期刊论文详细信息
Fluids and Barriers of the CNS
Vascular disruption and blood–brain barrier dysfunction in intracerebral hemorrhage
Guohua Xi4  Ya Hua4  Anuska V Andjelkovic1  Jianming Xiang4  Ningna Zhou3  Richard F Keep2 
[1] Department of Pathology, University of Michigan, Ann Arbor, USA;Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, USA;Department of Pharmacology, Yunnan University of Traditional Chinese Medicine, Kunming, China;Department of Neurosurgery, University of Michigan, Ann Arbor, Michigan 48109-2200, USA
关键词: Iron;    Hemoglobin;    Thrombin;    Tight junction;    Endothelium;    Blood–brain barrier;    Hematoma expansion;    Intracerebral hemorrhage;   
Others  :  1098260
DOI  :  10.1186/2045-8118-11-18
 received in 2014-07-15, accepted in 2014-08-07,  发布年份 2014
PDF
【 摘 要 】

This article reviews current knowledge of the mechanisms underlying the initial hemorrhage and secondary blood–brain barrier (BBB) dysfunction in primary spontaneous intracerebral hemorrhage (ICH) in adults. Multiple etiologies are associated with ICH, for example, hypertension, Alzheimer’s disease, vascular malformations and coagulopathies (genetic or drug-induced). After the initial bleed, there can be continued bleeding over the first 24 hours, so-called hematoma expansion, which is associated with adverse outcomes. A number of clinical trials are focused on trying to limit such expansion. Significant progress has been made on the causes of BBB dysfunction after ICH at the molecular and cell signaling level. Blood components (e.g. thrombin, hemoglobin, iron) and the inflammatory response to those components play a large role in ICH-induced BBB dysfunction. There are current clinical trials of minimally invasive hematoma removal and iron chelation which may limit such dysfunction. Understanding the mechanisms underlying the initial hemorrhage and secondary BBB dysfunction in ICH is vital for developing methods to prevent and treat this devastating form of stroke.

【 授权许可】

   
2014 Keep et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150131021725573.pdf 1826KB PDF download
Figure 5. 153KB Image download
Figure 4. 65KB Image download
Figure 3. 132KB Image download
Figure 2. 77KB Image download
Figure 1. 88KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Adeoye O, Broderick JP: Advances in the management of intracerebral hemorrhage. Nat Rev Neurol 2010, 6(11):593-601.
  • [2]Flaherty ML: Anticoagulant-associated intracerebral hemorrhage. Semin Neurol 2010, 30(5):565-572.
  • [3]Jickling GC, Liu D, Stamova B, Ander BP, Zhan X, Lu A, Sharp FR: Hemorrhagic transformation after ischemic stroke in animals and humans. J Cereb Blood Flow Metab 2014, 34(2):185-199.
  • [4]Xi G, Strahle J, Hua Y, Keep RF: Progress in translational research on intracerebral hemorrhage: is there an end in sight? Prog Neurobiol 2014, 115:45-63.
  • [5]Keep RF, Hua Y, Xi G: Intracerebral haemorrhage: mechanisms of injury and therapeutic targets. Lancet Neurol 2012, 11(8):720-731.
  • [6]Keep RF, Xi G, Hua Y, Hoff JT: The deleterious or beneficial effects of different agents in intracerebral hemorrhage: think big, think small, or is hematoma size important? Stroke 2005, 36(7):1594-1596.
  • [7]Xi G, Keep RF, Hoff JT: Mechanisms of brain injury after intracerebral haemorrhage. Lancet Neurol 2006, 5(1):53-63.
  • [8]Brouwers HB, Greenberg SM: Hematoma expansion following acute intracerebral hemorrhage. Cerebrovasc Dis 2013, 35(3):195-201.
  • [9]Yang GY, Betz AL, Chenevert TL, Brunberg JA, Hoff JT: Experimental intracerebral hemorrhage: relationship between brain edema, blood flow, and blood–brain barrier permeability in rats. J Neurosurg 1994, 81(1):93-102.
  • [10]Wagner KR, Xi G, Hua Y, Kleinholz M, de Courten-Myers GM, Myers RE, Broderick JP, Brott TG: Lobar intracerebral hemorrhage model in pigs: rapid edema development in perihematomal white matter. Stroke 1996, 27(3):490-497.
  • [11]Wagner KR, Xi G, Hua Y, Zuccarello M, de Courten-Myers GM, Broderick JP, Brott TG: Ultra-early clot aspiration after lysis with tissue plasminogen activator in a porcine model of intracerebral hemorrhage: edema reduction and blood–brain barrier protection. J Neurosurg 1999, 90(3):491-498.
  • [12]Rosenberg GA, Estrada E, Kelley RO, Kornfeld M: Bacterial collagenase disrupts extracellular matrix and opens blood–brain barrier in rat. Neurosci Lett 1993, 160(1):117-119.
  • [13]Hallevi H, Abraham AT, Barreto AD, Grotta JC, Savitz SI: The spot sign in intracerebral hemorrhage: the importance of looking for contrast extravasation. Cerebrovasc Dis 2010, 29(3):217-220.
  • [14]Delgado P, Alvarez Sabin J, Santamarina E, Molina CA, Quintana M, Rosell A, Montaner J: Plasma S100B level after acute spontaneous intracerebral hemorrhage. Stroke 2006, 37(11):2837-2839.
  • [15]Murai Y, Ikeda Y, Teramoto A, Tsuji Y: Magnetic resonance imaging-documented extravasation as an indicator of acute hypertensive intracerebral hemorrhage. J Neurosurg 1998, 88(4):650-655.
  • [16]Fisher CM: Pathological observations in hypertensive cerebral hemorrhage. J Neuropath Exp Neurol 1971, 30(3):536-550.
  • [17]Fisher CM: Cerebral miliary aneurysms in hypertension. Am J Pathol 1972, 66(2):313-330.
  • [18]Lee JM, Zhai G, Liu Q, Gonzales ER, Yin K, Yan P, Hsu CY, Vo KD, Lin W: Vascular permeability precedes spontaneous intracerebral hemorrhage in stroke-prone spontaneously hypertensive rats. Stroke 2007, 38(12):3289-3291.
  • [19]Devan WJ, Falcone GJ, Anderson CD, Jagiella JM, Schmidt H, Hansen BM, Jimenez-Conde J, Giralt-Steinhauer E, Cuadrado-Godia E, Soriano C, Ayres AM, Schwab K, Kassis SB, Valant V, Pera J, Urbanik A, Viswanathan A, Rost NS, Goldstein JN, Freudenberger P, Stogerer EM, Norrving B, Tirschwell DL, Selim M, Brown DL, Silliman SL, Worrall BB, Meschia JF, Kidwell CS, Montaner J, et al.: Heritability estimates identify a substantial genetic contribution to risk and outcome of intracerebral hemorrhage. Stroke 2013, 44(6):1578-1583.
  • [20]Jeanne M, Labelle-Dumais C, Jorgensen J, Kauffman WB, Mancini GM, Favor J, Valant V, Greenberg SM, Rosand J, Gould DB: COL4A2 mutations impair COL4A1 and COL4A2 secretion and cause hemorrhagic stroke. Am J Hum Genet 2012, 90(1):91-101.
  • [21]Woo D, Falcone GJ, Devan WJ, Brown WM, Biffi A, Howard TD, Anderson CD, Brouwers HB, Valant V, Battey TW, Enzinger C, Hansen BM, Norrving B, Jimenez-Conde J, Giralt-Steinhauer E, Elosua R, Cuadrado-Godia E, Soriano C, Roquer J, Kraft P, Ayres AM, Schwab K, McCauley JL, Pera J, Urbanik A, Rost NS, Goldstein JN, Viswanathan A, Stogerer EM, Tirschwell DL, et al.: Meta-analysis of genome-wide association studies identifies 1q22 as a susceptibility locus for intracerebral hemorrhage. Am J Hum Genet 2014, 94(4):511-521.
  • [22]Penn DL, Komotar RJ, Sander Connolly E: Hemodynamic mechanisms underlying cerebral aneurysm pathogenesis. J Clin Neurosci 2011, 18(11):1435-1438.
  • [23]McNulty ML, Lee VH: Management of unruptured intracranial aneurysms and arteriovenous malformations. Am J Ther 2011, 18(1):64-69.
  • [24]Fischer A, Zalvide J, Faurobert E, Albiges-Rizo C, Tournier-Lasserve E: Cerebral cavernous malformations: from CCM genes to endothelial cell homeostasis. Trends Mol Med 2013, 19(5):302-308.
  • [25]Fisher OS, Boggon TJ: Signaling pathways and the cerebral cavernous malformations proteins: lessons from structural biology. Cell Mol Life Sci 2014, 71(10):1881-1892.
  • [26]Dejana E, Orsenigo F: Endothelial adherens junctions at a glance. J Cell Sci 2013, 126(Pt 12):2545-2549.
  • [27]Weinsheimer S, Kim H, Pawlikowska L, Chen Y, Lawton MT, Sidney S, Kwok PY, McCulloch CE, Young WL: EPHB4 gene polymorphisms and risk of intracranial hemorrhage in patients with brain arteriovenous malformations. Circ Cardiovasc Genet 2009, 2(5):476-482.
  • [28]Rutledge WC, Ko NU, Lawton MT, Kim H: Hemorrhage rates and risk factors in the natural history course of brain arteriovenous malformations. Transl Stroke Res 2014, 5(5):538-542.
  • [29]Auriel E, Greenberg SM: The pathophysiology and clinical presentation of cerebral amyloid angiopathy. Curr Atheroscler Rep 2012, 14(4):343-350.
  • [30]Mehndiratta P, Manjila S, Ostergard T, Eisele S, Cohen ML, Sila C, Selman WR: Cerebral amyloid angiopathy-associated intracerebral hemorrhage: pathology and management. Neurosurg Focus 2012, 32(4):E7.
  • [31]Viswanathan A, Greenberg SM: Cerebral amyloid angiopathy in the elderly. Ann Neurol 2011, 70(6):871-880.
  • [32]Samarasekera N, Smith C, Al-Shahi Salman R: The association between cerebral amyloid angiopathy and intracerebral haemorrhage: systematic review and meta-analysis. J Neurol Neurosurg Psych 2012, 83(3):275-281.
  • [33]Lambert JC, Heath S, Even G, Campion D, Sleegers K, Hiltunen M, Combarros O, Zelenika D, Bullido MJ, Tavernier B, Letenneur L, Bettens K, Berr C, Pasquier F, Fievet N, Barberger-Gateau P, Engelborghs S, De Deyn P, Mateo I, Franck A, Helisalmi S, Porcellini E, Hanon O: Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer’s disease. Nat Genet 2009, 41(10):1094-1099.
  • [34]Biffi A, Shulman JM, Jagiella JM, Cortellini L, Ayres AM, Schwab K, Brown DL, Silliman SL, Selim M, Worrall BB, Meschia JF, Slowik A, De Jager PL, Greenberg SM, Schneider JA, Bennett DA, Rosand J: Genetic variation at CR1 increases risk of cerebral amyloid angiopathy. Neurology 2012, 78(5):334-341.
  • [35]Nakano K, Hokamura K, Taniguchi N, Wada K, Kudo C, Nomura R, Kojima A, Naka S, Muranaka Y, Thura M, Nakajima A, Masuda K, Nakagawa I, Speziale P, Shimada N, Amano A, Kamisaki Y, Tanaka T, Umemura K, Ooshima T: The collagen-binding protein of Streptococcus mutans is involved in haemorrhagic stroke. Nat Commun 2011, 2:485.
  • [36]Leary MC, Saver JL: Annual incidence of first silent stroke in the United States: a preliminary estimate. Cerebrovasc Dis 2003, 16(3):280-285.
  • [37]Lee SH, Ryu WS, Roh JK: Cerebral microbleeds are a risk factor for warfarin-related intracerebral hemorrhage. Neurology 2009, 72(2):171-176.
  • [38]Lauer A, Pfeilschifter W, Schaffer CB, Lo EH, Foerch C: Intracerebral haemorrhage associated with antithrombotic treatment: translational insights from experimental studies. Lancet Neurol 2013, 12(4):394-405.
  • [39]Khatri R, McKinney AM, Swenson B, Janardhan V: Blood–brain barrier, reperfusion injury, and hemorrhagic transformation in acute ischemic stroke. Neurology 2012, 79(13 Suppl 1):S52-S57.
  • [40]Anonymous: Tissue plasminogen activator for acute ischemic stroke. The National Institute of Neurological Disorders and Stroke rt-PA Stroke Study Group. New Engl J Med 1995, 333(24):1581-1587.
  • [41]del Zoppo GJ, Izawa Y, Hawkins BT: Hemostasis and alterations of the central nervous system. Semin Thromb Hemost 2013, 39(8):856-875.
  • [42]Mayer SA, Brun NC, Begtrup K, Broderick J, Davis S, Diringer MN, Skolnick BE, Steiner T, Investigators FT: Efficacy and safety of recombinant activated factor VII for acute intracerebral hemorrhage. New Engl J Med 2008, 358(20):2127-2137.
  • [43]Anderson CS, Heeley E, Huang Y, Wang J, Stapf C, Delcourt C, Lindley R, Robinson T, Lavados P, Neal B, Hata J, Arima H, Parsons M, Li Y, Wang J, Heritier S, Li Q, Woodward M, Simes RJ, Davis SM, Chalmers J: INTERACT Investigators: Rapid blood-pressure lowering in patients with acute intracerebral hemorrhage. New Engl J Med 2013, 368(25):2355-2365.
  • [44]Anderson CS, Huang Y, Arima H, Heeley E, Skulina C, Parsons MW, Peng B, Li Q, Su S, Tao QL, Li YC, Jiang JD, Tai LW, Zhang JL, Xu E, Cheng Y, Morgenstern LB, Chalmers J, Wang JG: INTERACT Investigators: effects of early intensive blood pressure-lowering treatment on the growth of hematoma and perihematomal edema in acute intracerebral hemorrhage: the Intensive Blood Pressure Reduction in Acute Cerebral Haemorrhage Trial (INTERACT). Stroke 2010, 41(2):307-312.
  • [45]Abbott NJ, Ronnback L, Hansson E: Astrocyte-endothelial interactions at the blood–brain barrier. Nat Rev Neurosci 2006, 7(1):41-53.
  • [46]del Zoppo GJ: Aging and the neurovascular unit. Ann New York Acad Sci 2012, 1268:127-133.
  • [47]Mae M, Armulik A, Betsholtz C: Getting to know the cast - cellular interactions and signaling at the neurovascular unit. Curr Pharm Design 2011, 17(26):2750-2754.
  • [48]Ronaldson PT, Davis TP: Blood–brain barrier integrity and glial support: mechanisms that can be targeted for novel therapeutic approaches in stroke. Curr Pharm Design 2012, 18(25):3624-3644.
  • [49]Stanimirovic DB, Friedman A: Pathophysiology of the neurovascular unit: disease cause or consequence? J Cereb Blood Flow Metab 2012, 32(7):1207-1221.
  • [50]Greenwood J, Heasman SJ, Alvarez JI, Prat A, Lyck R, Engelhardt B: Review: leucocyte-endothelial cell crosstalk at the blood–brain barrier: a prerequisite for successful immune cell entry to the brain. Neuropath Appl Neuro 2011, 37(1):24-39.
  • [51]Knowland D, Arac A, Sekiguchi KJ, Hsu M, Lutz SE, Perrino J, Steinberg GK, Barres BA, Nimmerjahn A, Agalliu D: Stepwise recruitment of transcellular and paracellular pathways underlies blood–brain barrier breakdown in stroke. Neuron 2014, 82(3):603-617.
  • [52]Herweh C, Juttler E, Schellinger PD, Klotz E, Schramm P: Perfusion CT in hyperacute cerebral hemorrhage within 3 hours after symptom onset: is there an early perihemorrhagic penumbra? J Neuroimaging 2010, 20(4):350-353.
  • [53]Kate MP, Hansen MB, Mouridsen K, Ostergaard L, Choi V, Gould BE, McCourt R, Hill MD, Demchuk AM, Coutts SB, Dowlatshahi D, Emery DJ, Buck BH, Butcher KS: ICHADAPT Investigators: blood pressure reduction does not reduce perihematoma oxygenation: a CT perfusion study. J Cereb Blood Flow Metab 2014, 34(1):81-86.
  • [54]Zazulia AR, Diringer MN, Videen TO, Adams RE, Yundt K, Aiyagari V, Grubb RL Jr, Powers WJ: Hypoperfusion without ischemia surrounding acute intracerebral hemorrhage. J Cereb Blood Flow Metab 2001, 21(7):804-810.
  • [55]Lee KR, Kawai N, Kim S, Sagher O, Hoff JT: Mechanisms of edema formation after intracerebral hemorrhage: effects of thrombin on cerebral blood flow, blood–brain barrier permeability, and cell survival in a rat model. J Neurosurg 1997, 86(2):272-278.
  • [56]Liu DZ, Ander BP, Xu H, Shen Y, Kaur P, Deng W, Sharp FR: Blood–brain barrier breakdown and repair by Src after thrombin-induced injury. Ann Neurol 2010, 67(4):526-533.
  • [57]Xi G, Reiser G, Keep RF: The role of thrombin and thrombin receptors in ischemic, hemorrhagic and traumatic brain injury: deleterious or protective? J Neurochem 2003, 84(1):3-9.
  • [58]Yan J, Manaenko A, Chen S, Klebe D, Ma Q, Caner B, Fujii M, Zhou C, Zhang JH: Role of SCH79797 in maintaining vascular integrity in rat model of subarachnoid hemorrhage. Stroke 2013, 44(5):1410-1417.
  • [59]Gao F, Liu F, Chen Z, Hua Y, Keep RF, Xi G: Hydrocephalus after intraventricular hemorrhage: the role of thrombin. J Cereb Blood Flow Metab 2014, 34(3):489-494.
  • [60]Masada T, Hua Y, Xi G, Yang GY, Hoff JT, Keep RF: Attenuation of intracerebral hemorrhage and thrombin-induced brain edema by overexpression of interleukin-1 receptor antagonist. J Neurosurg 2001, 95(4):680-686.
  • [61]Moller T, Weinstein JR, Hanisch UK: Activation of microglial cells by thrombin: past, present, and future. Semin Thromb Hemost 2006, 32(Suppl 1):69-76.
  • [62]Adams RA, Passino M, Sachs BD, Nuriel T, Akassoglou K: Fibrin mechanisms and functions in nervous system pathology. Mol Interv 2004, 4(3):163-176.
  • [63]Davalos D, Ryu JK, Merlini M, Baeten KM, Le Moan N, Petersen MA, Deerinck TJ, Smirnoff DS, Bedard C, Hakozaki H, Gonias MS, Ling JB, Lassmann H, Degen JL, Ellisman MH, Akassoglou K: Fibrinogen-induced perivascular microglial clustering is required for the development of axonal damage in neuroinflammation. Nat Commun 2012, 3:1227.
  • [64]Wagner KR, Sharp FR, Ardizzone TD, Lu A, Clark JF: Heme and iron metabolism: role in cerebral hemorrhage. J Cereb Blood Flow Metab 2003, 23(6):629-652.
  • [65]Hua Y, Keep RF, Hoff JT, Xi G: Brain injury after intracerebral hemorrhage: the role of thrombin and iron. Stroke 2007, 38(2 Suppl):759-762.
  • [66]Katsu M, Niizuma K, Yoshioka H, Okami N, Sakata H, Chan PH: Hemoglobin-induced oxidative stress contributes to matrix metalloproteinase activation and blood–brain barrier dysfunction in vivo. J Cereb Blood Flow Metab 2010, 30(12):1939-1950.
  • [67]Xi G, Hua Y, Bhasin RR, Ennis SR, Keep RF, Hoff JT: Mechanisms of edema formation after intracerebral hemorrhage: effects of extravasated red blood cells on blood flow and blood–brain barrier integrity. Stroke 2001, 32(12):2932-2938.
  • [68]Yang S, Chen Y, Deng X, Jiang W, Li B, Fu Z, Du M, Ding R: Hemoglobin-induced nitric oxide synthase overexpression and nitric oxide production contribute to blood–brain barrier disruption in the rat. J Mol Neurosci 2013, 51(2):352-363.
  • [69]Zhao F, Hua Y, He Y, Keep RF, Xi G: Minocycline-induced attenuation of iron overload and brain injury after experimental intracerebral hemorrhage. Stroke 2011, 42(12):3587-3593.
  • [70]Guo F, Hua Y, Wang J, Keep RF, Xi G: Inhibition of carbonic anhydrase reduces brain injury after intracerebral hemorrhage. Transl Stroke Res 2012, 3(1):130-137.
  • [71]Nakamura T, Keep RF, Hua Y, Schallert T, Hoff JT, Xi G: Deferoxamine-induced attenuation of brain edema and neurological deficits in a rat model of intracerebral hemorrhage. J Neurosurg 2004, 100(4):672-678.
  • [72]Okauchi M, Hua Y, Keep RF, Morgenstern LB, Schallert T, Xi G: Deferoxamine treatment for intracerebral hemorrhage in aged rats: therapeutic time window and optimal duration. Stroke 2010, 41(2):375-382.
  • [73]Xie Q, Gu Y, Hua Y, Liu W, Keep RF, Xi G: Deferoxamine attenuates white matter injury in a piglet intracerebral hemorrhage model. Stroke 2014, 45(1):290-292.
  • [74]Gong Y, Tian H, Xi G, Keep RF, Hoff JT, Hua Y: Systemic zinc protoporphyrin administration reduces intracerebral hemorrhage-induced brain injury. Acta Neurochir Suppl 2006, 96:232-236.
  • [75]Wagner KR, Hua Y, de Courten-Myers GM, Broderick JP, Nishimura RN, Lu SY, Dwyer BE: Tin-mesoporphyrin, a potent heme oxygenase inhibitor, for treatment of intracerebral hemorrhage: in vivo and in vitro studies. Cell Mol Biol 2000, 46(3):597-608.
  • [76]Matz PG, Weinstein PR, Sharp FR: Heme oxygenase-1 and heat shock protein 70 induction in glia and neurons throughout rat brain after experimental intracerebral hemorrhage. Neurosurgery 1997, 40(1):152-160.
  • [77]Wu J, Hua Y, Keep RF, Nakamura T, Hoff JT, Xi G: Iron and iron-handling proteins in the brain after intracerebral hemorrhage. Stroke 2003, 34(12):2964-2969.
  • [78]Wang J, Dore S: Heme oxygenase-1 exacerbates early brain injury after intracerebral haemorrhage. Brain 2007, 130(Pt 6):1643-1652.
  • [79]Wang J, Dore S: Heme oxygenase 2 deficiency increases brain swelling and inflammation after intracerebral hemorrhage. Neuroscience 2008, 155(4):1133-1141.
  • [80]Loftspring MC, Johnson HL, Feng R, Johnson AJ, Clark JF: Unconjugated bilirubin contributes to early inflammation and edema after intracerebral hemorrhage. J Cereb Blood Flow Metab 2011, 31(4):1133-1142.
  • [81]Chan PH, Schmidley JW, Fishman RA, Longar SM: Brain injury, edema, and vascular permeability changes induced by oxygen-derived free radicals. Neurology 1984, 34(3):315-320.
  • [82]Zuccarello M, Anderson DK: Interaction between free radicals and excitatory amino acids in the blood–brain barrier disruption after iron injury in the rat. J Neurotraum 1993, 10(4):397-403.
  • [83]Fraser PA: The role of free radical generation in increasing cerebrovascular permeability. Free Radical Bio Med 2011, 51(5):967-977.
  • [84]Pun PB, Lu J, Moochhala S: Involvement of ROS in BBB dysfunction. Free Radical Res 2009, 43(4):348-364.
  • [85]Yeatts SD, Palesch YY, Moy CS, Selim M: High dose deferoxamine in intracerebral hemorrhage (HI-DEF) trial: rationale, design, and methods. Neurocrit Care 2013, 19(2):257-266.
  • [86]Aronowski J, Zhao X: Molecular pathophysiology of cerebral hemorrhage: secondary brain injury. Stroke 2011, 42(6):1781-1786.
  • [87]Taylor RA, Sansing LH: Microglial responses after ischemic stroke and intracerebral hemorrhage. Clin Devel Immunol 2013, 2013:746068.
  • [88]Wang J, Dore S: Inflammation after intracerebral hemorrhage. J Cereb Blood Flow Metab 2007, 27(5):894-908.
  • [89]Engelhardt B: Immune cell entry into the central nervous system: involvement of adhesion molecules and chemokines. J Neurol Sci 2008, 274(1–2):23-26.
  • [90]Moxon-Emre I, Schlichter LC: Neutrophil depletion reduces blood–brain barrier breakdown, axon injury, and inflammation after intracerebral hemorrhage. J Neuropath Exp Neurol 2011, 70(3):218-235.
  • [91]Wasserman JK, Schlichter LC: Minocycline protects the blood–brain barrier and reduces edema following intracerebral hemorrhage in the rat. Exp Neurol 2007, 207(2):227-237.
  • [92]Gong C, Hoff JT, Keep RF: Acute inflammatory reaction following experimental intracerebral hemorrhage in rat. Brain Res 2000, 871(1):57-65.
  • [93]Xue M, Del Bigio MR: Intracerebral injection of autologous whole blood in rats: time course of inflammation and cell death. Neurosci Lett 2000, 283(3):230-232.
  • [94]Sansing LH, Harris TH, Kasner SE, Hunter CA, Kariko K: Neutrophil depletion diminishes monocyte infiltration and improves functional outcome after experimental intracerebral hemorrhage. Acta Neurochir Suppl 2011, 111:173-178.
  • [95]Sansing LH, Harris TH, Welsh FA, Kasner SE, Hunter CA, Kariko K: Toll-like receptor 4 contributes to poor outcome after intracerebral hemorrhage. Ann Neurol 2011, 70(4):646-656.
  • [96]Fang H, Wang PF, Zhou Y, Wang YC, Yang QW: Toll-like receptor 4 signaling in intracerebral hemorrhage-induced inflammation and injury. J Neuroinflamm 2013, 10:27.
  • [97]Lin S, Yin Q, Zhong Q, Lv FL, Zhou Y, Li JQ, Wang JZ, Su BY, Yang QW: Heme activates TLR4-mediated inflammatory injury via MyD88/TRIF signaling pathway in intracerebral hemorrhage. J Neuroinflamm 2012, 9:46.
  • [98]Hammond MD, Taylor RA, Mullen MT, Ai Y, Aguila HL, Mack M, Kasner SE, McCullough LD, Sansing LH: CCR2+ Ly6C(hi) inflammatory monocyte recruitment exacerbates acute disability following intracerebral hemorrhage. J Neurosci 2014, 34(11):3901-3909.
  • [99]Zhao X, Grotta J, Gonzales N, Aronowski J: Hematoma resolution as a therapeutic target: the role of microglia/macrophages. Stroke 2009, 40(3 Suppl):S92-S94.
  • [100]Peeling J, Yan HJ, Corbett D, Xue M, Del Bigio MR: Effect of FK-506 on inflammation and behavioral outcome following intracerebral hemorrhage in rat. Exp Neurol 2001, 167(2):341-347.
  • [101]Rolland WB, Lekic T, Krafft PR, Hasegawa Y, Altay O, Hartman R, Ostrowski R, Manaenko A, Tang J, Zhang JH: Fingolimod reduces cerebral lymphocyte infiltration in experimental models of rodent intracerebral hemorrhage. Exp Neurol 2013, 241:45-55.
  • [102]Engelhardt B, Ransohoff RM: Capture, crawl, cross: the T cell code to breach the blood–brain barriers. Trend Immunol 2012, 33(12):579-589.
  • [103]Larochelle C, Alvarez JI, Prat A: How do immune cells overcome the blood–brain barrier in multiple sclerosis? FEBS Lett 2011, 585(23):3770-3780.
  • [104]Yang JT, Lee TH, Lee IN, Chung CY, Kuo CH, Weng HH: Dexamethasone inhibits ICAM-1 and MMP-9 expression and reduces brain edema in intracerebral hemorrhagic rats. Acta Neurochir 2011, 153(11):2197-2203.
  • [105]Ma Q, Manaenko A, Khatibi NH, Chen W, Zhang JH, Tang J: Vascular adhesion protein-1 inhibition provides antiinflammatory protection after an intracerebral hemorrhagic stroke in mice. J Cereb Blood Flow Metab 2011, 31(3):881-893.
  • [106]Shi W, Wang Z, Pu J, Wang R, Guo Z, Liu C, Sun J, Gao L, Zhou R: Changes of blood–brain barrier permeability following intracerebral hemorrhage and the therapeutic effect of minocycline in rats. Acta Neurochir Suppl 2011, 110(Pt 2):61-67.
  • [107]Gonzales NR, Shah J, Sangha N, Sosa L, Martinez R, Shen L, Kasam M, Morales MM, Hossain MM, Barreto AD, Savitz SI, Lopez G, Misra V, Wu TC, El Khoury R, Sarraj A, Sahota P, Hicks W, Acosta I, Sline MR, Rahbar MH, Zhao X, Aronowski J, Grotta JC: Design of a prospective, dose-escalation study evaluating the Safety of Pioglitazone for Hematoma Resolution in Intracerebral Hemorrhage (SHRINC). Int J Stroke 2013, 8(5):388-396.
  • [108]Lu A, Tang Y, Ran R, Ardizzone TL, Wagner KR, Sharp FR: Brain genomics of intracerebral hemorrhage. J Cereb Blood Flow Metab 2006, 26(2):230-252.
  • [109]Rosell A, Vilalta A, Garcia-Berrocoso T, Fernandez-Cadenas I, Domingues-Montanari S, Cuadrado E, Delgado P, Ribo M, Martinez-Saez E, Ortega-Aznar A, Montaner J: Brain perihematoma genomic profile following spontaneous human intracerebral hemorrhage. PLoS One 2011, 6(2):e16750.
  • [110]Hua Y, Wu J, Keep RF, Nakamura T, Hoff JT, Xi G: Tumor necrosis factor-alpha increases in the brain after intracerebral hemorrhage and thrombin stimulation. Neurosurgery 2006, 58(3):542-550.
  • [111]Sun H, Tang Y, Guan X, Li L, Wang D: Effects of selective hypothermia on blood–brain barrier integrity and tight junction protein expression levels after intracerebral hemorrhage in rats. Biol Chem 2013, 394(10):1317-1324.
  • [112]Banks WA, Erickson MA: The blood–brain barrier and immune function and dysfunction. Neurobiol Dis 2010, 37(1):26-32.
  • [113]Pan W, Stone KP, Hsuchou H, Manda VK, Zhang Y, Kastin AJ: Cytokine signaling modulates blood–brain barrier function. Curr Pharm Design 2011, 17(33):3729-3740.
  • [114]King MD, Alleyne CH Jr, Dhandapani KM: TNF-alpha receptor antagonist, R-7050, improves neurological outcomes following intracerebral hemorrhage in mice. Neurosci Lett 2013, 542:92-96.
  • [115]King MD, McCracken DJ, Wade FM, Meiler SE, Alleyne CH Jr, Dhandapani KM: Attenuation of hematoma size and neurological injury with curcumin following intracerebral hemorrhage in mice. J Neurosurg 2011, 115(1):116-123.
  • [116]Chau M, Chen D, Wei L: Erythropoietin attenuates inflammatory factors and cell death in neonatal rats with intracerebral hemorrhage. Acta Neurochir Suppl 2011, 111:299-305.
  • [117]Li ZQ, Liang GB, Xue YX, Liu YH: Effects of combination treatment of dexamethasone and melatonin on brain injury in intracerebral hemorrhage model in rats. Brain Res 2009, 1264:98-103.
  • [118]Yao Y, Tsirka SE: The CCL2-CCR2 system affects the progression and clearance of intracerebral hemorrhage. GLIA 2012, 60(6):908-918.
  • [119]Stamatovic SM, Dimitrijevic OB, Keep RF, Andjelkovic AV: Protein kinase Calpha-RhoA cross-talk in CCL2-induced alterations in brain endothelial permeability. J Biol Chem 2006, 281(13):8379-8388.
  • [120]Stamatovic SM, Keep RF, Kunkel SL, Andjelkovic AV: Potential role of MCP-1 in endothelial cell tight junction ‘opening’: signaling via Rho and Rho kinase. J Cell Sci 2003, 116(Pt 22):4615-4628.
  • [121]Stamatovic SM, Keep RF, Wang MM, Jankovic I, Andjelkovic AV: Caveolae-mediated internalization of occludin and claudin-5 during CCL2-induced tight junction remodeling in brain endothelial cells. J Biol Chem 2009, 284(28):19053-19066.
  • [122]Stamatovic SM, Shakui P, Keep RF, Moore BB, Kunkel SL, Van Rooijen N, Andjelkovic AV: Monocyte chemoattractant protein-1 regulation of blood–brain barrier permeability. J Cereb Blood Flow Metab 2005, 25(5):593-606.
  • [123]Rosenberg GA, Mun-Bryce S, Wesley M, Kornfeld M: Collagenase-induced intracerebral hemorrhage in rats. Stroke 1990, 21(5):801-807.
  • [124]Xue M, Yong VW: Matrix metalloproteinases in intracerebral hemorrhage. Neurol Res 2008, 30(8):775-782.
  • [125]Florczak-Rzepka M, Grond-Ginsbach C, Montaner J, Steiner T: Matrix metalloproteinases in human spontaneous intracerebral hemorrhage: an update. Cerebrovasc Dis 2012, 34(4):249-262.
  • [126]Hartz AM, Bauer B, Soldner EL, Wolf A, Boy S, Backhaus R, Mihaljevic I, Bogdahn U, Klunemann HH, Schuierer G, Schlachetzki F: Amyloid-beta contributes to blood–brain barrier leakage in transgenic human amyloid precursor protein mice and in humans with cerebral amyloid angiopathy. Stroke 2012, 43(2):514-523.
  • [127]Hernandez-Guillamon M, Martinez-Saez E, Delgado P, Domingues-Montanari S, Boada C, Penalba A, Boada M, Pagola J, Maisterra O, Rodriguez-Luna D, Molina CA, Rovira A, Alvarez-Sabin J, Ortega-Aznar A, Montaner J: MMP-2/MMP-9 plasma level and brain expression in cerebral amyloid angiopathy-associated hemorrhagic stroke. Brain Pathol 2012, 22(2):133-141.
  • [128]Lischper M, Beuck S, Thanabalasundaram G, Pieper C, Galla HJ: Metalloproteinase mediated occludin cleavage in the cerebral microcapillary endothelium under pathological conditions. Brain Res 2010, 1326:114-127.
  • [129]Liu J, Jin X, Liu KJ, Liu W: Matrix metalloproteinase-2-mediated occludin degradation and caveolin-1-mediated claudin-5 redistribution contribute to blood–brain barrier damage in early ischemic stroke stage. J Neurosci 2012, 32(9):3044-3057.
  • [130]Yang Y, Estrada EY, Thompson JF, Liu W, Rosenberg GA: Matrix metalloproteinase-mediated disruption of tight junction proteins in cerebral vessels is reversed by synthetic matrix metalloproteinase inhibitor in focal ischemia in rat. J Cereb Blood Flow Metab 2007, 27(4):697-709.
  • [131]Yang Y, Rosenberg GA: MMP-mediated disruption of claudin-5 in the blood–brain barrier of rat brain after cerebral ischemia. Method Mol Biol 2011, 762:333-345.
  • [132]Li N, Liu YF, Ma L, Worthmann H, Wang YL, Wang YJ, Gao YP, Raab P, Dengler R, Weissenborn K, Zhao XQ: Association of molecular markers with perihematomal edema and clinical outcome in intracerebral hemorrhage. Stroke 2013, 44(3):658-663.
  • [133]Wang J, Tsirka SE: Neuroprotection by inhibition of matrix metalloproteinases in a mouse model of intracerebral haemorrhage. Brain 2005, 128(Pt 7):1622-1633.
  • [134]Xue M, Hollenberg MD, Demchuk A, Yong VW: Relative importance of proteinase-activated receptor-1 versus matrix metalloproteinases in intracerebral hemorrhage-mediated neurotoxicity in mice. Stroke 2009, 40(6):2199-2204.
  • [135]Rosenberg GA, Navratil M: Metalloproteinase inhibition blocks edema in intracerebral hemorrhage in the rat. Neurology 1997, 48(4):921-926.
  • [136]Wells JE, Biernaskie J, Szymanska A, Larsen PH, Yong VW, Corbett D: Matrix metalloproteinase (MMP)-12 expression has a negative impact on sensorimotor function following intracerebral haemorrhage in mice. Eur J Neurosci 2005, 21(1):187-196.
  • [137]Grossetete M, Rosenberg GA: Matrix metalloproteinase inhibition facilitates cell death in intracerebral hemorrhage in mouse. J Cereb Blood Flow Metab 2008, 28(4):752-763.
  • [138]Tang J, Liu J, Zhou C, Alexander JS, Nanda A, Granger DN, Zhang JH: Mmp-9 deficiency enhances collagenase-induced intracerebral hemorrhage and brain injury in mutant mice. J Cereb Blood Flow Metab 2004, 24(10):1133-1145.
  • [139]Gregson BA, Broderick JP, Auer LM, Batjer H, Chen XC, Juvela S, Morgenstern LB, Pantazis GC, Teernstra OP, Wang WZ, Zuccarello M, Mendelow AD: Individual patient data subgroup meta-analysis of surgery for spontaneous supratentorial intracerebral hemorrhage. Stroke 2012, 43(6):1496-1504.
  • [140]Mendelow AD, Gregson BA, Rowan EN, Murray GD, Gholkar A, Mitchell PM, Investigators SI: Early surgery versus initial conservative treatment in patients with spontaneous supratentorial lobar intracerebral haematomas (STICH II): a randomised trial. Lancet 2013, 382(9890):397-408.
  • [141]Morgan T, Zuccarello M, Narayan R, Keyl P, Lane K, Hanley D: Preliminary findings of the minimally-invasive surgery plus rtPA for intracerebral hemorrhage evacuation (MISTIE) clinical trial. Acta Neurochir Suppl 2008, 105:147-151.
  • [142]Mould WA, Carhuapoma JR, Muschelli J, Lane K, Morgan TC, McBee NA, Bistran-Hall AJ, Ullman NL, Vespa P, Martin NA, Awad I, Zuccarello M, Hanley DF: MISTIE Investigators: minimally invasive surgery plus recombinant tissue-type plasminogen activator for intracerebral hemorrhage evacuation decreases perihematomal edema. Stroke 2013, 44(3):627-634.
  • [143]Keep RF, Xiang J, Ennis SR, Andjelkovic A, Hua Y, Xi G, Hoff JT: Blood–brain barrier function in intracerebral hemorrhage. Acta Neurochir Suppl 2008, 105:73-77.
  文献评价指标  
  下载次数:51次 浏览次数:19次