department of Endocrinology, ZhongDa Hospital of Southeast University, No.87 DingJiaQiao Road, Nanjing 210009, PR China;Department of Endocrinology, YanCheng First People’s Hospital, No.16 YueHe Road, YanCheng 224005, PR China
关键词: Apoptosis;    Synapse;    Cognition;    LDL receptor knock-out;   
Others  :  1145602
DOI  :  10.1186/1476-511X-13-175
 received in 2014-08-18, accepted in 2014-11-11,  发布年份 2014
PDF
【 摘 要 】

Background

Evidence from clinical studies support the fact that abnormal cholesterol metabolism in the brain leads to progressive cognitive dysfunction. The low-density lipoprotein receptor (LDLR) is well-known for its role in regulating cholesterol metabolism. Whether LDLR involved in this impaired cognition and the potential mechanisms that underlie this impairment are unknown.

Methods

Twelve-month-old Ldlr-/- mice (n = 10) and wild-type littermates C57BL/6 J (n = 14) were subjected to the Morris water maze test. At 1 week after completion of the behavioural testing, all of the animals were sacrificed for analysis of synaptic and apoptotic markers.

Results

The plasma cholesterol concentration of Ldlr-/- mice was increased moderately when compared with C57BL/6 J mice (P < 0.05). Behavioural testing revealed that Ldlr-/- mice displayed impaired spatial memory, and moreover, the expression levels of synaptophysin and the number of synaptophysin-immunoreactive presynaptic boutons in the hippocampal CA1 and dentate gyrus were decreased (all P < 0.05). Ultrastructural changes in the dentate gyrus were observed using transmission electron microscopy. Furthermore, apoptosis in the hippocampus of Ldlr-/- mice was revealed based on elevation, at both the mRNA and protein levels, of the ratio of Bax/Bcl-2 expression (all P < 0.05)and an increase in activated-caspase3 protein level (P < 0.05).

Conclusion

LDLR deficiency contributes to impaired spatial cognition. This most likely occurs via negative effects that promote apoptosis and synaptic deficits in the hippocampus.

【 授权许可】

   
2014 Wang et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150402115552423.pdf 3756KB PDF download
Figure 6. 61KB Image download
Figure 5. 63KB Image download
Figure 4. 186KB Image download
Figure 3. 65KB Image download
Figure 2. 74KB Image download
Figure 1. 50KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Puglielli L, Tanzi RE, Kovacs DM: Alzheimer’s disease: the cholesterol connection. Nat Neurosci 2003, 6:345-351.
  • [2]Vance JE, Hayashi H, Karten B: Cholesterol Homeostasis in Neurons and Glial Cells. Seminars in Cell & Developmental Biology 2005, 193.
  • [3]Wollmer MA: Cholesterol-related genes in Alzheimer’s disease. Biochim Biophys Acta 2010, 1801:762-773.
  • [4]Tint G, Salen G, Batta AK, Shefer S, Irons M, Elias ER, Abuelo DN, Johnson VP, Lambert M, Lutz R: Correlation of severity and outcome with plasma sterol levels in variants of the Smith-Lemli-Opitz syndrome. J Pediatr 1995, 127:82-87.
  • [5]Chang T-Y, Reid PC, Sugii S, Ohgami N, Cruz JC, Chang CC: Niemann-Pick type C disease and intracellular cholesterol trafficking. J Biol Chem 2005, 280:20917-20920.
  • [6]Jick H, Zornberg GL, Jick SS, Seshadri S, Drachman DA: Statins and the risk of dementia. Lancet 2000, 356:1627-1631.
  • [7]Jarvik G, Wijsman EM, Kukull W, Schellenberg G, Yu C, Larson E: Interactions of apolipoprotein E genotype, total cholesterol level, age, and sex in prediction of Alzheimer’s disease a case‒control study. Neurology 1995, 45:1092-1096.
  • [8]Kivipelto M, Helkala E-L, Laakso MP, Hänninen T, Hallikainen M, Alhainen K, Iivonen S, Mannermaa A, Tuomilehto J, Nissinen A: Apolipoprotein E epsilon4 allele, elevated midlife total cholesterol level, and high midlife systolic blood pressure are independent risk factors for late-life Alzheimer disease. Ann Intern Med 2002, 137:149.
  • [9]Barres BA, Smith SJ: Cholesterol–making or breaking the synapse. Science 2001, 294:1296-1297.
  • [10]Wahrle SE, Jiang H, Parsadanian M, Hartman RE, Bales KR, Paul SM, Holtzman DM: Deletion of Abca1 increases Aβ deposition in the PDAPP transgenic mouse model of Alzheimer disease. J Biol Chem 2005, 280:43236-43242.
  • [11]Poirier J: Apolipoprotein E and cholesterol metabolism in the pathogenesis and treatment of Alzheimer’s disease. Trends Mol Med 2003, 9:94-101.
  • [12]Papassotiropoulos A, Streffer JR, Tsolaki M, Schmid S, Thal D, Nicosia F, Iakovidou V, Maddalena A, Lutjohann D, Ghebremedhin E: Increased brain {beta}-amyloid load, phosphorylated tau, and risk of Alzheimer Disease associated with an intronic CYP46 polymorphism. Arch Neurol 2003, 60:29.
  • [13]Michikawa M: The role of cholesterol in pathogenesis of Alzheimer’s disease. Mol Neurobiol 2003, 27:1-12.
  • [14]de Chaves EIP, Rusiñol AE, Vance DE, Campenot RB, Vance JE: Role of lipoproteins in the delivery of lipids to axons during axonal regeneration. J Biol Chem 1997, 272:30766-30773.
  • [15]Jeon H, Blacklow SC: Structure and physiologic function of the low-density lipoprotein receptor. Annu Rev Biochem 2005, 74:535-562.
  • [16]Hussain MM, Strickland DK, Bakillah A: The mammalian low-density lipoprotein receptor family. Annu Rev Nutr 1999, 19:141-172.
  • [17]Dehouck B, Fenart L, Dehouck MP, Pierce A, Torpier G, Cecchelli R: A new function for the LDL receptor: transcytosis of LDL across the blood–brain barrier. J Cell Biol 1997, 138:877-889.
  • [18]Hofmann SL, Russell DW, Goldstein JL, Brown MS: mRNA for low density lipoprotein receptor in brain and spinal cord of immature and mature rabbits. Proc Natl Acad Sci 1987, 84:6312-6316.
  • [19]Swanson LW, Simmons DM, Hofmann SL, Goldstein JL, Brown MS: Localization of mRNA for low density lipoprotein receptor and a cholesterol synthetic enzyme in rabbit nervous system by in situ hybridization. Proc Natl Acad Sci 1988, 85:9821-9825.
  • [20]Dietschy JM, Turley SD: Thematic review series: brain Lipids. Cholesterol metabolism in the central nervous system during early development and in the mature animal. J Lipid Res 2004, 45:1375-1397.
  • [21]Björkhem I, Meaney S: Brain cholesterol: long secret life behind a barrier. Arterioscler Thromb Vasc Biol 2004, 24:806-815.
  • [22]Zambón D, Quintana M, Mata P, Alonso R, Benavent J, Cruz-Sánchez F, Gich J, Pocoví M, Civeira F, Capurro S: Higher incidence of mild cognitive impairment in familial hypercholesterolemia. Am J Med 2010, 123:267-274.
  • [23]Lendon CL, Talbot CJ, Craddock NJ, Han SW, Wragg M, Morris JC, Goate AM: Genetic association studies between dementia of the Alzheimer’s type and three receptors for apolipoprotein E in a Caucasian population. Neurosci Lett 1997, 222:187-190.
  • [24]Katsouri L, Georgopoulos S: Lack of LDL receptor enhances amyloid deposition and decreases glial response in an Alzheimer’s disease mouse model. PLoS One 2011, 6:e21880.
  • [25]Cao D, Fukuchi K, Wan H, Kim H, Li L: Lack of LDL receptor aggravates learning deficits and amyloid deposits in Alzheimer transgenic mice. Neurobiol Aging 2006, 27:1632-1643.
  • [26]Kim J, Castellano JM, Jiang H, Basak JM, Parsadanian M, Pham V, Mason SM, Paul SM, Holtzman DM: Overexpression of low-density lipoprotein receptor in the brain markedly inhibits amyloid deposition and increases extracellular Aβ clearance. Neuron 2009, 64:632-644.
  • [27]Igbavboa U, Avdulov NA, Chochina SV, Wood WG: Transbilayer distribution of cholesterol is modified in brain synaptic plasma membranes of knockout mice deficient in the low‒density lipoprotein receptor, apolipoprotein E, or both proteins. J Neurochem 1997, 69:1661-1667.
  • [28]Ishibashi S, Brown MS, Goldstein JL, Gerard RD, Hammer RE, Herz J: Hypercholesterolemia in low density lipoprotein receptor knockout mice and its reversal by adenovirus-mediated gene delivery. J Clin Investig 1993, 92:883.
  • [29]UCHIDA K, URABE K, NARUSE K, OGAWA Z, MABUCHI K, ITOMAN M: Hyperlipidemia and hyperinsulinemia in the spontaneous osteoarthritis mouse model, STR/Ort. Exp Anim 2009, 58:181-187.
  • [30]Biessels GJ, Kamal A, Urban IJA, Spruijt BM, Erkelens DW, Gispen WH: Water maze learning and hippocampal synaptic plasticity in streptozotocin-diabetic rats: effects of insulin treatment. Brain Res 1998, 800:125-135.
  • [31]Vorhees CV, Williams MT: Morris water maze: procedures for assessing spatial and related forms of learning and memory. Nat Protoc 2006, 1:848-858.
  • [32]Hellwig S, Hack I, Kowalski J, Brunne B, Jarowyj J, Unger A, Bock HH, Junghans D, Frotscher M: Role for Reelin in neurotransmitter release. J Neurosci 2011, 31:2352-2360.
  • [33]Ojo B, Rezaie P, Gabbott PL, Davies H, Colyer F, Cowley TR, Lynch M, Stewart MG: Age-related changes in the hippocampus (loss of synaptophysin and glial-synaptic interaction) are modified by systemic treatment with an NCAM-derived peptide, FGL. Brain Behav Immun 2011, 26:778-788.
  • [34]Cai Q, Gerwin C, Sheng Z-H: Syntabulin-mediated anterograde transport of mitochondria along neuronal processes. J Cell Biol 2005, 170:959-969.
  • [35]Lull ME, Levesque S, Surace MJ, Block ML: Chronic apocynin treatment attenuates beta amyloid plaque size and microglial number in hAPP (751) SL mice. PLoS One 2011, 6:e20153.
  • [36]Mulder M, Koopmans G, Wassink G, Al Mansouri G, Simard ML, Havekes LM, Prickaerts J, Blokland A: LDL receptor deficiency results in decreased cell proliferation and presynaptic bouton density in the murine hippocampus. Neurosci Res 2007, 59:251-256.
  • [37]Pfrieger FW, Ungerer N: Cholesterol metabolism in neurons and astrocytes. Prog Lipid Res 2011, 50:357-371.
  • [38]Elder GA, Ragnauth A, Dorr N, Franciosi S, Schmeidler J, Haroutunian V, Buxbaum JD: Increased locomotor activity in mice lacking the low-density lipoprotein receptor. Behav Brain Res 2008, 191:256-265.
  • [39]Mulder M, Jansen PJ, Janssen BJ, van de Berg WD, van der Boom H, Havekes LM, de Kloet RE, Ramaekers F, Blokland A: Low-density lipoprotein receptor-knockout mice display impaired spatial memory associated with a decreased synaptic density in the hippocampus. Neurobiol Dis 2004, 16:212-219.
  • [40]Choi J-H, Park P, Baek G-C, Sim S-E, Kang SJ, Lee Y, Ahn S-H, Lim C-S, Lee Y-S, Collingridge GL: Effects of PI3Kγ overexpression in the hippocampus on synaptic plasticity and spatial learning. Molecular Brain 2014, 7:78.
  • [41]Sheng M, Sabatini BL, Südhof TC: Synapses and Alzheimer’s disease. Cold Spring Harb Perspect Biol 2012, 4:a005777.
  • [42]Cameron HA, Mckay RD: Adult neurogenesis produces a large pool of new granule cells in the dentate gyrus. J Comp Neurol 2001, 435:406-417.
  • [43]Amaral DG, Scharfman HE, Lavenex P: The dentate gyrus: fundamental neuroanatomical organization (dentate gyrus for dummies). Prog Brain Res 2007, 163:3-790.
  • [44]Scharfman HE: The Dentate Gyrus: A Comprehensive Guide to Structure, Function, and Clinical Implications. Elsevier; 2007.
  • [45]Carlén M, Cassidy RM, Brismar H, Smith GA, Enquist LW, Frisén J: Functional integration of adult-born neurons. Curr Biol 2002, 12:606-608.
  • [46]Takamori S, Holt M, Stenius K, Lemke EA, Grønborg M, Riedel D, Urlaub H, Schenck S, Brügger B, Ringler P: Molecular anatomy of a trafficking organelle. Cell 2006, 127:831-846.
  • [47]Abad-Rodriguez J, Ledesma MD, Craessaerts K, Perga S, Medina M, Delacourte A, Dingwall C, De Strooper B, Dotti CG: Neuronal membrane cholesterol loss enhances amyloid peptide generation. J Cell Biol 2004, 167:953-960.
  • [48]Burns MP, Igbavboa U, Wang L, Wood WG: Cholesterol distribution, not total levels, correlate with altered amyloid precursor protein processing in statin-treated mice. Neruomol Med 2006, 8:319-328.
  • [49]Li S, Shankar GM, Selkoe DJ: How do soluble oligomers of amyloid β-protein impair hippocampal synaptic plasticity? Front Cell Neurosci 2010, 4:5.
  • [50]Bordji K, Becerril-Ortega J, Buisson A: Synapses, NMDA receptor activity and neuronal Aβ production in Alzheimer’s disease. Rev Neurosci 2011, 22:285-294.
  • [51]Malaplate-Armand C, Florent-Béchard S, Youssef I, Koziel V, Sponne I, Kriem B, Leininger-Muller B, Olivier J-L, Oster T, Pillot T: Soluble oligomers of amyloid-β peptide induce neuronal apoptosis by activating a cPLA < sub > 2 -dependent sphingomyelinase-ceramide pathway. Neurobiol Dis 2006, 23:178-189.
  • [52]Mitew S, Kirkcaldie MT, Dickson TC, Vickers JC: Altered synapses and gliotransmission in Alzheimer’s disease and AD model mice. Neurobiol Aging 2013, 34:2341-2351.
  • [53]Russell CL, Semerdjieva S, Empson RM, Austen BM, Beesley PW, Alifragis P: Amyloid-β acts as a regulator of neurotransmitter release disrupting the interaction between synaptophysin and VAMP2. PLoS One 2012, 7:e43201.
  • [54]Alder J, Kanki H, Valtorta F, Greengard P, Poo M: Overexpression of synaptophysin enhances neurotransmitter secretion at Xenopus neuromuscular synapses. J Neurosci 1995, 15:511-519.
  文献评价指标  
  下载次数:26次 浏览次数:8次