| Lipids in Health and Disease | |
| LDL receptor knock-out mice show impaired spatial cognition with hippocampal vulnerability to apoptosis and deficits in synapses | |
| Rong Huang1  Pin Wang1  Wen-qing Xia1  Yang Yuan1  Yan Huang2  Shao-hua Wang1  | |
| [1] Department of Endocrinology, ZhongDa Hospital of Southeast University, No.87 DingJiaQiao Road, Nanjing 210009, PR China;Department of Endocrinology, YanCheng First People’s Hospital, No.16 YueHe Road, YanCheng 224005, PR China | |
| 关键词: Apoptosis; Synapse; Cognition; LDL receptor knock-out; | |
| Others : 1145602 DOI : 10.1186/1476-511X-13-175 |
|
| received in 2014-08-18, accepted in 2014-11-11, 发布年份 2014 | |
PDF
|
|
【 摘 要 】
Background
Evidence from clinical studies support the fact that abnormal cholesterol metabolism in the brain leads to progressive cognitive dysfunction. The low-density lipoprotein receptor (LDLR) is well-known for its role in regulating cholesterol metabolism. Whether LDLR involved in this impaired cognition and the potential mechanisms that underlie this impairment are unknown.
Methods
Twelve-month-old Ldlr-/- mice (n = 10) and wild-type littermates C57BL/6 J (n = 14) were subjected to the Morris water maze test. At 1 week after completion of the behavioural testing, all of the animals were sacrificed for analysis of synaptic and apoptotic markers.
Results
The plasma cholesterol concentration of Ldlr-/- mice was increased moderately when compared with C57BL/6 J mice (P < 0.05). Behavioural testing revealed that Ldlr-/- mice displayed impaired spatial memory, and moreover, the expression levels of synaptophysin and the number of synaptophysin-immunoreactive presynaptic boutons in the hippocampal CA1 and dentate gyrus were decreased (all P < 0.05). Ultrastructural changes in the dentate gyrus were observed using transmission electron microscopy. Furthermore, apoptosis in the hippocampus of Ldlr-/- mice was revealed based on elevation, at both the mRNA and protein levels, of the ratio of Bax/Bcl-2 expression (all P < 0.05)and an increase in activated-caspase3 protein level (P < 0.05).
Conclusion
LDLR deficiency contributes to impaired spatial cognition. This most likely occurs via negative effects that promote apoptosis and synaptic deficits in the hippocampus.
【 授权许可】
2014 Wang et al.; licensee BioMed Central Ltd.
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 20150402115552423.pdf | 3756KB | ||
| Figure 6. | 61KB | Image | |
| Figure 5. | 63KB | Image | |
| Figure 4. | 186KB | Image | |
| Figure 3. | 65KB | Image | |
| Figure 2. | 74KB | Image | |
| Figure 1. | 50KB | Image |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
【 参考文献 】
- [1]Puglielli L, Tanzi RE, Kovacs DM: Alzheimer’s disease: the cholesterol connection. Nat Neurosci 2003, 6:345-351.
- [2]Vance JE, Hayashi H, Karten B: Cholesterol Homeostasis in Neurons and Glial Cells. Seminars in Cell & Developmental Biology 2005, 193.
- [3]Wollmer MA: Cholesterol-related genes in Alzheimer’s disease. Biochim Biophys Acta 2010, 1801:762-773.
- [4]Tint G, Salen G, Batta AK, Shefer S, Irons M, Elias ER, Abuelo DN, Johnson VP, Lambert M, Lutz R: Correlation of severity and outcome with plasma sterol levels in variants of the Smith-Lemli-Opitz syndrome. J Pediatr 1995, 127:82-87.
- [5]Chang T-Y, Reid PC, Sugii S, Ohgami N, Cruz JC, Chang CC: Niemann-Pick type C disease and intracellular cholesterol trafficking. J Biol Chem 2005, 280:20917-20920.
- [6]Jick H, Zornberg GL, Jick SS, Seshadri S, Drachman DA: Statins and the risk of dementia. Lancet 2000, 356:1627-1631.
- [7]Jarvik G, Wijsman EM, Kukull W, Schellenberg G, Yu C, Larson E: Interactions of apolipoprotein E genotype, total cholesterol level, age, and sex in prediction of Alzheimer’s disease a case‒control study. Neurology 1995, 45:1092-1096.
- [8]Kivipelto M, Helkala E-L, Laakso MP, Hänninen T, Hallikainen M, Alhainen K, Iivonen S, Mannermaa A, Tuomilehto J, Nissinen A: Apolipoprotein E epsilon4 allele, elevated midlife total cholesterol level, and high midlife systolic blood pressure are independent risk factors for late-life Alzheimer disease. Ann Intern Med 2002, 137:149.
- [9]Barres BA, Smith SJ: Cholesterol–making or breaking the synapse. Science 2001, 294:1296-1297.
- [10]Wahrle SE, Jiang H, Parsadanian M, Hartman RE, Bales KR, Paul SM, Holtzman DM: Deletion of Abca1 increases Aβ deposition in the PDAPP transgenic mouse model of Alzheimer disease. J Biol Chem 2005, 280:43236-43242.
- [11]Poirier J: Apolipoprotein E and cholesterol metabolism in the pathogenesis and treatment of Alzheimer’s disease. Trends Mol Med 2003, 9:94-101.
- [12]Papassotiropoulos A, Streffer JR, Tsolaki M, Schmid S, Thal D, Nicosia F, Iakovidou V, Maddalena A, Lutjohann D, Ghebremedhin E: Increased brain {beta}-amyloid load, phosphorylated tau, and risk of Alzheimer Disease associated with an intronic CYP46 polymorphism. Arch Neurol 2003, 60:29.
- [13]Michikawa M: The role of cholesterol in pathogenesis of Alzheimer’s disease. Mol Neurobiol 2003, 27:1-12.
- [14]de Chaves EIP, Rusiñol AE, Vance DE, Campenot RB, Vance JE: Role of lipoproteins in the delivery of lipids to axons during axonal regeneration. J Biol Chem 1997, 272:30766-30773.
- [15]Jeon H, Blacklow SC: Structure and physiologic function of the low-density lipoprotein receptor. Annu Rev Biochem 2005, 74:535-562.
- [16]Hussain MM, Strickland DK, Bakillah A: The mammalian low-density lipoprotein receptor family. Annu Rev Nutr 1999, 19:141-172.
- [17]Dehouck B, Fenart L, Dehouck MP, Pierce A, Torpier G, Cecchelli R: A new function for the LDL receptor: transcytosis of LDL across the blood–brain barrier. J Cell Biol 1997, 138:877-889.
- [18]Hofmann SL, Russell DW, Goldstein JL, Brown MS: mRNA for low density lipoprotein receptor in brain and spinal cord of immature and mature rabbits. Proc Natl Acad Sci 1987, 84:6312-6316.
- [19]Swanson LW, Simmons DM, Hofmann SL, Goldstein JL, Brown MS: Localization of mRNA for low density lipoprotein receptor and a cholesterol synthetic enzyme in rabbit nervous system by in situ hybridization. Proc Natl Acad Sci 1988, 85:9821-9825.
- [20]Dietschy JM, Turley SD: Thematic review series: brain Lipids. Cholesterol metabolism in the central nervous system during early development and in the mature animal. J Lipid Res 2004, 45:1375-1397.
- [21]Björkhem I, Meaney S: Brain cholesterol: long secret life behind a barrier. Arterioscler Thromb Vasc Biol 2004, 24:806-815.
- [22]Zambón D, Quintana M, Mata P, Alonso R, Benavent J, Cruz-Sánchez F, Gich J, Pocoví M, Civeira F, Capurro S: Higher incidence of mild cognitive impairment in familial hypercholesterolemia. Am J Med 2010, 123:267-274.
- [23]Lendon CL, Talbot CJ, Craddock NJ, Han SW, Wragg M, Morris JC, Goate AM: Genetic association studies between dementia of the Alzheimer’s type and three receptors for apolipoprotein E in a Caucasian population. Neurosci Lett 1997, 222:187-190.
- [24]Katsouri L, Georgopoulos S: Lack of LDL receptor enhances amyloid deposition and decreases glial response in an Alzheimer’s disease mouse model. PLoS One 2011, 6:e21880.
- [25]Cao D, Fukuchi K, Wan H, Kim H, Li L: Lack of LDL receptor aggravates learning deficits and amyloid deposits in Alzheimer transgenic mice. Neurobiol Aging 2006, 27:1632-1643.
- [26]Kim J, Castellano JM, Jiang H, Basak JM, Parsadanian M, Pham V, Mason SM, Paul SM, Holtzman DM: Overexpression of low-density lipoprotein receptor in the brain markedly inhibits amyloid deposition and increases extracellular Aβ clearance. Neuron 2009, 64:632-644.
- [27]Igbavboa U, Avdulov NA, Chochina SV, Wood WG: Transbilayer distribution of cholesterol is modified in brain synaptic plasma membranes of knockout mice deficient in the low‒density lipoprotein receptor, apolipoprotein E, or both proteins. J Neurochem 1997, 69:1661-1667.
- [28]Ishibashi S, Brown MS, Goldstein JL, Gerard RD, Hammer RE, Herz J: Hypercholesterolemia in low density lipoprotein receptor knockout mice and its reversal by adenovirus-mediated gene delivery. J Clin Investig 1993, 92:883.
- [29]UCHIDA K, URABE K, NARUSE K, OGAWA Z, MABUCHI K, ITOMAN M: Hyperlipidemia and hyperinsulinemia in the spontaneous osteoarthritis mouse model, STR/Ort. Exp Anim 2009, 58:181-187.
- [30]Biessels GJ, Kamal A, Urban IJA, Spruijt BM, Erkelens DW, Gispen WH: Water maze learning and hippocampal synaptic plasticity in streptozotocin-diabetic rats: effects of insulin treatment. Brain Res 1998, 800:125-135.
- [31]Vorhees CV, Williams MT: Morris water maze: procedures for assessing spatial and related forms of learning and memory. Nat Protoc 2006, 1:848-858.
- [32]Hellwig S, Hack I, Kowalski J, Brunne B, Jarowyj J, Unger A, Bock HH, Junghans D, Frotscher M: Role for Reelin in neurotransmitter release. J Neurosci 2011, 31:2352-2360.
- [33]Ojo B, Rezaie P, Gabbott PL, Davies H, Colyer F, Cowley TR, Lynch M, Stewart MG: Age-related changes in the hippocampus (loss of synaptophysin and glial-synaptic interaction) are modified by systemic treatment with an NCAM-derived peptide, FGL. Brain Behav Immun 2011, 26:778-788.
- [34]Cai Q, Gerwin C, Sheng Z-H: Syntabulin-mediated anterograde transport of mitochondria along neuronal processes. J Cell Biol 2005, 170:959-969.
- [35]Lull ME, Levesque S, Surace MJ, Block ML: Chronic apocynin treatment attenuates beta amyloid plaque size and microglial number in hAPP (751) SL mice. PLoS One 2011, 6:e20153.
- [36]Mulder M, Koopmans G, Wassink G, Al Mansouri G, Simard ML, Havekes LM, Prickaerts J, Blokland A: LDL receptor deficiency results in decreased cell proliferation and presynaptic bouton density in the murine hippocampus. Neurosci Res 2007, 59:251-256.
- [37]Pfrieger FW, Ungerer N: Cholesterol metabolism in neurons and astrocytes. Prog Lipid Res 2011, 50:357-371.
- [38]Elder GA, Ragnauth A, Dorr N, Franciosi S, Schmeidler J, Haroutunian V, Buxbaum JD: Increased locomotor activity in mice lacking the low-density lipoprotein receptor. Behav Brain Res 2008, 191:256-265.
- [39]Mulder M, Jansen PJ, Janssen BJ, van de Berg WD, van der Boom H, Havekes LM, de Kloet RE, Ramaekers F, Blokland A: Low-density lipoprotein receptor-knockout mice display impaired spatial memory associated with a decreased synaptic density in the hippocampus. Neurobiol Dis 2004, 16:212-219.
- [40]Choi J-H, Park P, Baek G-C, Sim S-E, Kang SJ, Lee Y, Ahn S-H, Lim C-S, Lee Y-S, Collingridge GL: Effects of PI3Kγ overexpression in the hippocampus on synaptic plasticity and spatial learning. Molecular Brain 2014, 7:78.
- [41]Sheng M, Sabatini BL, Südhof TC: Synapses and Alzheimer’s disease. Cold Spring Harb Perspect Biol 2012, 4:a005777.
- [42]Cameron HA, Mckay RD: Adult neurogenesis produces a large pool of new granule cells in the dentate gyrus. J Comp Neurol 2001, 435:406-417.
- [43]Amaral DG, Scharfman HE, Lavenex P: The dentate gyrus: fundamental neuroanatomical organization (dentate gyrus for dummies). Prog Brain Res 2007, 163:3-790.
- [44]Scharfman HE: The Dentate Gyrus: A Comprehensive Guide to Structure, Function, and Clinical Implications. Elsevier; 2007.
- [45]Carlén M, Cassidy RM, Brismar H, Smith GA, Enquist LW, Frisén J: Functional integration of adult-born neurons. Curr Biol 2002, 12:606-608.
- [46]Takamori S, Holt M, Stenius K, Lemke EA, Grønborg M, Riedel D, Urlaub H, Schenck S, Brügger B, Ringler P: Molecular anatomy of a trafficking organelle. Cell 2006, 127:831-846.
- [47]Abad-Rodriguez J, Ledesma MD, Craessaerts K, Perga S, Medina M, Delacourte A, Dingwall C, De Strooper B, Dotti CG: Neuronal membrane cholesterol loss enhances amyloid peptide generation. J Cell Biol 2004, 167:953-960.
- [48]Burns MP, Igbavboa U, Wang L, Wood WG: Cholesterol distribution, not total levels, correlate with altered amyloid precursor protein processing in statin-treated mice. Neruomol Med 2006, 8:319-328.
- [49]Li S, Shankar GM, Selkoe DJ: How do soluble oligomers of amyloid β-protein impair hippocampal synaptic plasticity? Front Cell Neurosci 2010, 4:5.
- [50]Bordji K, Becerril-Ortega J, Buisson A: Synapses, NMDA receptor activity and neuronal Aβ production in Alzheimer’s disease. Rev Neurosci 2011, 22:285-294.
- [51]Malaplate-Armand C, Florent-Béchard S, Youssef I, Koziel V, Sponne I, Kriem B, Leininger-Muller B, Olivier J-L, Oster T, Pillot T: Soluble oligomers of amyloid-β peptide induce neuronal apoptosis by activating a cPLA < sub > 2 -dependent sphingomyelinase-ceramide pathway. Neurobiol Dis 2006, 23:178-189.
- [52]Mitew S, Kirkcaldie MT, Dickson TC, Vickers JC: Altered synapses and gliotransmission in Alzheimer’s disease and AD model mice. Neurobiol Aging 2013, 34:2341-2351.
- [53]Russell CL, Semerdjieva S, Empson RM, Austen BM, Beesley PW, Alifragis P: Amyloid-β acts as a regulator of neurotransmitter release disrupting the interaction between synaptophysin and VAMP2. PLoS One 2012, 7:e43201.
- [54]Alder J, Kanki H, Valtorta F, Greengard P, Poo M: Overexpression of synaptophysin enhances neurotransmitter secretion at Xenopus neuromuscular synapses. J Neurosci 1995, 15:511-519.
PDF